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Heat exchanger modeling has been widely employed in recent years for
performance calculation, design optimizations, real-time simulations for
control analysis, as well as transient performance predictions. Among these
applications, the model’s computational speed and robustness are of great
interest, particularly for the purpose of optimization studies. Machine learning
models built upon experimental or numerical data can contribute to improving the
state-of-the-art simulation approaches, provided careful consideration is given to
algorithm selection and implementation, to the quality of the database, and to the
input parameters and variables. This comprehensive review covers machine
learning methods applied to heat exchanger applications in the last 8 years.
The reviews are generally categorized based on the types of heat exchangers
and also consider common factors of concern, such as fouling, thermodynamic
properties, and flow regimes. In addition, the limitations of machine learning
methods for heat exchanger modeling and potential solutions are discussed,
along with an analysis of emerging trends. As a regression classification tool,
machine learning is an attractive data-driven method to estimate heat exchanger
parameters, showing a promising prediction capability. Based on this review
article, researchers can choose appropriate models for analyzing and
improving heat exchanger modeling.
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1 Introduction

A heat exchanger is a device that facilitates heat transfer between fluids at different
temperatures. It is widely employed in applications such as air-conditioning, refrigeration,
power plants, oil refineries, petrochemical plants, natural-gas processing, chemical plants,
sewage treatment, and many others (Hall, 2012; Singh et al., 2022). Theoretical analysis,
analytical models, experimental methods, and numerical methods were conventionally
applied to study the heat transfer and fluid flow processes within the heat exchangers
(Du et al., 2023). The analytical models generally involve several assumptions in the
derivation of relevant equations and formulae. The process of heat transfer can be
evaluated through classical methods, such as the logarithmic mean enthalpy difference
(LMHD), the logarithmic mean temperature difference (LMTD), ε–NTU, etc. (Hassan et al.,
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2016). However, these techniques are generally based on certain
assumptions and conditions, such as constant physical properties,
steady-state operation, negligible wall heat conduction, uniform
distribution of flow properties, and a consistent air fluid
temperature along the fin height.

For numerical modeling of heat exchangers, discretization of the
refrigerant flow field and of the governing equations is required
(Prithiviraj and Andrews, 1998). To achieve detailed analysis in
computational solutions, one might consider employing advanced
numerical techniques such as the Finite Volume Method (FVM) or
the Finite Element Method (FEM). It is essential to achieve a balance
of heat and mass in each cell (Moukalled et al., 2016).
Computational Fluid Dynamics (CFD) can be a useful tool in
designing, troubleshooting, and optimizing heat exchanger
systems (Bhutta et al., 2012). It transforms the integral and
differential terms in the governing fluid mechanics equations into
discrete algebraic forms, thereby generating a system of algebraic
equations. These discrete equations are then solved via a computer
to obtain numerical solutions at specific time/space points.
Nonetheless, numerical methods like CFD often require
significant computational resources (Thibault and Grandjean,
1991; Yang, 2008).

In bridging the gap between computational efficiency and
accuracy, several studies on machine learning methods for heat
exchanger analysis have been developed to predict the performance
of heat exchangers. Some representative machine learning methods
recently used to analyze heat exchangers include Artificial Neural
Networks (ANN), Support Vector Machine (SVM), Tree models,
etc., which were shown to generate satisfactory results (Patil et al.,
2017; Zhang et al., 2019; Ahmadi et al., 2021;Wang andWang, 2021;
Ewim et al., 2021; Fawaz et al., 2022). An analysis of the number of
papers in this field clearly shows a significantly growing trend in
recent years, as illustrated in Figure 1.

In this review, we mainly focus on the review of machine
learning models for air-cooled heat exchangers (finned tube heat
exchangers, microchannel heat exchangers, etc.) in the field of
refrigeration and air-conditioning. The three main objectives of

this paper are: 1) to summarize the studies on machine learning
methods related to heat exchanger thermal analysis over the last
8 years; 2) to compare different machine learning methods
employed in heat exchanger thermal analysis 3) to point out the
limitations and emerging applications of machine learning in heat
exchanger thermal analysis. The organization of this paper consists
of the following five sections: Section 2 summarizes and classifies the
machine learning methods. Section 3 summarizes applications of
machine learning methods for modeling heat exchangers in recent
years. Sections 4, 5 discuss the limitations of ANNmodeling for heat
exchanger analysis and future trends in this area, respectively.

2 Introduction to machine learning
models

As illustrated in Figure 2, the machine learning approaches to
modeling heat exchangers reviewed in this paper include Random
Vector Functional Link Network (RVFL), Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Gaussian Process Regression
(GPR), Sequential Minimal Optimization (SMO), Radial Basis
Function (RBF), Hybrid Radial Basis Function (HRBF), Least
Square Fitting Method (LSFM), Artificial Neural Networks
(ANN), Random Forest, AdaBoost, Extreme Gradient Boosting
(XGBoost), LightGBM, Gradient Boosting Tree (GBT) and
Correlated-Informed Neural Networks (CoINN). The following
section of the paper focuses on the classifications of the various
methods.

2.1 Classification of machine learning
methods

Machine learning methods were introduced to predict or regress
the performance indicators of heat exchangers, such as the Nusselt
number (Nu), the Heat Transfer Coefficient (HTC), the pressure
drop (ΔP), etc. Based on the learning approaches, machine learning

FIGURE 1
Numbers of publications associated with heat exchangers andmachine learning from 2015 till September 2023 (based on data from ScienceDirect).
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categories generally include supervised learning, unsupervised
learning, and reinforcement learning. Semi-supervised learning
and active learning were also employed in studies as a machine
learning category, as shown in Figure 2.

In heat exchanger applications, machine learning techniques
primarily use supervised learning, which involves developing
predictive models using labeled data. Labeled data establishes a
connection between input and output, enabling the prediction
model to generate corresponding outputs for specific inputs.
The essence of supervised learning lies in understanding the
statistical principles that govern the mapping of inputs to
outputs (Cunningham et al., 2008). Unsupervised learning is a
machine learning approach in which predictive models are
developed without relying on labeled data or a clear purpose
(Celebi and Aydin, 2016).

Reinforcement learning refers to learning optimal behavior
strategies by an intelligent system in continuous interaction with
the environment (Wiering and Van Otterlo, 2012). For instance,
Keramati, Hamdullahpur, and Barzegari introduced deep
reinforcement learning for heat exchanger shape optimization
(Keramati, Hamdullahpur, and Barzegari 2022).

Semi-supervised learning refers to the learning prediction
considering both labeled data sets and unlabeled data (Zhu and
Goldberg, 2009). There is typically a small amount of labeled data
and a large amount of unlabeled data because constructing labeled
data often requires labor and high cost, and the collection of
unlabeled data does not require much cost. This approach aims
to use the information in unlabeled data to assist in labeling data for
supervised learning and achieve enhanced learning results at a lower
cost (Zhu, 2005). Active learning refers to a specialized training
approach where the model actively selects the data it wants to learn
from. Unlike traditional machine learning methods where all
training data is provided upfront, active learning allows the
model to selectively acquire new labeled data during its learning
process. As a result, semi-supervised learning and active learning are
closer to supervised learning. The differences between active
learning and semi-supervised learning are: In active learning, the

algorithm selectively picks the most informative instances for
manual annotation, aiming to enhance model accuracy while
minimizing labeling workload. In contrast, in semi-supervised
learning, the emphasis is not on actively selecting instances.
Instead, it leverages a combination of labeled and unlabeled data
to enhance model generalization and performance through the
integration of these data sources. Chen et al. (Chen et al., 2021)
introduced a hybrid modeling method combining the mechanism
with semi-supervised learning for temperature prediction in a roller
hearth kiln, which implies the possibility of being employed in heat
transfer.

2.2 Introduction of the various machine
learning methods

As shown in Table 1, the classification of the machine learning
methods considered here is the following:

• Neural networks refer to a series of methods that simulate the
human brain in the hierarchical structure of neurons to
recognize the relationships among specified data (Mahesh,
2018). Supervised neural network refers to a network
consisting of many neurons connected by weighted links,
which was first introduced by Hopfield in 1982 in
biological research (Hopfield, 1982; Mahesh, 2018). In the
literature, the methods presented for heat exchangers, such as
ANN or RVFL, are distinctive due to the structure of their
network.

• A tree model in machine learning is a type of predictive modeling
tool, transitioning from observed attributes of an entity,
symbolized by the branches, to deductions about the entity’s
target value, encapsulated in the leaves (Clark and Pregibon,
2017). This model employs a hierarchical structure to parse the
data, whereby each internal node corresponds to a specific
attribute, each branch signifies a decision rule, and each leaf
node represents an outcome or a prediction. The process

FIGURE 2
The classification of machine learning models.
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initiates from the root node and progressively branches out based
on defined decision rules, effectively segmenting the data space
into non-overlapping regions (Rattan et al., 2022). The tree model
defines how to get a prediction score. It can be employed for
classification and regression, such as Random Forest, AdaBoost,
XGBoost, LightGBM, GBT, etc.

• A Support Vector Machine (SVM) is a widely used supervised
learning model in machine learning. It is used for both
classification and regression tasks (Mahesh, 2018).
However, it is primarily used in classification problems.
The basic idea behind SVM is to find a hyperplane in
N-dimensional space (where N is the number of features)
that distinctly classifies the data points. The chosen
hyperplane is systematically optimized to maximize the
“margin,” which is defined as the distance to the nearest
data points across different classes. This maximization
strategy is intended to minimize the model’s generalization
error, thus enhancing its predictive accuracy for classifying
new instances. In the domain of SVM, Sequential Minimal
Optimization (SMO) serves as an efficient algorithm for
training. SMO can be optimized as a heuristic algorithm
whose basic idea is to optimize only two variables at one
iteration while fixing the remaining variables (Sun et al., 2008).

• Bayesian regression is a statistical method that uses the
principles of Bayesian statistics to estimate the parameters
of a regression model. It is an alternative to traditional
regression models like linear regression, and it takes a
fundamentally different approach to model the relationship
between the dependent and independent variables (Sun et al.,
2008). In Bayesian statistics, probabilities are treated as a
measure of belief or uncertainty, which can be updated
based on new data. This is especially useful for modeling
systems where uncertainty is inherent, providing a flexible
framework that allows for iterative refinement as new data is
incorporated. Thus, Bayesian regression offers an alternative
but robust way of tackling regression problems

• K-nearest neighbor can solve the classification and regression
issues related to heat exchangers. A similaritymetric is established
within the data space, enabling the prediction of data labels by
utilizing the nearest neighbors in the data space for reference
(Kramer, 2013). In the K-nearest neighbor (KNN) algorithm,

when one seeks to predict the label of an unobserved data point,
the algorithm specifically identifies ‘K’ instances from the training
set that are in closest proximity to the given point. The
determination of “proximity” is generally quantified using a
distance metric, with the Euclidean distance being the most
commonly employed metric in numerous applications. For
illustrative purposes, if we set K to 3, the KNN procedure will
focus on the three most proximate training data instances relative
to the unobserved point to facilitate the prediction. In the realm of
classification, the predominant label amongst these three
neighbors is then allocated to the unobserved data point. In
the context of regression analysis, the algorithmmight predict the
label by computing the mean value from the labels of the three
nearest neighbors.

3 Machine learning models applied for
heat exchanger modeling

Traditional physics-based models may encounter difficulties when
dealing with complex and non-linear problems, requiring extensive
specialist knowledge and experience. In this context, machine learning
methods have been introduced to the field of heat exchangers. Machine
learning models built upon experimental or numerical data can
improve state-of-the-art simulation methodologies. Machine learning
can reduce calculation time, increase prediction accuracy, and handle
complex and non-linear issues. In recent years, there have been notable
advances in the application of machine learning methods in the field of
heat exchangers, such as usingmachine learning to predict heat transfer
coefficients (Section 3.2.1), pressure drop (Section 3.2.2), and heat
exchanger performance (Section 3.2.3) performing real-time analysis
of complex experimental data, and optimizing large-scale thermal
systems.

This section reviews the recent advances in applications of
machine learning methods for heat exchanger modeling in the
following categories: (Section 3.2.1) Modeling of Heat Transfer
Coefficient (HTC), (Section 3.2.2) Modeling of pressure drops,
(Section 3.2.3) Modeling of heat exchanger performance (Section
3.3) Fouling factors, (Section 3.4) Refrigerant thermodynamic
properties, and (Section 3.5) Flow pattern recognition based on
machine learning methods.

TABLE 1 The primary classification of machine learning.

Machine learning
categories

Output type Learning strategy Methods

Supervised Neural network Classification,
Regression

Minimize the loss function Artificial Neural Networks (ANN), Random Vector Functional Link
Network (RVFL), Correlated-Informed Neural Networks (CoINN),
Hybrid Radial Basis Function (HRBF), Radial Basis Function (RBF)

Tree model Classification,
Regression

Maximum likelihood estimation for
regularization

Random Forest (RF), AdaBoost, Extreme Gradient Boosting (XGBoost),
LightGBM, Gradient Boosting Tree (GBT)

Support vector machine Binary
Classification

Soft margin maximization Sequential Minimal Optimization (SMO)

Bayesian Classification Maximum likelihood estimation,
maximum a posteriori estimation

Gaussian Process Regression (GPR)

K-nearest neighbor Classification,
Regression

Minimization of distance K-Nearest Neighbor (KNN)
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3.1 Heat exchangers

For the heat exchanger reviewed in this section, as shown in
Figure 3A, microchannel heat exchangers consist of small-scale finned
channels etched in silicon wafers and a manifold system that forces a
liquid flow between fins (Harpole and Eninger, 1991). As shown in
Figure 3B, the shell and tube heat exchangers are devices consisting of
a vessel containing either a bundle of multiple tubes or a single tube
bent several times, with the wall of the tube bundle enclosed in the
shell being the heat transfer surface. This design has the advantages of
simple structure, low cost, and wide flow cross-section (Mirzaei et al.,
2017). As shown in Figure 3C, a plate heat exchanger is more compact
than the shell and tube heat exchanger design because of its smaller
volume and larger surface area and because its modular design can
increase or reduce the number of required plates to satisfy different
requirements, retaining excellent heat transfer characteristics (Abu-
Khader, 2012). As shown in Figure 3D, Tube-Fin Heat Exchangers
(TFHXs) are important components in heat pump and air
conditioning systems, which consists of a bundle of finned tubes
(Li et al., 2019).

3.2 Parametersmodeling of heat exchangers

This subsection summarizes the use ofmachine learning inmodeling
heat exchangers, with each subsubsection describing different parameters
predicted in the research, providing a comprehensive summary of the

classifications. The different types of heat exchangers are shown in Tables
2–6. Tables 2–6 delineate specific literature references pertaining to each
unique type of heat exchanger. Each table incorporates specific references
correlating to a distinct type of heat exchanger. This systematic
organization of information aims to streamline the process to
effectively locate and review pertinent literature based on the unique
type of heat exchanger they are researching.

To conduct a robust, quantitative assessment of the models
introduced in this research, we have incorporated a range of error
metrics, as cataloged in Tables 2–9. These metrics not only facilitate
an empirical evaluation of model performance but also provide
prospective users with a criteria-based framework for model
selection relative to specific applications. We delineate the
mathematical equations that form the basis for each type of error
metric employed as shown in the following equations.

Mean Relative Error (MRE) is a metric that quantifies the
relative size of the prediction errors with respect to the actual
observed values. The formula for MRE is:

MRE � 1
n
∑n

i�1
| Xpredict −Xreal |

Xreal
(1)

Mean Absolute Error (MAE) is a popular metric for regression.
It measures the average absolute difference between observed and
predicted values. The formula is:

MAE � 1
n
∑n

i�1 | Xpredict −Xreal | (2)

FIGURE 3
(A) Microchannel heat exchangers. (B) Shell and tube heat exchangers adapted from (Foley, 2013). (C) Plate heat exchangers. (D) Tube-fin heat
exchangers.
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Root Mean Squared Error (RMSE) is another commonly
used regression metric. It first calculates the square of the
difference between each observed value and its predicted
value, averages these, and then takes the square root. Its
formula is:

RMSE � 1
n

������������������∑n

i�1 Xpredict −Xreal( )2√
(3)

Median Absolute Error (MedAE) is similar to MAE, but instead of
using themean of the absolute errors, it uses themedian. The formula is:

MedAE � 1
n
∑n

i�1 | Xpredict −Xmedian | (4)

R-squared, also known as the coefficient of determination,
is used to measure how well the model explains the variability

TABLE 2 Machine learning applications for modeling microchannel heat exchangers.

Authors Type of machine
learning

Input Output Error analysis

Moradkhania et al. (Moradkhani
et al., 2022a)

GPR Prtp , Retp , x, Pred , R, Wego , Frl , Bo Nusselt number MRE 4.50%

RBF MRE 19.41%

HRBF MRE 24.53%

Ma et al. (Y. Ma et al., 2022) GBT α, N, Re and A Nusselt number RMSE 219.74% R2

99.90%

Pumping power RMSE 5.4% R2

99.95%

Hughes et al. (Hughes et al., 2022) SVR Reg , Ref , Bo, We, ScV, Scl, Prf , Ja, T* Nusselt number MAE 4.95%
for SVR

RFR MAE 8.6% for RFR

GB MAE 6.2% for GB

ANN MAE 5.3%
for ANN

Reg , Ref , Bd, We, ScV, ScL Friction factor MAE 5.0% for SVR

MAE 8.9% for RFR

MAE 7.0% for GB

MAE 5.0%
for ANN

Zhou et al. (Zhou et al., 2020a) ANN Bd,Co, Frf , Frfo , Frg , Frgo ,Ga,Ka, Prf , Prg , Ref , Refo , Reg ,
Rego , Suf , Sug , Sufo , Sugo , Wef , Wefo , Weg , Wego

Heat transfer
coefficient

MAE 6.80% R2 98%

Random Forest MAE 18.56%
R2 87%

AdaBoost MAE 34.60%
R2 75%

XGBoost MAE 9.06% R2 97%

Montanez-Barrera et al.
(Montañez-Barrera et al., 2022)

CoINN Mixture vapor quality, Micro-channel inner diameter,
Available pressure drop correlation

Pressure drop MRE 6%

Qiu et al. (Qiu et al., 2021) ANN Bd, Bo, Frf , Frfo , Frg , Frgo , Frtp , Prf , Prg , Peg , Pef , Ref ,
Refo , Reg , Rego , Reeq , Suf , Sug ,Wef ,Wefo ,Weg ,Wego ,Wetp

Flow boiling pressure
drop

MAE 9.58%
for ANN

KNN MAE 10.38%
for KNN

XGBoost MAE 13.52% for
XGBoost

Light GBM MAE 14.49% for
Light GBM

Zhu et al. (Zhu et al., 2021a) ANN The channel geometry size, Fluid thermal properties, The
working fluid conditions and Heat flux or other derived
dimensionless parameters

HTC (boiling and
condensation)

MRE 11.41% for
boiling

MRE 6.06% for
condensation
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TABLE 3 Machine learning applications for modeling plate heat exchangers.

Authors Type of machine
learning

Input Output Error analysis

Amalfi et al. (Amalfi and
Kim, 2021)

RF Mass flow rate, Saturation temperature, Heat flux, and
Geometrical parameters

Nusselt number MAE 10.0%

Local frictional pressure
gradient

MAE 10.3%

Longo et al. (Longo et al.,
2020c)

GBM Φ, β/βmax, Prf, Specific kinetic energy number, P/Pc,
and Boiling or condensation

Frictional pressure
gradient

MAE of 6.6%

Longo et al. (Longo et al.,
2020b)

ANN Φ, β /βmax, Prf , Reeq , and Reduced pressure Heat transfer factor
(boiling)

MAE 4.8%

Longo et al. (Longo et al.,
2020a)

ANN ΔT, ΔTsup , Φ, Reeq , Prf Heat transfer factor
(condensation)

MAE 3.6%

Gupta et al. (Gupta et al.,
2017)

ANN Q, P1, P2, Pcd, Phd, T1, T3 Outlet cold fluid
temperature

Average error of 0.25%
for ANN

ANFIS Average error of 0.896%
for ASNFIS

Outlet hot fluid
temperature

Average error of 0.19%
for ANN

Average error of 0.192%
for ASNFIS

TABLE 4 Machine learning applications for modeling tube-fin heat exchanger.

Authors Type of
machine
learning

Input Output Error
analysis

Najafi et al. (Najafi et al.,
2021)

RF xv, Re, (1 − x)/x, Ref , Rego , Frictional pressure drop MARD 6.72%

Ardam et al. (Ardam
et al., 2021)

RF X, Fgo , n, Bo, e/Dint Pressure drop MARD 6.41%

Xie et al. (Xie et al.,
2022a)

ANN L, α, β Nusselt number R2 99%

Friction factor R2 99.8%

Du et al. (Du et al., 2020) ANN θ, Re, DC, Rew , Tia, Tiw , Ntr, Ntp the outer length of the
major axis, the outer length of the minor axis, Dc

Nusselt number MSE 78.97%

Friction factor MSE 1.08%

Skrypnik et al.
(Skrypnik et al., 2022)

ANN Re, P/D, Helical fin height/D, θ/90 Inter-fin distance/
Helical fin height, Number of helical fin starts

Nusselt number MAE 16.3%

Friction factor MAE 11.8%

Subbappa et al.
(Subbappa et al., 2022)

ANN Refrigerant, Tubes per bank, Tubes per bank per circuit
(i.e., circuitry), Tube banks, Tube length, Fins per inch, Air
velocity, Refrigerant temperature, Refrigerant G

Heat transfer and Refrigerant pressure
drop

ANN and SVR ±
20% for 90%

RR

SVR

Li (Li et al., 2016) RSM based NN Ts,in, xin, mr , Va , Tdb,in, and Twb,in Total cooling capacity, Sensible heat
ratio, and Pressure drops on both
refrigerant and air sides

Dry
condition
R2 >99.8%

Wet
condition
R2 >97.4%

Krishnayatra
(Krishnayatra et al.,
2020)

KNN Fin spacing, Fin thickness, Material, and Convective heat
transfer coefficient

Overall efficiency R2 90.14% k = 2

Total effectiveness R2 85.37% k = 8
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among the observed values. It ranges between 0 and 1, with
values closer to 1 indicating a better fit. Its formula is:

R2 � 1 − ∑n
i�1 Xpredict −Xreal( )2

∑n
i�1 Xpredict −Xaverage( )2 (5)

3.2.1 Modeling of Heat Transfer Coefficient
The Heat Transfer Coefficient (HTC) plays a pivotal role in the

design and optimization of heat exchangers. It is a key parameter
that describes the rate of heat transfer per unit area, per unit of
temperature difference. In fluid dynamics and heat transfer studies,

TABLE 5 Machine learning applications for modeling shell and tube heat exchanger.

Authors Type of machine
learning

Input Output Error analysis

El-Said et al. (El-Said et al., 2021) RVFL Cold fluid, and injected air volume flow rates Outlet temperature of
cold fluids

RMSE 52.78% for
RVFL

SMO RMSE 149.6%
for SMO

SVM RMSE 53.56%
for SVM

KNN RMSE 140.0%
for KNN

Outlet temperature of
hot fluids

RMSE 71.91% for
RVFL

RMSE 247.7%
for SMO

RMSE 174.1%
for SVM

RMSE 185.5%
for KNN

Pressure drop RMSE 0.9093% for
RVFL

RMSE 2.3525%
for SMO

RMSE 1.5391%
for SVM

RMSE 0.8944%
for KNN

Kunjuraman and Velusamy (Kunjuraman
and Velusamy, 2021)

ANN CF, FIT, SF Condensate
temperature

MRE 0.971%
for ANN

ANFIS RMSE1.175%
for ANN

R2 94.56% for ANN

MRE 0.381% for
ANFIS

RMSE 0.532% for
ANFIS

R2 99.98% for
ANFIS

Roy and Majumder (Roy and Majumder,
2019)

FFBN Tube configurations (30, 40, 60, and 90), Different
fluids, surface, Temperature

Exergetic Plant
Efficiency

Accuracy 98.11%

Energetic Cycle Accuracy 97.40%

Efficiency Accuracy 96.35%

Electrical Power Cost Accuracy 97.23%

Fouling factor Accuracy 98.32%

Muthukrishnan et al. (Muthukrishnan
et al., 2020)

SVM Nt, Sb, Nb, Dc Heat transfer rate Accuracy >90%
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TABLE 6 Machine learning applications for modeling other heat exchangers.

Authors Type of heat
exchangers

Type of
machine
learning

Input Output Error analysis

Azizi and Ahmadloo (Azizi
and Ahmadloo, 2016)

Inclined tube ANN IA, G, Ts , xv Heat transfer coefficient MAE 1.94%

R2 99.5%

Zheng et al. (Zheng et al.,
2022)

Heat exchange channels
with bulges

GRNN Order of the bulge heights at
different locations (6 nodes)

Heat transfer coefficient Both R2>97% for
GRNN and RF

RF

Moradkhani et al.
(Moradkhani et al., 2022b)

Inside smooth helically
coiled tubes

GPR Retp , Prtp , X, Pred , Bo, Dt/Dc

and Frf

Boiling heat transfer
coefficient

MRE 5.93% for GPR

RBF MRE 6.67% for RBF

MLP MRE 9.27% for MLP

Kwon et al. (Kwon et al.,
2020)

Rough cooling channel RF Height of channel geometries
e1, e2, e3, e4, e5 (5 nodes)

Convection heat transfer
coefficients

R2 > 96.6%

Dalkilic et al. (Dalkilic et al.,
2019)

Smooth pipe ANN Re, GrΔT*10−66, Pr, Bd, f,
f0, μw/μb, fvp

Tube length averaged the
Nusselt number and Nusselt
number in forced convection

Accuracy ±5%

Chokphoemphun et al.
(Chokphoemphun et al.,
2020)

Grooved channel air heater NN Turbulator, Depth ratio, IA,
and Re

Nusselt number R2 99.8864%

Friction factor R2 99.9772%

Thermal enhancement factor R2 99.8858%

Alireza Zendehboudi*,
Xianting Li (Zendehboudi
and Li, 2017)

Inclined smooth tubes PSO-ANN IA, G, xv, and Ts Pressure drop R2 96.092% for
PSO-ANN

GA-LSSVM R2 99.931% for GA-
LSSVM

Hybrid-ANFIS R2 99.932% for
Hybrid-ANFIS

GA-PLCIS R2 99.937% for GA-
PLCIS

MSE RRMSE et al

Frictional pressure drop R2 97.753% for
PSO-ANN

R2 99.932% for GA-
LSSVM

R2 99.940% for
Hybrid-ANFIS

R2 99.944% for GA-
PLCIS

MSE RRMSE et al

Garcia et al. (Garcia et al.,
2018)

R407C in horizontal tubes ANN Dt, G, Ps , and xv Pressure drop MAE 6.11%

R2 99.9%

Shojaeefard et al. (Shojaeefard
et al., 2017)

Compact heat exchanger
(evaporator)

Numerical Ta,in,db , Ta,in,wb , Pref,in , Tref,in ,
_mref , and Va

Qevap , Pref,out , Tref,out ,
Ta,out,db , and Ta,out,wb

RMSE (avg) 228.6%
for Numerical

FFNN RMSE (avg) 501.7%
for FFNN

GA-trained RMSE (avg) 479.1%
for GA-trained

RNN RMSE (avg) 116.9%
for RNN

MSE, R2

(Continued on following page)
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TABLE 6 (Continued) Machine learning applications for modeling other heat exchangers.

Authors Type of heat
exchangers

Type of
machine
learning

Input Output Error analysis

Uguz and Iperk (Uguz and
Ipek, 2022)

Compact heat exchanger ANN Thw , Thwi , Tcw , Tcwi , and m _cw Tcw,out R2 96.0% for ANN

MLR R2 96.1% for MLR

SVR R2 94.2% for SVR

Thw,out MSE, MAE and
MedAE

Peng and Ling et al. (Peng and
Ling, 2015)

Compact heat exchangers SVR Fin height, Fin pitch, Fin,
Thickness, Fin length, and
Reynolds number at the air
side

Friction factor MSE 2.645 *10-4

Colburn factor MSE 1.231 * 10-3

Azizi et al. (Azizi et al., 2016) Gas–liquid flow in
horizontal, upward and
downward inclined pipes

ANN IA, Resg , and Resl Void fraction MAE 1.52%

R2 99.48%

Bhattacharya et al.
(Bhattacharya et al., 2022)

Heat exchanger CNN-GRU SSM _ma in , Patm , Tin , RHin , _mref in ,
hin , Pout , hout

pinlet , poutlet , hinlet , houtlet ,
Qtotal , _mtotal

Maximum
percentage error is
capped at 0.2%

Li et al. (Li et al., 2023) Printed circuit heat
exchangers

ANN _m, D, Tin , Pin , Wall heat flux,
Vin , ρin , Length, Re and Pr

HTC R2 99.94% for ANN

XGBoost

LightGBM ΔP R2 99.96% for ANN

Random forest

Chen et al. (Chen et al., 2023) Energy pile heat pump
system

ANN Tamb , RHamb , Troom ,
RHroom , Psys

Coefficient of performance MAE 31.4%

TABLE 7 Prediction of the fouling factor for heat exchangers based on machine learning methods.

Authors Type of heat
exchangers

Type of
machine
learning

Inputs Outputs Error analysis

Hosseini et al.
(Hosseini et al., 2022)

Preheat exchanger networks
of petroleum refineries

GPR Operation time, Surface temperature, Fluid
velocity, Fluid density, Fluid temperature, and
Equivalent diameter

Fouling factor
(m2K/kW)

R2 13.89%
for GPR

DT R2 16.64% for DT

Bagged Trees R2 8.86% for
Bagged Trees

SVR R2 35.39% for SVR

Mohanty (Mohanty,
2017)

Shell and tube heat
exchanger

ANN The Inlet temperature, Re, and Mass flow rate
on both tube and shell sides

Tube-side temperature
difference,

3.1 (predicted
value)

Shell side temperature
difference

2.2 (predicted
value)

Efficiency 7.26% (predicted
value)

Kuzucanlı et al.
(Kuzucanlı et al.,
2022)

Plate heat exchange Naïve Bayes Varied flow rate, Inlet temperatures Heat transfer
coefficient and fouling
factor

100% for Naïve
Bayes

DT 99.3% for decision
tree

KNN 96.3% for KNN
(Predict accuracy)

Sundar et al. (Sundar
et al., 2020)

Cross-flow heat exchanger Deep learning Tfin , Twin , _mw , f/ _mw , _mflue , f/ _mflue ,
Tfo , Two ,

Overall fouling factor R2 99.86%
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the Nusselt number is often introduced as a dimensionless
parameter delineating the relative significance of convective heat
transfer to conductive heat transfer across a defined boundary. It
essentially offers a normalized representation of the Heat Transfer
Coefficient (HTC). Accurate prediction of HTC can lead to more
efficient design and optimization of heat exchangers, resulting in
improved performance and reduced energy consumption (Zhu et al.,
2021). This subsection summarizes and categorizes studies related to
the prediction of the Heat Transfer Coefficient (HTC) presented in
recent literature. The classification is primarily based on the types of
input parameters used, with a particular focus on distinguishing
between dimensionless parameters and structural parameters.
Additionally, a separate classification is conducted based on the
different sources of data used, including historical literature,
experimental data, and Computational Fluid Dynamics (CFD)
simulations.

A plethora of research efforts has been methodically
invested in the predictive modeling of the Heat Transfer
Coefficient (HTC), focusing primarily on the influence of
structural parameters to construct effective machine learning
training datasets. For instance, Zheng et al. (Zheng et al., 2022)
introduced General Regression Neural Network (GRNN) and
RF algorithms to predict HTC in heat exchange channels with
bulges with the inputs of each bulge height at different
locations. Other works by Moradkhani et al. (Moradkhani
et al., 2022a) and Kwon et al. (Kwon et al., 2020) have

delved into the specifics of boiling and convection heat
transfer coefficients, respectively. In these works, the effect of
surface roughness on HTC has not been sufficiently explored,
and the amount of measurement data on the topic is insufficient
to include the impact of surface roughness in predictive models.
Therefore, the empirical model that incorporates the effects of
surface roughness into the HTC prediction model needs further
research.

For a predictive model, the exclusive reliance on structural
parameters may prove insufficient. Some studies in the
literature have indeed embraced models where the database
inputs consist of dimensionless numbers or physical properties,
which can standardize data, enhance the stability and
performance of the model, and make the model’s output
easier to understand and interpret. For instance, Longo et al.
(Longo et al., 2020b) developed ANN to estimate the boiling
heat transfer coefficients of refrigerants in Brazed Plate Heat
Exchangers (BPHEs), where the inputs are the corrugation
enlargement ratio (Φ), the reduced inclination angle
(β/βmax), the liquid Prandtl number (Prf ,), the equivalent
Reynolds number (Reeq), the boiling number (Bo), and the
reduced pressure (P/Pcr).

In understanding the various methodologies applied in machine
learning modeling, a clear distinction arises from the source of
databases utilized in various research. A portion of these
investigations derives data from pre-existing literature, while

TABLE 8 Prediction of the thermodynamic properties for refrigerants based on machine learning methods.

Authors The refrigerants Type of
machine
learning

Inputs Outputs Error
analysis

Zhi et al. (Zhi et al., 2018) R1234ze(E), R1234yf, R32, R152a, R161 R245fa ANFIS T, P, ρ Viscosity MAE 414.96%
for ANFIS

RBFNN MAE 500.57%
for RBFNN

BPNN MAE 515.61%
for BPNN

R2, RMSE

Gao et al. (Gao et al., 2019) HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a,
HFC-152a, HFC-161, HFC-227ea, HFC-236fa, HFC-
245fa, HFO-1234yf, HFO-1234ze(E)

ANN Pred , 1 − Tr, ω, Pc/Pcr Reduced residual
heat capacity

MAE 0.779%

RMSE 11.05%

R2 99.52%

MAD 13.6%

Wang et al. (X. Wang
et al., 2020)

R125, R134a, R143a, R152a, R161, R227ea, R236fa,
R32, R1234yf, R1234yf, R1234ze(E), R1336mzz(Z)

ANN Pred , Tr, M, ω Viscosity MSE 1.019e-5

Thermal
conductivity

MSE
1.46774e-6

Zolfaghari and Yousefi
(Zolfaghari and Yousefi,
2017)

HFC-134a, Decane, Octane, Heptane, Diethyl
carbonate, Dimethyl carbonate, n-Nonane,
n-Dodecane, CO2

ANN T, P, Mole fraction, Density MAE 0.34%

Total molecular weight,
Normal boiling
temperature

Nabipour (Nabipour,
2018)

R143a-R227ea, R32-R125, R290-152a, R32-R227ea,
R143a-R125, R125-R152a, R32-R134a, R125-R134a,
R134a-R152a, R290-R600a, R290-R32, R134a-
R143a, R290-RE170, R22-R115, R134a-R1234yf,
R134a-R1234ze(E), R32-R1234yf, R32-R1234ze(E)

ANN T, Pc, Tc, Critical
volume, ω

Surface tension MRE 0.7582%

R2 99.97%
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some data are procured from Computational Fluid Dynamics
(CFD). Amalfi and Kim (Amalfi and Kim, 2021) introduced the
randomized decision trees to predict the Nu. The consolidated
experimental database was collected from Amalfi et al. (Amalfi
et al., 2016a). The results showed that it could significantly
improve the prediction of the thermal performance of two-phase
cooling systems compared to the study of Amalfi et al. (Amalfi et al.,

2016b), which used physics-based modeling methods. Differently,
Ma et al. (Ma et al., 2022) constructed a GBT tree model based on the
output of CFD simulations of microchannel refrigerant flow to
predict the Nusselt number and the pumping power (WPP).
This study demonstrates that the most influential parameters are
A, N, and α, while Nu shows an insensitivity to the Reynolds
number of the inlet flow.

TABLE 9 Prediction of flow regime based on machine learning methods.

Authors Type of experimental
subjects

Type of
machine
learning

Input Flow regime Error analysis

Shen et al. (Shen et al.,
2020)

Microchannels heat exchanger (Liquid-
liquid biphasic flow patterns in the
perfluoroalkoxy capillary with the inner
diameter of 1 mm)

CNN 32,383 flow pattern
images with labeled
classification

(Camera) Annular/parallel
flow, Slug flow, Droplet flow,
Wavy annular flow, and
Dispersed flow

Prediction
accuracy > 98%

Ahmad et al. (Ahmad
et al., 2022)

Millimetric closed-loop pulsating heat
pipe (PHP)

DL 648 images flow pattern
images with labeled
classification

(Camera) Bubbly flow, Slug-
plug flow, Elongated flow, and
Annular flow

Prediction
accuracy 96%

Giri Nandagopal et al.
(Giri Nandagopal and
Selvaraju, 2016)

Microchannel heat exchangers ANN-PR Confluence angle,
Superficial velocity of
water, Superficial velocity
of dodecane

(Camera) Slug Flow, Bubble
flow, Annular flow, Elongated
slug flow, Deformed flow,
Stratified flow

R2 83.83% for ANN-PR

ANN-FF R2 88.64% for ANN-FF

CFN R2 95.34% for CFN

PNN R2 97.66% foe PNN

GRNN R2 98.8% for GRNN

ANFIS R2 77.64% for ANFIS

Giri Nandagopal et al.
(Giri Nandagopal
et al., 2017)

Microchannel heat exchangers ANN-PR Confluence angle,
Superficial velocity of
water, Superficial velocity
of dodecane

(Camera) Slug Flow, Bubble
flow, Annular flow, Elongated
slug flow, Deformed flow,
Stratified flow

R2 93.95% for ANN-PR

ANN-FF R2 91.98% for ANN-FF

CFN R2 96.6% for CFN

PNN R2 95.58% for PNN

GRNN R2 98.8% for GRNN

ANFIS R2 90.22% for ANFIS

Roshani et al.
(Roshani, Nazemi,
and Roshani, 2017)

A Pyrex-glass pipe with outside
diameter 100 mm, thickness 2.5 mm
and length 50 cm

RBF NN With two full energy
peaks in both
transmission detectors

(Gamma ray) Annular,
Stratified, Bubbly

MAE 0.6026%

MRE 0.0496%

Hanus et al. (Hanus
et al., 2018)

Horizontal pipeline (inner diameter of
30 mm)

PNN 9 feature values of signal
analysis

(Gamma ray) Slug, Plug, Plug-
Bubble, and Bubble

Accuracy = 1 for the
four classifications
unless Single DT
(0.992)

MLP

RBF

SVM PNN chosen as the best

Single DT

K–means

Giannetti et al.
(Giannetti et al., 2020)

Microchannel heat exchangers ANN Re, Fr, Ca, β (Prigogine’s Theorem
(Onsager, 1931; Prigogine and
Van Rysselberghe, 1963))
Take-off ratio

RMSE 4.3%

R2 98.02%

Godfrey Nnabuife
et al. (Godfrey et al.,
2021)

S-shaped pipeline Deep NN Vectors that contain all
the information

(CWDU) Annular, Churn,
Slug, and Bubbly

Predict accuracy
99.01%

Khan et al. (Khan
et al., 2022)

Horizontal pipe with 5 cm inner
diameter

CNN (ResNet
and ShuffleNet)

Scalograms convered
from pressure detectors

(Pressure signals) Stratified
flow, Slug flow, Annular flow

ResNet50 85.7%

ShuffleNet 82.9%
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3.2.2 Modeling of pressure drops
Pressure drop or pressure differential refers to the decrease in

pressure that a fluid experiences as it flows through a conduit, valve,
bend, heat exchanger, or other equipment. This decrease in pressure
is due to factors such as frictional resistance, local resistance, or
thermal effects (Ardhapurkar and Atrey, 2015). It is imperative to
minimize the pressure drop across a heat exchanger (HX) because a
reduced pressure drop directly translates to decreased pumping
power and a subsequent reduction in the energy input required for
the system in which the HX operates. This section summarizes and
categorizes historical literature related to the prediction of pressure
drop. The categorization is primarily based on the type of machine
learning method used, including predictions based on neural
networks, random forest algorithms, predictions support vector
regression, and other methods. Additionally, some studies
specifically focus on predicting frictional pressure drop.

In literature, ANN can be considered one of the most common
machine learning models used for pressure drop prediction.
Montanez-Barrera et al. (Montañez-Barrera et al., 2022) and Qiu
et al. (Qiu et al., 2021) employed ANN or Correlated-informed
neural networks to predict pressure drops. In addition, Qiu et al.
(Qiu et al., 2021) also explored other techniques, including XGBoost
and GBM. Subbappa et al. (Subbappa et al., 2022) employed three
different methods, Ridge Regression (RR), Support Vector
Regression (SVR), and ANN. In this work, it is reported that the
radiator, condenser, and evaporator baseline models are developed
with a different database. The inputs involve the refrigerant
properties, the number of tubes per bank, the number of tubes
per bank per circuit (i.e., circuitry), the tube banks, the tube length,
the number of fins per inch, the air velocity, the refrigerant
temperature, and the refrigerant mass flux. It is concluded that
ANN and SVR can avoid the expensive simulations with a
reasonable error of ±20% for the testing data used in the study.
However, the validation of this study needs to be verified using high-
fidelity models, which refer to models that are highly accurate and
detailed. It closely represents or mirrors the real-world system or
situation that is being modeled. High-fidelity models aim to capture
the intricacies and complexity of the actual system to the maximum
extent possible (Jagielski et al., 2020). The machine learning models
that have been trained substantially expedite the investigation of the
design space, leading to a considerable reduction in engineering time
required to reach designs that are nearly optimal.

Despite the highlighted prominence of ANN in the realm
of machine learning models, various other computational
approaches are also employed as evidenced in the literature.
Ardam et al. (Ardam et al., 2021) developed the prediction of
pressure drop based on the Random Forest algorithm in micro-
finned tubes with evaporating R134a flow. It employed five
features (X, fgo, n, Bo, e/Dint) selected among 19 features,
which showed the highest prediction accuracy through
parametric optimization. The results showed that the proposed
methodology is better than the physical model used to respresent
the same data (Shannak, 2008). In addition, Zendehboudi and Li
(Zendehboudi and Li, 2017) predicted ΔP and the frictional
pressure drop in inclined smooth tubes based on different
models, such as PSO-ANN, GA-LSSVM, Hybrid-ANFIS,
and GA-PLCIS. The two databases are collected from the
experimental study of Adelaja et al. (Adelaja et al., 2017).

In the context of pressure drop predictions discussed thus far, it
is of considerable importance to recognize the frictional pressure
drop as a major component contributing to the overall pressure
losses. Some studies have focused on investigating the frictional
pressure drop in heat exchangers, such as Najafi et al. (Najafi et al.,
2021), Xie et al. (Xie et al., 2022), Skrypnik et al. (Skrypnik et al.,
2022), Peng and Ling et al. (Peng and Xiang, 2015) and Du et al. (X.
Du et al., 2020), introduced the estimation model of the friction
factor using different machine learning methods. Najafi et al. (Najafi
et al., 2021) demonstrated that data-driven estimation of frictional
pressure drop provides greater prediction accuracy compared to
theoretical physical models (Chisholm, 1967) for two-phase
adiabatic air-water flow in micro-finned tubes using the Random
Forest model. Their research focused on five dimensionless features
(xv, Re, (1 − x)/x, Ref, Rego) selected from 23 features which are
slightly different features compared to selection of Ardam et al.
(Ardam et al., 2021). Their research estimates the two-phase gas
multiplier in two-phase adiabatic air-water flow in micro-finned
tubes based on Random Forest model.

3.2.3 Modeling of heat exchanger performance
The overall performance of a heat exchanger is typically

measured by the overall heating or cooling heat transfer rate
capacity, which will be dependent on the dimensions of the heat
exchanger, or heat exchanger effectiveness or efficiency, which are
dimension-independent. Various research studies have applied
different machine learning methods to distinct aspects of heat
exchanger performance prediction. Both the work of Li et al. (Li
et al., 2016) and Shojaeefard et al. (Shojaeefard et al., 2017) focused
on the prediction of cooling capacity in heat exchangers. While Li
et al. employed a Response Surface Methodology (RSM)-based
Neural Network (NN) model, Shojaeefard et al. evaluated
different Artificial Neural Network (ANN) structures in their
model. On the other hand, Krishnayatra et al. (Krishnayatra
et al., 2020) and Roy and Majumder (Roy and Majumder, 2019)
investigate the prediction of performance parameters in shell and
tube heat exchangers, including exergetic plant efficiency, energetic
cycle efficiency, electric power, fouling factor, and cost, utilizing the
FFBN algorithm with tube configurations, fluid type, surface area,
and temperatures as input parameters. Furthermore,
Muthukrishnan et al. (Muthukrishnan et al., 2020) developed a
Support Vector Machine (SVM) in shell and tube heat exchangers to
predict the heat transfer rate, with results showing the superior
prediction accuracy of SVM over mathematical models. The
consolidated database is from the experiments conducted by
Wang et al. (Wang et al., 2006). The main differences between
these studies lie in the focus of the research (such as cooling capacity,
efficiency, heat transfer rate, etc.), the prediction model used (such
as RSM-based NN, ANN, FFBN, SVM, etc.), and the type of heat
exchanger studied.

Turning our attention to predicting coefficient of performance
of heat exchanger systems, it is also clear that this segment has been
at the forefront of integrating innovative machine learning
approaches in research. Bhattacharya et al. (Bhattacharya et al.,
2022) developed and validated a model that combines
Convolutional Neural Networks (CNN) with Gated Recurrent
Units in a State Space Model framework. Their work aimed to
predict the intricate dynamics of heat exchangers observed in vapor
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compression cycles in heat exchanger. The model processed inputs
like _ma in, Patm, Tin, RHin, _mref in, hin, Pout, hout and produced
predictions for pinlet, poutlet, hinlet, houtlet, Qtotal, _mtotal.Their research
demonstrated remarkable accuracy, with the maximum percentage
error being limited to 0.2%. In addition, Chen et al. (Chen et al.,
2023) constructed two-year field tests based on an energy pile heat
pump system, where in situ results were used as sample points, and
the measured ambient temperature and humidity, room
temperature and humidity, and hourly power consumption were
used as input parameters to predicted coefficient of performance.
The results showed that the accuracy was higher than that of the
empirical regression models. Moreover, Zhu et al. (Zhu et al., 2021a)
investigated the boiling and condensation heat transfer of R134a
refrigerant within microchannels under various conditions. Data
collected from these experiments were utilized to train machine
learning-based artificial neural network models for predicting heat
transfer performance. The models effectively forecasted the heat
transfer coefficients for both boiling and condensation processes.
Further, Li et al. (Li et al., 2023) employed four machine learning
methods to anticipate the thermal performance of supercritical
methane flow in a Printed Circuit Heat Exchanger. The ANN
proved to be highly precise in forecasting the local heat transfer
coefficient and unit pressure drop following hyperparameter
optimization.

3.2.4 Conclusion of heat exchangers modeling
Upon the review of the recent studies using machine learning to

predict various performance indicators for different types of heat
exchangers, several key themes and opportunities for enhancement
emerge. Regarding the interaction of various factors within the
models, it is critical to understand that the reliability and
precision of machine learning predictions depend on a
comprehensive understanding of the interactions between model
parameters. In many of the reviewed studies, parameters such as the
Reynolds number, Weber number, and the Froude number were
utilized, yet the dynamic interactions between these parameters were
not explicitly elucidated. For example, the interplay between
Reynolds number and Froude number could potentially influence
the prediction of pumping power significantly. A deeper
investigation into these correlations could lead to more refined
and precise predictions and ultimately, more effective heat
exchanger designs. Employing methods such as feature
importance analysis or sensitivity analysis could provide more
tangible insights into these interactions.

When scrutinizing the model’s training and validation
procedures, it becomes imperative to thoroughly outline each
stage of the process. Regrettably, the comprehensive explanation
of this process, encompassing critical aspects such as the selection of
training and validation datasets, hyperparameter tuning, and
overfitting prevention, is commonly absent in the studies
reviewed. This lack of essential information hampers both
reproducibility and potential model enhancement. Therefore,
advancing in this field is reliant on a more transparent and
detailed presentation of these steps.

On this basis, the role of data transparency and reproducibility
cannot be overstated in ensuring the credibility and utility of these
models. Some studies, however, fall short by failing to explicitly state
their data sources or by not providing clear definitions of model

parameters. These omissions could obstruct other researchers’
understanding and reproduction of the models. Hence, by
improving data openness and providing a more transparent
presentation of model parameters, the field could experience
significant advancements, facilitating replication and model
improvement.

Lastly, when we turn our attention to the exploration of
emerging techniques, it is clear that traditional machine
learning methods such as Artificial Neural Networks (ANN),
Gradient Boosting Machines (GBM), and Ridge Regression
have been well documented. However, a noticeable gap exists
in the exploration and application of more recent machine
learning methodologies. Techniques like deep learning and
reinforcement learning, which have shown promise in various
other disciplines, could potentially enhance predictive capabilities
and robustness in heat exchanger performance prediction. This
untapped potential area is, thus, deserving of further, in-depth
investigation.

3.3 Fouling factor

The fouling factor is an index that measures the unit thermal
resistance of solid sediments deposited on heat exchange surfaces
and reduces the overall heat transfer coefficient of the heat
exchanger (Müller-Steinhagen, 1999). Fouling deposits that clog
the channels of compact heat exchangers will increase pressure
drops and reduce flow rates, resulting into poor heat transfer and
fluid flow performance (Asadi et al., 2013). Table 7 lists the details of
the literature dealing with fouling factors of heat exchangers. A
summary of these investigations is discussed in this subsection. For
predicting the fouling factor, Hosseini et al. (Hosseini et al., 2022)
estimated the fouling factor through four machine learning
methods: Gaussian Process Regression (GPR), Decision Trees
(DT), Bagged Trees, and Support Vector Regression (SVR). The
database was collected from experiments, and the model inputs were
the operation time, the surface temperature, the fluid velocity, the
fluid density, the fluid temperature, and the equivalent diameter,
selected based on Pearson’s correlation analysis. Mohanty
(Mohanty, 2017) estimated the temperature difference on the
tube and shell sides of a shell-and-tube heat exchanger, as well as
the heat exchanger efficiency as the outputs of a fouling factor-based
ANN with network structure 6-5-4-2.

For estimating the fouling factor, Kuzucanlı et al. (Kuzucanlı
et al., 2022) predicted the behavior of the overall heat transfer
coefficient and of the in plate heat exchangers. It is noteworthy that
this work introduced the classification solution. The dataset was
collected from the experiment with variable flow rates and inlet
temperatures as input parameters. In a similar work, Sundar et al.
(Sundar et al., 2020) predicted the fouling factor based on deep
learning. A total of 15,600 samples were collected in a database,
using the inlet fluid temperatures, the ratio of fouled fluid flow rates
to flow rates under clean circumstances, and the outlet temperatures
(gas and fluid) as inputs.

Machine learning methods have proven effective in modeling
and predicting the fouling factor in heat exchangers, a measure that
significantly impacts thermal performance. Techniques such as
Gaussian Process Regression, Decision Trees, Bagged Trees, and
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Support Vector Regression have been used, leveraging operational
parameters like operation time, surface temperature, fluid velocity,
and more. These methods have shown acceptable prediction
accuracy, demonstrating machine learning’s effectiveness in this
field. Additionally, machine learning has been effective in predicting
fouling’s impact on other parameters, like temperature difference
and heat exchanger efficiency. While existing algorithms have been
primarily used, there’s potential for new machine learning
algorithms to further improve fouling factor prediction.

3.4 Refrigerant thermodynamic properties

The conventional prediction of the refrigerant thermodynamic
properties is usually carried out by means of empirical, theoretical,
and numerical models. Although these methods have been
successfully applied in many cases, their numerical modeling still
suffers from computational issues in dealing with the complex
molecular structure of refrigerants (Meghdadi Isfahani et al.,
2017; Alizadeh et al., 2021a). Table 8 lists several machine
learning prediction models of the thermodynamic properties of
refrigerants available in the literature, which are briefly described
in this subsection.

In literature, neural network models have been widely employed
by many researchers for the prediction of refrigerant properties. For
example, Gao et al. (Gao et al., 2019),Wang et al. (Wang et al., 2020),
Zolfaghari and Yousefi (Zolfaghari and Yousefi, 2017), Nabipour
(Nabipour, 2018) employed ANN to predict the thermodynamic
properties, such as, Pred, 1 − Tr, ω, Pc/Pcr, etc. They employed
different parameters to investigate the prediction performance, for
instance, Wang et al. (Wang et al., 2020) introduced ANNs to
estimate the viscosity and the thermal conductivity, using the
reduced pressure (Pred), the reduced temperature (Tr), the molar
mass (M), and the acentric factor (ω) as inputs. Similarly, Zolfaghari
and Yousefi (Zolfaghari and Yousefi, 2017) developed an ANN to
predict the density of sixteen lubricant/refrigerant mixtures,
considering a total of 3,961 data points from the literature. In
this study, the temperature (T), the pressure (P), the molar
fraction (x), the total molecular weight (Mw), and the average
boiling temperature (Tb) of pure refrigerants were considered as
input parameters.

Shifting away from the singular prediction model approach,
numerous studies have adopted a more extensive analysis by
examining multiple prediction models. Several studies have
embraced a more comprehensive analysis by investigating more
than one prediction model; for example, Zhi et al. (Zhi et al., 2018)
developed three prediction models of viscosity based on ANFIS,
RBFNN, and BPNN for six pure refrigerants, specifically
R1234ze(E), R1234yf, R32, R152a, R161, and R245fa in the
saturated liquid state. It is reported that a total of 1,089 data
points were collected from the literature, of which 80% were
allocated to training and 20% to testing, while the algorithm
inputs were temperature, pressure, and liquid density. Results
demonstrate that the ANFIS algorithm shows the highest
prediction accuracy.

Upon reviewing the impressive statistics presented in Table 8, it
is evident that machine learning has proven to be an invaluable tool
for predicting the thermodynamic properties of refrigerants. A

common thread across the studies indicates that factors such as
temperature, pressure, and density often serve as inputs for these
predictive models. However, we observe variations in the algorithms
used and the specific properties predicted. This could be attributed
to the unique characteristics of the refrigerants studied and the
specific objectives of each study. While these models demonstrate
impressive prediction accuracy, it is crucial to acknowledge that
model performance varies depending on the refrigerant and
property in question. A broader observation reveals a notable
trend toward using machine learning in refrigerant property
prediction, which presents opportunities for further exploration.
Future work could include comprehensive comparative studies of
these different machine learning algorithms, considering their
strengths and weaknesses in various scenarios. There is also
potential for integrating these machine learning models with
other computational tools for more robust and accurate
predictions. Furthermore, as the field continues to evolve, there
may be scope to explore new machine-learning techniques and
develop novel approaches for predicting the thermodynamic
properties of refrigerants.

3.5 Flow patterns

Two-phase flow is critical in many chemical processes, heat
transfer, and energy conversion technologies. The flow pattern in
two-phase flow has a critical role in heat transfer coefficient and
pressure drop, because the physics governing the pressure drop
and the heat transfer is intrinsically linked to the local distribution
of the liquid and vapor phases (Cheng et al., 2008). Recently, the
prediction of flow patterns based on machine learning has received
growing attention. Table 9 summarizes the studies about flow
pattern recognition based on machine learning reported in the
present work. Identifying flow patterns is crucial in fluid
mechanics, employing various methods. High-speed cameras
offer direct visual insight but are limited to transparent media.
Gamma rays can analyze opaque fluids but raise safety concerns.
Pressure sensors can infer flow patterns from pressure changes,
albeit with interpretational challenges. The Continuous Wave
Doppler technique measures particle velocities using frequency
shifts but requires particles or bubbles for measurement. The
appropriate method hinges on factors like flow type, fluid
transparency, piping material, safety, and the depth of analysis
required.

Some studies identified the flow regimes using the high-speed
cameras, Shen et al. (Shen et al., 2020) Ahmad et al. (Ahmad et al.,
2022), Giri Nandagopal et al. (Giri Nandagopal and Selvaraju, 2016)
and Giri Nandagopal et al. (Nandagopal et al., 2017) investigate the
flow pattern recognition through high-speed cameras. For instance,
Giri Nandagopal et al. (Nandagopal et al., 2017) investigated the
same liquid-liquid system in a circular microchannels of 600 μm
diameter as the confluence angle of the two fluids was varied in the
range 10–170 degrees, in order to predict the flow pattern maps
using the confluence angle and the superficial velocities of the two
liquids as input. The algorithms considered could identify slug flow,
bubble flow, deformed flow, elongated slug flow, deformed flow, and
stratified flow. The results showed that GRNN gives the best
prediction accuracy again.
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Instead of using a high-speed camera to record the flow regimes
included in the datasets, some studies used gamma rays to construct
the database. For example, Roshani et al. (Roshani et al., 2017)
identified the flow regimes by means of the multi-beam gamma ray
attenuation technique. In this study, the outputs of two detectors
are introduced as input parameters into the RBF models in order to
predict the flow regimes. Similarly, Hanus et al. (Hanus et al., 2018)
used the gamma-ray attenuation technology to identify flow
regimes and generate input data for the algorithm. In
particular, nine features obtained from the signal analysis were
selected as inputs and applied to six different machine-learning
methods. The results showed a promising accuracy for all the
methods considered.

In contrast to those described above, some studies employed
other methods, such as pressure sensors, ultrasound, and a new
concept (take-off ratio). For example, Godfrey Nnabuife et al.
(Godfrey et al., 2021) used Deep Neural Networks (DNNs)
operating on features extracted from Continuous Wave
Doppler Ultrasound (CWDU) to recognize the flow regimes of
an unknown gas-liquid flow in an S-shaped riser. A Twin-
window Feature Extraction algorithm generates the vectors
that contain all the information used as input of the Deep
NN, reducing the amount of input data and eliminating the
noise. The identified flow regimes are annular, churn, slug, and
bubbly flow. The results show the highest prediction accuracy,
which is better in comparison with that of four conventional
machine learning methods: AdaBoost, Bagging, Extra Trees, and
DT. Khan et al. (Khan et al., 2022) developed CNN to identify the
flow regimes in air-water flow in a horizontal pipe with a 5 cm
inner diameter, using the scalograms obtained from pressure
detectors as input database. Differently from the described above,
Giannetti et al. (Giannetti et al., 2020) introduced the concept of
take-off ratio to develop an ANN to predict the two-phase flow
distribution in microchannel heat exchangers based on a limited
amount of input information. The concept of take-off ratio is
based on Prigogine’s theorem of minimum entropy generation
(Onsager, 1931; Prigogine and Van Rysselberghe, 1963). As a
result, the 4-3-3-3-1 architecture achieves the highest prediction
accuracy reported.

Machine learning has increasingly been applied to predict
and understand flow patterns in two-phase flow systems, a topic
of substantial significance across various fields, from chemical
processes to energy conversion technologies. The range and
diversity of research in this domain underline the complex
interplay between the physical parameters governing the
pressure drop and heat transfer, which are intricately related
to the local distribution of liquid and vapor phases. Key to this
research is the use of machine learning to identify and distinguish
different flow patterns accurately. This has been addressed using
diverse techniques, such as CNNs, DL, and various types of
ANNs, including the PNN, GRNN, and ANFIS. These
methods have demonstrated high degrees of prediction
accuracy in their respective applications, offering promising
advancements in the field. The generation of input data for
these machine learning models has employed an array of
innovative methodologies, such as high-speed camera image
capturing and the use of the multi-beam gamma ray
attenuation technique. Some studies have further expanded

upon this by introducing novel concepts, such as the take-off
ratio, which applies Prigogine’s theorem of minimum entropy
generation to predict two-phase flow distribution. Other research
has veered towards the use of Deep Neural Networks (DNNs) to
identify flow regimes based on Continuous Wave Doppler
Ultrasound (CWDU) information, exhibiting high prediction
accuracy rates. This move toward the use of DNNs and
similar methods demonstrates the field’s continuous evolution
and the trend toward more sophisticated, precise prediction
models.

3.6 Structured approach to model selection
in machine learning: A guide

The selection and evaluation of machine learning algorithms
necessitates a comprehensive and multi-faceted approach, involving
numerous interdependent steps and considerations. This section
delineates a systematic methodology devised to aid practitioners in
judiciously selecting the pertinent machine learning algorithm
tailored for a specific problem domain.

1. Problem Definition: The preliminary step involves a
comprehensive understanding of the problem landscape. This
encompasses identifying the nature of the problem—be it a
classification, regression, clustering, or another variant.

2. Exploratory Data Analysis: Exploratory Data Analysis is the
initial phase of understanding data, aiming to summarize its
main characteristics, often visually. This phase includes assessing
feature distributions through histograms or boxplots to spot
skewness, understanding data sparsity with matrix
visualizations, detecting outliers via scatter plots or
Interquartile Range methods, and discerning missing value
patterns with heatmaps or bar charts. Correlation matrices
and pair plots can reveal relationships between variables.
Dimensionality reduction techniques, such as Principal
Component Analysis or t-distributed Stochastic Neighbor
Embedding, provide a compressed visual perspective on multi-
dimensional data.

3. Data Pre-processing: Based on Exploratory Data Analysis
findings, data pre-processing refines the dataset for modeling.
Feature engineering may involve creating polynomial features,
encoding categorical variables, or extracting time-based metrics.
Outliers could be capped, transformed, or removed entirely.
Standard practices also include scaling features using methods
like Minimum-Maximum or z-score normalization. Categorical
data often require encoding techniques such as one-hot or
ordinal. Finally, data may be split into training, validation,
and test sets to evaluate the model’s performance effectively.

4. Evaluation Metric Selection: The choice of an evaluation metric
should align closely with both the problem definition and
organizational objectives. For instance, in classification
problems, metrics like accuracy, MAE, MRE, etc. may be
considered.

5. Comparative Model Assessment: Employing techniques like
cross-validation, the performance of multiple candidate
algorithms should be rigorously compared to ascertain the
most effective model based on the validation dataset.
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6. Hyperparameter Optimization: Subsequent to model selection,
hyperparameter tuning is conducted to further refine the
performance of the selected models.

7. Validation and Testing: Final performance evaluation is
conducted using an independent test set to ascertain the
generalizability of the model and to mitigate the risk of
overfitting.

4 Limitations and potential solutions

Despite the remarkable potential and superior performance of
machine learning techniques compared to traditional computational
methods, their unique features, such as a tendency towards
overfitting and interpretability can present hurdles in their
application within heat exchanger systems. The ensuing
discussion will delve into the primary issues in deploying
machine learning strategies in the process of modeling heat
exchangers, alongside exploring possible solutions.

4.1 Overfitting

Like most probabilistic models, the issues of overfitting and
under-fitting are unavoidable in machine learning models
(Dobbelaere et al., 2021). Overfitting refers to the prediction
accuracy being extremely high in the training dataset, while the
performance on the testing dataset is unsatisfactory (Dietterich,
1995). There are multiple potential explanations of the
phenomenon, such as noise over-learning on the training set
(Paris et al., 2003), hypothesis complexity (Paris et al., 2003), and
multiple comparison procedures (Jensen and Cohen, 2000).

In order to mitigate overfitting problems, it is recommended
to introduce the following strategies: a) Early stopping (Jabbar
and Khan, 2015), which requires defining the criteria of stopping
functions, for instance, monitoring the performance of the model
on a validation set during the training process. The training is
stopped when the error on the validation set starts to increase,
which is a sign of overfitting. The validation set is a small portion
of the training data set aside to check the model’s performance
during training. b) Network structure optimization (Dietterich,
1995), which involves tuning the architecture of the neural
network to find the most efficient structure. For example, one
could experiment with different numbers of layers or different
numbers of neurons per layer. Additionally, pruning methods
can be used to reduce the complexity of decision trees or neural
networks by eliminating unnecessary nodes. c) Regularization
(Jabbar and Khan, 2015), similar to penalty methods, is used to
reduce the influence of noise. This term discourages the model
from assigning too much importance to any one feature, reducing
the risk of overfitting. In conclusion, while several studies in
Tables 1–8 have incorporated the early stopping and network
structure optimization techniques, it is unclear if they
significantly reduced overfitting. Further evaluation of these
methods’ effectiveness in the studies mentioned might offer
more insights. Regularization, however, seems to be less
frequently employed, based on our review.

4.2 Interpretability

Machine learning methods are essentially black box models,
where data analysis can be understood as a pattern recognition
process (Dobbelaere et al., 2021). According to Vellido (Vellido
et al., 2012), interpretability refers to the ability to assess and explain
the reasoning behind machine learning model decisions, which is
one of the most significant qualities machine learning methods
should achieve in practice. Model hyperparameters, such as node
optimization in artificial neural networks, are key elements in
constructing an effective model. The selection and tuning of
these hyperparameters typically have a significant impact on the
performance of the model. However, for these types of models, the
analysis usually focuses on prediction accuracy rather than the
interpretability of the model (Feurer and Hutter, 2019). To
implement interpretability, dimensionality reduction can be
introduced for supervised and unsupervised (Azencott, 2018)
problems through feature selection and feature extraction (Dy
et al., 2000; Guyon and Elisseeff, 2003; Guyon et al., 2008). In
addition, Vellido (Alcacena et al., 2011) stated that information
visualization is a feasible solution to interpret the machine learning
models such as Partial Dependency Plots (PDP) (Greenwell, 2017)
and Shapley Additive explanation (SHAP) (Mangalathu et al., 2020).
It is important to build models that can self-learn to recognize
patterns and self-evaluate.

In the latest study, Xie et al. (Xie et al., 2022) introduced a
mechanistic data-driven approach called dimensionless learning.
It identifies key dimensionless figures and governing principles
from limited data sets. This physics-based method simplifies high-
dimensional spaces into forms with a few interpretable parameters,
streamlining complex system design and optimization. It also
states that the processes could find very useful application in
heat exchanger modeling and heat exchanger experimental data
characterization. This method unveils scientific knowledge from
data through two processes. The first process embeds the principle
of dimensionless invariance (i.e., physical laws being independent
of the fundamental units of measurement) into a two-tier machine
learning framework. It discovers the dominating dimensionless
numbers and scaling laws from noisy experimental data of
complex physical systems. The subjects of investigation include
Rayleigh–Bénard convection, vapor-compression dynamics in the
process of laser melting metals, and pore formation in 3D printing.
The second process combines dimensionless learning with
a sparsity-promoting technique to identify dimensionless
homogeneous differential equations and dimensionless numbers
from data. This method can enhance the physical interpretability
of machine learning models.

4.3 Data quality and quantity

The prediction of parameters based on machine learning can
provide a reference for scientific research and practical applications
to both researchers and engineers However, it is worth mentioning
that dealing with a database containing too many outsider data
points can generate system errors. Compared with an extensive
database, machine learning is more sensitive to a small database,
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which can influence machine learning models (Pourkiaei et al.,
2016).

It is possible to increase the number of data points (Dietterich,
1995), delete the outsider data points, and use algorithms for
anomaly detection, such as the principal component analysis
(PCA) algorithm (Thombre et al., 2020) and LSTM (Zhang
et al., 2019). In addition, it is also possible to carefully examine
the data for stable, reliable, and repeatable data (Zhou et al., 2020).
Although decades of modeling, simulations, and experiments have
produced several datasets about heat exchangers, they are often
archived in research laboratories or companies and are not open
access.

Lindqvist et al. (Lindqvist et al., 2018) introduced the
employment of structured and adaptive sampling methodologies.
Structured sampling techniques, such as Latin Hypercube Sampling,
systematically distribute sample points throughout the design space,
thereby providing a robust approach to experimental design.
Conversely, adaptive sampling dynamically modifies the location
of sample points contingent on the predictive outcomes of the
model, thereby optimizing model performance.

4.4 Model generalization

Model generalization refers to the ability of a machine
learning model to adapt properly to new, unseen data drawn
from the same distribution as the one used to train the model
(Bishop and Nasrabadi, 2006). It is a critical aspect of machine
learning models, particularly in complex fields such as fluid
dynamics and heat transfer, where phenomena can be
influenced by a multitude of factors. A model’s generalization
capability determines its utility and applicability in real-world
scenarios beyond the confines of the training data. However,
achieving good generalization is a significant challenge and often
requires careful model design and validation strategies. When
applying machine learning methods outside the scope of the
database, outputs will be unreasonable. A limited training dataset
determines the scope of the application.

When assessing unknown data points via a predictive model,
users must ensure that these data points lie within the model’s
operational domain. “Unknown data points” typically represent data
not previously encountered during the model’s training process. As
they are excluded from the training dataset, the model extrapolates
its learned patterns to generate predictions for these data points.
These unknown data points are instrumental in evaluating the
model’s generalization capabilities. However, should these data
points fall outside the model’s operational domain, the reliability
of the resultant predictions could be undermined. To maintain the
trustworthiness of computations under such circumstances, it is
recommended to either augment the training database to encompass
a broader data spectrum or cross-validate the predicted values
employing alternative credible methodologies (Azencott, 2018).

5 Emerging applications

Here, the emerging heat exchanger applications involving
machine learning will be discussed, including the novel nanofluid

mixture modeling, heat exchanger design, and topology
optimization.

5.1 Nanofluid

Nanofluids are widely used in solar collectors, heat exchangers,
heat pipes, and other energy systems (Ramezanizadeh et al., 2019).
The presence of nanoparticles within the fluid can enhance the
thermophysical properties of the fluid to benefit the heat transfer
behavior within the system. Currently, several machine learning
models have been introduced to predict the thermodynamic
properties of hybrid nanofluids (Maleki et al., 2021). According
to the Web of Science database, about 3% of nanofluid research
papers published in 2019 involved machine learning, with an
increasing trend (T. Ma et al., 2021).

In the literature, several machine-learning models have been
applied to heat exchangers containing nanofluids (Naphon et al.,
2019; Ahmadi et al., 2020; Gholizadeh et al., 2020; Hojjat, 2020;
Kumar and Rajappa, 2020; Alimoradi et al., 2022). Nanofluids
involve complex physical, chemical, and fluid dynamic
phenomena, and traditional modeling and analysis methods may
face challenges. However, machine learning, as a data-driven
approach, can help address the complex problems in nanofluid
research by learning and discovering patterns and correlations in the
data (Ma et al., 2021). For instance, Cao et al. (Cao et al., 2022)
employedmachine learning to simulate the electrical performance of
photovoltaic/thermal (PV/T) systems cooled by water-based
nanofluids. Alizadeh et al. (Alizadeh et al., 2021a) proposed a
novel machine learning approach for predicting transport
behaviors in multiphysics systems, including heat transfer in a
hybrid nanofluid flow in porous media. Another study by
Alizadeh et al. (Alizadeh et al., 2021b) used an artificial neural
network for predictive analysis of heat convection and entropy
generation in a hybrid nanofluid flowing around a cylinder
embedded in porous media. Machine learning also can assist in
analyzing large amounts of experimental data to extract useful
information and trends, accelerating research progress. For
example, machine learning algorithms can be used to predict and
optimize the surface properties, dispersibility, and flow behavior of
nanoparticles (El-Amin et al., 2023). Moreover, machine learning
can be used for simulating and optimizing the design and
performance of the system containing nanofluid providing more
efficient solutions (T. Ma et al., 2021).

At the nanoscale, the conventional principles of fluid mechanics
and heat transfer may not hold true, thus necessitating innovative
theories to decode the behavior of nanofluids. While machine
learning could reveal unseen patterns and correlations within
data, it does not guarantee the applicability of these trends under
nanoscale constraints. Nanofluidic research, given its complex
nature, requires experimental verification for the predictions
formulated by machine learning models. However, this
verification process often demands sophisticated instrumentation,
advanced methodologies, and considerable financial resources,
which may pose significant challenges and potentially exceed the
capabilities of numerous research groups. Nanofluid systems are
marked by a high degree of complexity due to the interaction among
various components such as fluids, nanoparticles, and interfaces,
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thereby rendering the prediction process through machine learning
models extremely challenging. Moreover, nanofluid research is data-
intensive, and procuring the requisite amount of data can often be
problematic.

5.2 Heat exchangers design and
optimization

Machine learning algorithms can analyze large amounts of data,
identify patterns, and make predictions or decisions without being
explicitly programmed to perform the task. This ability to learn from
data makes machine learning particularly useful in optimization
problems, where the goal is to find the best solution among a set of
possible solutions. It indicates that it can be a powerful tool for
dealing with various engineering issues. It is reported that machine
learning can potentially optimize the topology structure of heat
exchangers. According to Fawaz (Fawaz et al., 2022), machine
learning algorithms can be combined with a density-based
topology algorithm, which is mainly aimed at structural design at
the present stage (Sosnovik and Oseledets, 2019; Abueidda et al.,
2020; Chandrasekhar and Suresh, 2021; Chi et al., 2021). Moreover,
few studies are coupled with ML and Topology (TO) for HXs, which
may be related to the complexity of coupled heat transfer
(particularly the fluid flow part) and the complexity of HXs
structure (Fawaz et al., 2022). Michalski (Michalski and
Kaufman, 2006) introduced the Learnable Evolution Model
(LEM), containing the hypothesis generation and instantiation to
create new designs based on machine learning methods, which can
automatically search for the highest capacity heat exchangers under
given technical and environmental constraints. LEM has a wide
range of potential applications, especially in complex domains,
optimization, or search problems (Michalski, 2000). The results
of the methods have been highly promising, producing solutions
exceeding the performance of the best human designs (Michalski
and Kaufman, 2006).

Although machine learning holds significant promise for the
design and optimization of heat exchangers, however, it is crucial to
acknowledge that the application of these techniques in this field is
still in its infancy. The intricate physical phenomena and
interactions involved in heat exchanger systems present a
significant challenge for machine learning models. Despite the
potential, there are substantial hurdles to overcome. Future work
in this field should concentrate on enhancing the interpretability of
machine learning models, as previously mentioned. Additionally,
efforts should be made to develop methods for generating novel
design concepts and to create high-quality datasets for training these
models. By addressing these challenges, we can better harness the
power of machine learning in the design and optimization of heat
exchangers.

6 Conclusion

This paper provides a comprehensive review of heat exchanger
modeling based onmachine learning methods, drawing on literature
published over the past 8 years. The review evidences a clear
expansion of this field, with a significant publication growth rate
observed after 2018. As shown in Figure 4, neural networks have
been widely implemented, accounting for about 56% of the
literature. This is attributed to their high prediction accuracy and
powerful parallel and distributed processing capabilities. The paper
systematically explores the entire gamut of heat exchanger modeling
based on machine learning methods, focusing on types of
algorithms, input parameters, output parameters, and error
analysis. These insights can guide researchers in selecting
appropriate machine learning models for various heat
exchangers, predicting fouling factors, and thermodynamic
properties of refrigerants, tailored to their specific objectives.

Despite the promising performance of machine learning
methods under the right database conditions, several limitations
exist, including data overfitting, anomaly processing, limited scope,

FIGURE 4
The proportion of publications on various machine learning methods.
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and low interpretability. Accordingly, feasible schemes have been
introduced to mitigate these limitations. The paper also emphasizes
the potential of Dimensionless Learning as discussed in Section 3.
Specifically, incorporating the interplay between dimensionless
numbers such as Re, We, and Fr numbers could provide a more
generalizable and physically intuitive understanding of heat
exchanger performance and fluid flow behavior. Furthermore, an
area that is conspicuously underrepresented in the current literature
is the modeling of surface roughness using machine learning
methods, presenting a clear opportunity for future research.

Finally, two emerging areas, nanofluids in new energy
applications and heat exchanger design optimization, are also
discussed. The data-driven approach to machine learning offers
new possibilities for thermal analysis of fluids, cycles, and heat
exchangers with faster calculation and higher prediction accuracy.
The information provided in this paper will greatly benefit
researchers who aim to utilize machine learning methods in the
field of heat exchangers and thermo-fluid systems in general.
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Nomenclature

ANFIS Adaptive Neuro Fuzzy Interface System

ANN Artificial Neural Network

ANN − FF ANN-Function Fitting

ANN − PR ANN-Pattern Recognition

CFN Cascade Forward Network

CoINN Correlated-Informed Neural Networks

DT Decision Tree

FEM Finite Element Method

FFBN Feed Forward Back Propagation Network

FFNN Feed-Forward Neural Network

FVM Finite Volume Method

GA − PLCIS Genetic Algorithm-power Law Committee with Intelligent Systems

GA − LSSVM Genetic Algorithm-least Square Support Vector Machine

GBM Gradient Boosting Machine

GBT Gradient Boosting Tree

GPR Gaussian Process Regression

GRNN General Regression Neural Network

HRBF Hybrid Radial Basis Function

KNN K-Nearest Neighbor

PNN Probabilistic Neural Network

PSO − ANN Particle Swam Optimization-Artificial Neural Network

RBF Radial Basis Function

RF Random Forest

RR Ridge Regression

SVM Support Vector Machine

SVR Support Vector Regression

A Cross-sectional area

atm Atmosphere

Bd Bond number, Bd � g(ρf − ρg)D2h

σ

Bo Boiling number, Bo � q″
ΔHG

BPHEs Brazed Plate Heat Exchangers

Ca Capillary number

CF Condensate flow

Co Convection number, Co � (1−xx )0.8(ρgρf)
0.5

CT Condensate temperature

D Diameter of flow channel

Dc Coil diameter

Dh Hydraulic diameter of flow channel

Dt Tube diameter

e Mean fin height

f Friction factor (by Haaland) (Hall, 2012)

f o Isothermal friction factor in forced convection

FIT Feed inlet temperature

Fr Froude number

f vp Friction factor, Parlatan et al.‘s friction factor

g Gravity acceleration

G Mass flux

Ga Galileo number, Ga � ρfg(ρf −ρg)D3h

μ2
f

Gr Grashof number

h Enthalpy

H Heat of vaporization of the fluid

HTC Heat transfer coefficient

IA Inclination angle

j Colburn factor

Ja Jakob number, L(Tsat−Twall )Cp
hlv

Ka Kapitza number, Ka � μ4fg

ρfσ
3

L Length of fin

_m Mass flow rate

M Mole molecule mass

n Number of fins

N Number of channels

Ntr Number of tube rows

Ntp Number of tube-passes

Nu Nusselt numbers

Nuo Nusselt number in forced convection

P Pressure

ΔP Pressure drop

P1 Pressure at cold inlet

P2 Pressure at hot inlet

Pc Critical pressure

Pcd Cold fluid Pressure drop

Pcr Critical pressure of the corresponding hydrocarbon to the
refrigerant

Pe Peclet number

Phd Hot fluid Pressure drop

Pr Prandtl number

Prg Saturated vapor Prandtl number, Prg � μg ·Cpg

kg

q Data point vector

q″ Heat flux

Q Flow rate, liters/min

q″H Heat flux based on heated perimeter of channel

Re Reynolds number

Frontiers in Energy Research frontiersin.org24

Zou et al. 10.3389/fenrg.2023.1294531

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1294531


Res Superficial Reynolds numbers

Rh Relative humidity

ScL Liquid-phase Schmidt number

ScV Vapor-phase Schmidt number

SF Steam flow

Suf Saturated liquid Suratman number, Suf � σ·ρf ·Dh

μ2
f

Sug Saturated vapor Suratman number, Suf � σ·ρg ·Dh

μ2
f

T Temperature

T* Dimensionless temperature glide

T1 Temperature at inlet of cold fluid

T2 Temperature at outlet of cold fluid

T3 Temperature at inlet of hot fluid

T4 Temperature at outlet of hot fluid

Tr Reduced temperature

V Volume flow rate, m3/s

WPP Pumping power

We Weber number

x Average volume quality

X Lockhart-Martinelli parameter X � ml
mg

��
ρg
ρl

√
xv Average volume quality

Greek symbols

α Heat transfer coefficient/aspect ratio α/arc angle

β Inclination angle of the corrugation/attack angle

Δ The differences

Φ Enlargement factor of the corrugation

Γ Take-off ratio

μ Dynamic viscosity

η Thermal enhancement factor

θ Angle

ρ Density

ω Acentric factor

σ Surface tension

Subscripts

a Air

amb Ambient

avg Average

b Bed

c Critical

cw Cold water

db Dry bulb

eq Equivalent

evap Evaporator

f Saturated liquid, fluid

f lue Flue gas

f o Liquid only

f ric Frictional

g Saturated vapor

go Vapor only

hw Hot water

i Inlet

in Inlet

int Internal

l Liquid

max Max value

mix Non-azeotropic mixtures

o Outlet

r Reduced

red Reduced

ref Refrigerant

s Saturation

sp Single-phase flow

sup Vapor super-heating

sys System

tp Two-phase flow

v Vapor

w Water

wb Wet bulb

wo Water only

MAE Mean Absolute Error

MedAE Median Absolute Error

MRE Mean Relative Error

RMSE Root-Mean-Square Error

R2 Coefficient of Determination
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