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Demand response plays an important role in improving the balance of power
generation and consumption between the distribution grid and photovoltaic
(PV) microgrids. However, due to the uncertainty and volatility of PV output, as
well as the different operation goals of PV microgrids, a conventional single-
tier optimization approach is infeasible to realize the coordinated interaction
between the distribution grid and PV microgrids. To address these challenges,
we propose a second-order cone and improved consensus algorithm-based
hybrid bilevel optimization algorithm for the interaction between the distribution
grid and PV microgrids. First, we construct price-based and incentive-based
differentiated demand response models to deal with various supply and
demand dynamics of the distribution grid and PV microgrids. Building upon
this foundation, we construct a hybrid bilevel optimization model. In the lower
level, distributed optimization is adopted, and an improved consensus algorithm
is used to optimize power output of PV microgrids to maximize the revenue
based on output power of upper-level generator sets. In the upper level,
centralized optimization is adopted, and second-order cone programming is
employed to minimize the grid loss in the distribution grid based on the power
output of lower-level PV microgrids. Hybrid bilevel optimization is iterated until
the convergence condition is satisfied. Simulation results verify the proposed
algorithm for achieving a coordinated interaction between the distribution grid
and PV microgrids.

KEYWORDS

hybrid bilevel optimization, differentiated demand response, distribution grid, PV
microgrid, improved consensus algorithm, power flow optimization

1 Introduction

With the gradual integration of renewable energy sources such as solar energy and wind
energy, as well as distributed energy resources, the distribution grid is facing unprecedented
challenges and opportunities Byun et al. (2011); Cui et al. (2022). In order to improve the
penetration rate of renewable energy in the distribution grid and optimize the energy
structure, multiple photovoltaic (PV) microgrids can be connected to the distribution
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grid to become backup energy (Hui et al., 2022; Guan et al., 2022;
Liao et al., 2023). Price-based and incentive-based differentiated
demand responses are further employed to coordinate the
interaction between the distribution grid and PV microgrid and
improve the balance between energy generation and consumption.
However, the goals of amicrogrid and distribution grid participating
in differentiated demand response are different. The distribution
grid needs to ensure operation stability, while the PV microgrid
expects tomaximize its benefit.The difference between optimization
objectivesmakes the conventional single-tier optimization approach
infeasible (Liu et al., 2017; Chanda and Srivastava, 2016; Li et al.,
2023d).Therefore, it is urgent to explore new optimization methods
to realize more flexible and intelligent interactions between the
distribution grid and PV microgrids.

The bilevel optimization based interaction between the
distribution grid and PV microgrids has been proven to be a
feasible solution due to its flexibility and scalability (Yu et al.,
2015; Zhang J. et al., 2023; Zhou et al., 2020). This method models
the PV microgrids and distribution grid systems separately and
applies different optimization methods based on their respective
objectives, aiming to maximize benefits for both sides. However,
the bilevel optimization-based interaction between the distribution
grid and PVmicrogrids still faces some challenges Zhai et al. (2022).
First, bilevel optimization involves both centralized optimization
on the distribution grid side and distributed optimization on the
PV microgrid side. The interaction between the distribution grid
and PV microgrids is very complex. The existing methods ignore
the hybrid bilevel optimization of centralized dispatching of the
distribution grid and distributed dispatching of PV microgrids,
resulting in high grid loss and dispatching cost. Second, due to
the influence of the construction scale and geographical factors,
the output and energy storage characteristics of PV microgrids are
quite different.The existing consensus optimizationmethods do not
incorporate differentiated characteristics of PV microgrids such as
power generation capacity, microgrid load demand, and PV energy
storage in the consensus iteration process to design communication
weights, resulting in slow response speed.

There have been studies on the bilevel optimization-based
interaction between the distribution grid and PV microgrids. Kou
and Park (2023) designed a centralized demand response energy
interaction management system, which verified the feasibility of
distributed energy coordination in the operation of intelligent
parks. Zhang et al. (2021) proposed a two-layer structure for
coordinated optimization of the distribution grid, considering the
bidding demand response model of different stakeholders. Liu et al.
(2023) proposed a two-stage bilevel optimization model, which
integrates renewable energy and energy storage systems, effectively
controls energy sharing between multiple microgrids participating
in demand response services, and minimizes operational costs.
However, the aforementioned studies fail to consider the hybrid
bilevel optimization of centralized dispatching of the distribution
grid and distributed dispatching of PVmicrogrids, resulting in poor
dispatching performance, including large voltage deviations, high
network loss of the distribution grid, and low selling revenue of the
PV microgrids.

There have been studies on distributed dispatching of PV
microgrids. Li H. et al. (2023) designed a net-zero emission

operation strategy to realize the optimal planning of the island dual-
zero microgrid, and balanced the environmental and economic
problems in the planning. Li et al. (2022) proposed a non-
cooperative game-based planning method for the microgrid,
considering the interconnection between developing and developed
privately owned clustered microgrids on an island. Consensus
algorithm plays a crucial role in distributed dispatching by enabling
nodes to reach an agreement on a shared value or state. The
consensus algorithm ensures coordination and consistency among
the participating nodes. There have been studies on distributed
dispatching using the consensus algorithm. Zhu et al. (2018)
proposed a consensus algorithm based on the charging and
discharging characteristics of electric vehicles, which solved the
difficulty of microgrid distributed dispatching caused by the
integration of intermittent power supply and electric vehicles.
Hua et al. (2022) proposed an optimal distribution grid distributed
dispatching model, considering the two-layer interaction of the
energy storage system, and used the consensus algorithm to
minimize the dispatching cost. Hu et al. (2020) improved the
consensus algorithm based on the segmented voltage-power droop
control of the key node to mitigate the voltage violation problems
using the distributed energy storage unit. Li et al. (2021) proposed
a distributed optimal dispatching method based on the consensus
algorithm to solve the convex optimizationmodel about the AC/DC
hybrid microgrid, and the results of an example prove the feasibility
of the presented distributed optimal dispatchingmethod. Chen et al.
(2021) proposed that each node only needs to exchange part of the
information according to the communication topology and adopts
the consensus algorithm to complete the iterative calculation so
that the consensus variable of each energy supply equipment in the
system tends to be consistent, and the distributed optimization of
the system is realized. However, the aforementioned study ignores
the impact of differentiated output and energy storage operating
characteristics of PV microgrids on their distributed dispatching,
resulting in higher operational costs and slower response speed for
demand response participation.

Faced by these challenges, we propose a second-order cone and
improved consensus algorithm-based hybrid bilevel optimization
algorithm for the interaction between the distribution grid and PV
microgrids. First, we model the PV microgrid, and construct price-
based and incentive-based demand response models. Second, we
determine the hybrid bilevel optimization problemandoptimization
objective. The upper level minimizes grid loss, considering the
power balance, power output, and power ramp rate constraints
of the generator sets, while the lower level maximizes electricity
sales revenue of PV microgrids, considering the energy storage
constraints, power output constraints, and incentive-based demand
response subsidies of the PV microgrids. Finally, we achieve hybrid
bilevel optimization based on the interaction of two levels. The
contributions of this method can be summarized as follows:

Hybrid bilevel optimization for the interaction between the
distribution grid and PV microgrids with centralized-distributed
coordination:Based on the output power of the upper-level generator
sets, PV microgrids perform distributed optimization of output
power based on the improved consensus algorithm and send the
output power of them to the upper-level distribution grid. Based
on the injected power from the PV microgrids, the distribution
grid performs centralized optimization of output power of generator
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sets. The aforementioned iteration process is repeated until the
output power of the PV microgrids and the active power of the
generator sets meet the termination conditions. Hybrid bilevel
optimization for the interaction between the distribution grid and
PV microgrids with centralized-distributed coordination effectively
mitigates voltage deviations, reduces grid loss of the distribution
grid, and maximizes the selling revenue of the PV microgrids.

Differentiated characteristic-based improved consensus algorithm
for PVmicrogrid dispatch:During the process of distributed dispatch
of PVmicrogrids, the differentiated characteristic of PVmicrogrids,
such as power generation capacity, microgrid load demand, and
PV energy storage, are fully considered. Based on the differentiated
characteristics of PV microgrids mentioned previously, different
consensus iteration weights are designed for each PV microgrids.
With this approach, the distributed dispatch of PV microgrids
can effectively reduce the number of iterations and improve
the convergence speed of the optimization process. It effectively
improves the revenue of PV microgrids from selling electricity and
reduces the operational cost.

The rest of the paper is organized as follows: Section 2
introduces the system model; Section 3 introduces the hybrid
bilevel optimization problem formulation; Section 4, a second-
order cone and improved consensus algorithm-based hybrid bilevel
optimization algorithm for the interaction between the distribution
grid and PV microgrids is proposed; Section 5 gives the simulation
results; Section 6 concludes the paper.

2 System model

Considering the intermittent and random characteristics of PV
microgrids' power output, this paper constructs a system model, as
shown in Figure 1. The distribution grid is divided into upper and
lower levels. A total of I PV microgrids are considered in the lower
level, and a total of Nbus generator sets are considered in the upper
level.The overall time is divided intoT time slots with equal intervals
Δt. In the upper level, generator sets generate electricity to meet the
power demand of the distribution grid, and the distribution grid
purchases electricity from PVmicrogrids when power consumption
peaks. In the lower level, the PV microgrid can sell electricity to
the distribution grid on the premise of meeting its own needs.
In addition, this paper considers price-based and incentive-based
demand responses and models them separately according to their
differences. The price-based demand response guides the user's
electricity consumption by changing the electricity price, and the
incentive-based demand response guides the PV microgrid to sell
electricity through incentive subsidies.

2.1 Lower-level PV microgrid model

The PV microgrid comprises the PV panel cluster, PV energy
storage units, and PV microgrid loads Wang et al. (2023). It
represents a type of small-scale generation-distribution-utilization
system. Through effective dispatch strategies, it can achieve a high
degree of autonomy and facilitate a seamless connection with the
distribution grid, promoting grid-friendly integration Abu-elzait
and Parkin (2019); Zhao and Xu (2017); Zhou et al. (2017).

2.1.1 PV microgrid output model
The PV microgrid converts solar energy into electrical energy

through a cluster of PV panels. The total output power of the PV
panel cluster for the PV microgrid i at the t-th time slot can be
expressed as follows (Yan and Li, 2020; Li et al., 2020):

Ppv,totali (t) = rpvi (t)ζ
pv
i (t)A

pv
i (t) , (1)

where rpvi (t), A
pv
i (t), and ζpvi (t)represent the solar irradiance, PV

panel cluster area, and PV conversion efficiency of the PVmicrogrid
i at time slot t, respectively. Higher solar irradiance, larger PV panel
cluster area, and greater PV conversion efficiency lead to a higher
total output power of the PV panel cluster.

The output power of the PVmicrogrid i at the t-th time slot, i.e.,
the power supplied to the distribution grid while meeting its own
demands, can be expressed as

Ppvi (t) = P
pv,total
i (t) − Ppv,loadi (t) + Ppv,esi (t) , (2)

where Ppv,esi (t) represents the output power of the PV energy storage
system in the PV microgrid i. Ppv,loadi (t) represents the operating
load of the PV microgrid i, which is the load that must be met
to ensure the normal operation of the PV microgrid. Ppv,esi (t) >
0 indicates that the PV energy storage system is discharging,
while Ppv,esi (t) < 0 indicates that the PV energy storage system is
charging.

The power output of the PV microgrid is influenced by the total
output power of the PV panel cluster, the operational load of the PV
microgrid, and the charging/discharging of the PV energy storage
system. The upper and lower limits of the power output for the PV
microgrid i at the t-th time slot can be expressed as

{{{{
{{{{
{

Ppv,max
i (t) = Ppv,totali (t) − Ppv,loadi (t) +

[Si (t) − Smin
i ]E

max
i

Δt
,

Ppv,min
i (t) = Ppv,totali (t) − Ppv,loadi (t) −

[Smax
i − Si (t)]E

max
i

Δt
,

(3)

where Si(t), S
max
i , Smin

i , and E
max
i represent the state of charge (SoC),

upper SoC limit, lower SoC limit, and capacity of the PV energy
storage systemwithin the PVmicrogrid i, respectively. Δt represents
the time slot duration.

2.1.2 Operational cost model of the PV microgrid
The operational cost of the PV microgrid consists of the

operational cost of the PV panel cluster and the dispatch cost of
the PV energy storage system (Xiao et al., 2017; Zhang X. et al.,
2023). When optimizing the PV microgrid, it is necessary to
consider the factors such as the power generation of the PV panel
cluster and the charging and discharging of the energy storage
system. These factors increase losses in both PV panel clusters
and energy storage systems, resulting in operational costs for PV
microgrids.

The operational cost of the PV panel cluster can be expressed as

gpvpi (t) = α
pvp
i (P

pv
i (t))

2 + βpvpi Ppvi (t) + γ
pvp
i , (4)

where αpvpi , βpvpi , and γpvpi represent the cost coefficients associated
with the operation of the PV panel cluster.

The dispatch cost of the PV energy storage system can be
expressed as

gpv,esi (t) = δ
pv,es
i (P

pv,es
i (t))

2, (5)
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FIGURE 1
System model.

where δpv,esi represents the dispatch cost coefficient of the PV energy
storage system in the PV microgrid i.

In summary, the operational cost of the PV microgrid can be
expressed as

gpvi (t) = g
pvp
i (t) + g

pv,es
i (t) . (6)

2.2 Differentiated demand response

The distribution grid and PV microgrid are different
stakeholders and have different purposes in power grid dispatching.
The distribution grid needs to achieve a balance between supply
and demand, and the PV microgrid aims to obtain maximum
benefits. Differentiated demand response is a complementary
relationship, which is more suitable for the current complex grid
dispatching environment than single demand response. When the
power demand of the distribution grid is large and the user's load
reduction reaches saturation, the power generation cannot meet the
power demand. Therefore, the incentive-based demand response
is needed to supplement the power, and the incentive subsidy is
issued to the PV microgrid to encourage electricity selling so as to
meet the balance of supply and demand of the distribution grid.
This paper considers price-based demand response and incentive-
based demand response, which are described in the following
paragraphs.

2.2.1 Price-based demand response
Price-based demand response is a controllable load adjustment

resource primarily achieved by implementing time-of-use electricity

pricing to guide users in altering their electricity consumption
patterns, thereby redistributing the load distribution. Price-based
demand response optimizes users' electricity consumption behavior,
thus mitigating electricity shortages during peak periods and
increasing electricity demand during off-peak periods, with the goal
of peak load reduction and low load increase (Si et al., 2022; Pawakul
and Srirattanawichaikul, 2020; Li et al., 2023c).

In practical situations, there are basic load and saturated load
in the electricity consumption of users. Saturated load refers to
the maximum electricity consumption that users can reach, while
basic load is the minimum electricity consumption level. Therefore,
price-based demand response has upper and lower limits on load
variations, which can be expressed as

{
{
{

P+ (t) = Pmax (t) − P0 (t) ,

P− (t) = Pmin (t) − P0 (t) ,
(7)

where P+(t) and P−(t) represent the upper and lower limits of the
grid's total load variation at the t-th time slot, respectively. Pmax(t)
and Pmin(t) represent the saturated load and basic load, respectively.
P0(t) represents the initial load of the grid at the t-th time slot.

Demand price elasticity represents the sensitivity of load
demand to price changes during different time slots. In practical
situations, the effect of load demand adjustment ismore pronounced
when electricity prices vary within a certain normal range. However,
when the price variation becomes very significant, the effectiveness
of load adjustment through price changes diminishes. Therefore,
constructing an exponential relationship between load demand and
electricity price is a way to model self-elastic response to price
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changes, which can be expressed as

{{{{
{{{{
{

ΔH (t) =HPDR (t) −H0 (t) ,

ΔPt (t) =
{
{
{

P− (t)(1− e−μt,tΔH(t)) ,ΔH (t) ≥ 0,

P+ (t)(1− eμt,tΔH(t)) ,ΔH (t) < 0,

(8)

whereH0(t) represents the initial electricity price at the t-th time slot.
HPDR(t) represents the time-of-use electricity price for the grid at
the t-th time slot, considering price-based demand response. ΔH(t)
is the price variation at the t-th time slot. μt,t represents the self-
elasticity coefficient of load variation at the t-th time slot caused by
changes in the electricity price. ΔPt(t) represents the self-elastic load
variation at the t-th time slot caused by changes in electricity price.
According to Eq. 8, when ΔH(t) ≥ 0, the electricity price at the time
slot t increases. When ΔPt(t) ≤ 0, the grid's load during that time
slot decreases. Conversely, when ΔH(t) < 0, the electricity price at
the time slot t decreases.WhenΔPt(t) > 0, the grid's load during that
time slot increases. In addition, the exponential relationship between
load demand and electricity price limits ΔPt(t) to a certain range, i.e.,
P−(t) < ΔPt(t) < P

+(t).
In practical situations, the load during the t-th time slot

is not only influenced by the current time slot's electricity
price but also affected by past time slot prices. Therefore,
constructing an exponential cross-elasticity response relationship
between load demand and electricity price is necessary, which can be
expressed as

ΔPx (t) =
{
{
{

P− (t)(1− e−μt,xΔH(t)) ,ΔH (t) ≥ 0,

P+ (t)(1− eμt,xΔH(t)) ,ΔH (t) < 0,
(9)

where t and x are two different time slots, with x < t. μt,x represents
the cross-elasticity coefficient of load variation in time slot t caused
by changes in the electricity price in time slot x. ΔPx(t) represents
the cross-elastic load variation in time slot t caused by changes in
the electricity price in time slot x.

Considering that the response of load to electricity price changes
varies across different time slots, this paper constructs an elasticity
matrixO composed of self-elasticity coefficients and cross-elasticity
coefficients, which can be represented as

O =

[[[[[[[

[

μ1,1 0

μ2,1 μ2,2
⋮ ⋮ ⋱

μT,1 μT,2 ⋯ μT,T

]]]]]]]

]

, (10)

where T represents the number of time slots. The main
diagonal elements of the matrix are the self-elasticity coefficients
corresponding to each respective time slot, while the off-diagonal
elements represent the cross-elasticity coefficients between the two
corresponding time slots.

Combining Eqs 8–10, the total load at the t-th time slot
considering the price-based demand response, PPDR(t), can be

expressed as

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

κt (t) =
1

t

∑
x′=1

ex
′−t

,

κx (t) =
ex−t
t

∑
x′=1

ex
′−t

,

PPDR (t) = P0 (t) + κt (t)ΔPt (t) +
t−1

∑
x=1

κx (t)ΔPx (t) ,

(11)

where κt(t) represents the self-elastic weighted coefficient of ΔPt(t)
and κx(t) represents the cross-elastic weighted coefficient of ΔPx(t).
According to Eq. 11, the self-elastic weighted coefficient is larger
than all the cross-elastic weighted coefficients. The normalization
of the coefficient can ensure that the total load PPDR(t) meets
the upper and lower load constraints shown in Eq. 7. In addition,
the increase of the interval between the time slot x and time
slot t will lead to the decrease in the cross-elastic weighted
coefficient κx(t).

2.2.2 Incentive-based demand response
Incentive-based demand response primarily stimulates the

participation of the PV microgrid in demand response and adjusts
their power output through incentive subsidies. The grid dispatch
center sets a minimum incentive subsidy threshold and provides
subsidies to the portion of the PV microgrid's output that exceeds
this threshold (Eslaminia and Mashhadi, 2022; Li et al., 2023b;
Ma et al., 2022). The incentive subsidy power, which represents the
portion of the PV microgrid's output that receives subsidy, can be
expressed as

Prewi (t) = P
pv
i (t) − Plow, (12)

where Plow represents the incentive subsidy threshold.
Based on the magnitude of the incentive subsidy power, this

paper constructs an incentive response mechanism for the PV
microgrid, which can be expressed as

gdri (t) =

{{{{{
{{{{{
{

0,Prewi (t) ≤ 0,
c1P

rew
i (t) ,0 < P

rew
i (t) ≤ D1,

ki(t)−1

∑
l=1

clDl + cki(t)(P
rew
i (t) −

ki(t)−1

∑
l=1

Dl), if
ki(t)−1

∑
l=1

Dl < P
rew
i (t) ≤

ki(t)

∑
l=1

Dl,

(13)

where gdri (t) represents the incentive subsidy provided by the grid
dispatch center to the PV microgrid i at the t-th time slot based on
incentive-based demand response. ki(t) represents the tiered pricing
level corresponding to Ppvi (t), where ki(t) ∈ {1,2,… ,K} and K is the
maximum tiered pricing level. cl is the unit power incentive subsidy
corresponding to the l-th tier, andDl is the power interval of the l-th
tier incentive subsidy.

3 Hybrid bilevel optimization problem
formulation

This paper models and optimizes the upper-level distribution
grid and lower-level PV microgrids as separate stakeholders. The

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1297650
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shao et al. 10.3389/fenrg.2023.1297650

optimization and dispatching of both levels are both independent
and interconnected, and the optimization problem is solved
based on the hybrid bilevel optimization. The lower-level PV
microgrids adopt a distributed optimization approach, utilizing
the power output transmitted from the upper level's generator
sets as decoupling variables for optimization. On the other hand,
the upper-level distribution grid adopts a centralized optimization
approach, utilizing the power output transmitted from the lower-
level PV microgrids as decoupling variables for optimization.
Hybrid bilevel optimization is iteratively performed until the
convergence condition is met.

3.1 Lower-level PV microgrid optimization
problem

To maximize the revenue from selling electricity and minimize
operational cost, lower-level optimization aims to maximize the
difference between electricity sales revenue and operational cost.
The optimization problem of the lower-level PV microgrids is
constructed as

P1: fsub (t) = max
{Ppvi (t)}

I

∑
i=1
[gepi (t) + g

dr
i (t) − g

pv
i (t)] ,

s.t. C1:PPDR (t) =
I

∑
i=1

Ppvi (t) +
Nbus

∑
n=1

PG,n (t) ,

C2:
[Si (t) − S

max
i ]E

max
i

Δt
≤ Ppv,esi (t)

≤
[Si (t) − Smin

i ]E
max
i

Δt
,

C3:P
pv,min
i (t) ≤ Ppvi (t) ≤ P

pv,max
i (t) , (14)

where I represents the number of PVmicrogrids. {Ppvi (t)} is the set of
optimization variables, i.e., the output power of each PV microgrid.
gdri (t) represents the incentive subsidy received by the PVmicrogrid
i for participating in incentive-based demand response at time slot
t. gpvi (t) represents the operational cost of the PV microgrid i at
time slot t. Ppv,max

i (t) and Ppv,min
i (t) represent the upper and lower

limits of the output power of the PV microgrid i at the t-th time
slot, respectively. gepi (t) represents the revenue obtained by the PV
microgrid i from selling electricity to the distribution grid at time
slot t, and it can be expressed as

gepi (t) = σP
pv
i (t) , (15)

where σ represents the unit electricity selling price.

3.2 Upper-level distribution grid
optimization problem

Theupper-level distribution gridmeets its load demand by using
the output from generator sets and purchasing electrical energy
from the lower-level PV microgrids. However, in some cases, the
integration of intermittent and highly variable renewable energy
sources like PVs can increase grid loss and introduce voltage
deviation in the distribution grid.

Assuming that the total number of nodes in the upper-level
distribution grid isNbus, the grid loss of the distribution grid, Ploss(t),
can be expressed as

Ploss (t) = ∑
(n,m)∈W,n≠m

Gnm (t) [U2
n (t) +U2

m (t)

− 2Un (t)Um (t)cosθnm (t)] , (16)

where n andm are grid nodes andW is the set of grid branch. Un(t)
and Um(t) are the voltage magnitudes at nodes n and m. θnm(t) is
the voltage phase difference between nodes n and m. Gnm(t) is the
admittance of the branch connecting nodes n andm.

The voltage deviation in the distribution grid, ΔU(t), can be
expressed as

ΔU (t) =
Nbus

∑
n=1
[
Un (t) −U

exp
n (t)

ΔUmax
n (t)

]
2

, (17)

where Uexp
n (t) is the expected voltage magnitude at node n at the

t-th time slot and ΔUmax
n (t) is the maximum voltage deviation set

considering equipment safety.
In order to minimize the adverse effects of the randomness and

variability of PV output on the distribution grid, the upper-level
distribution grid uses the active power output and reactive power
output of generator sets as optimization variables. The optimization
objective is to minimize the weighted sum of grid loss Ploss(t) and
voltage deviation ΔU(t) in the distribution grid. The optimization
problem of the upper-level distribution grid is constructed
as

P2: fup (t) = min
{PG,n(t)},{QG,n(t)}

[Ploss (t) + ξ× (ΔU (t))] ,

s.t. C1:PG,n (t) + Ppur,n (t) − PL,n (t)

= Un (t)
Nbus

∑
m=1,m≠n

Um (t) [Gnm (t)cosθnm (t)

+Bnm (t) sinθnm (t)] ,

C2:QG,n (t) +Qpur,n (t) −QL,n (t)

= Un (t)
Nbus

∑
m=1,m≠n

Um (t) [Gnm (t) sinθnm (t)

−Bnm (t)cosθnm (t)] ,

C3:
{
{
{

Pmin
G,n (t) ≤ PG,n (t) ≤ P

max
G,n (t) ,

Qmin
G,n (t) ≤ QG,n (t) ≤ Q

max
G,n (t) ,

C4:Umin
n (t) ≤ Un (t) ≤ Umax

n (t) ,

C5:Cmin
G,n (t) ≤ |

PG,n (t) − PG,n (t− 1)
Δt

| ≤ Cmax
G,n (t) , (18)

where ξ is the scaling factor. C1 and C2 represent active and reactive
power flow balance constraints in the distribution grid, respectively.
PG,n(t) and QG,n(t) are the active power output and reactive power
output of the generator set at node n at the t-th time slot. PL,n(t)
and QL,n(t) represent the active and reactive power consumption of
node n at the t-th time slot. Gnm(t) and Bnm(t) represent the real
and imaginary parts of the admittance matrix element at row n and
column m at the t-th time slot. Pmin

G,n (t) and Pmax
G,n (t) represent the

lower and upper bounds of the active power output of generator
set at node n at the t-th time slot, respectively. Qmin

G,n (t) and Qmax
G,n (t)

represent the lower andupper bounds of the reactive power output of

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1297650
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shao et al. 10.3389/fenrg.2023.1297650

the generator set at node n at the t-th time slot, respectively. Umin
n (t)

and Umax
n (t) represent the lower and upper voltage limits of node n

at the t-th time slot, respectively. Cmin
G,n (t) and Cmax

G,n (t) represent the
lower and upper bounds of the ramp rate for the generator set at
node n, respectively. Ppur,n(t) and Qpur,n(t) represent the active and
reactive power injected into node n from the PV microgrid at the
t-th time slot, satisfying

Ppur,n (t) = {
Ppvi (t) ,noden isdirectlyconnectedtothePVmicrogrid i,
0,noden isnotdirectlyconnectedtoanyPVmicrogrid,

Gpur,n (t) = {
tanϕi (t)P

pv
i (t) ,noden isdirectlyconnectedtothePVmicrogrid i,

0,noden isnotdirectlyconnectedtoanyPVmicrogrid.
(19)

If node n is directly connected to the PV microgrid i, then
Ppur,n(t) = P

pv
i (t) and Gpur,n(t) = tanϕi(t)P

pv
i (t), where ϕi(t) is the

power factor angle of the PV microgrid i at the t-th time slot.
If node n is not directly connected to the PV microgrid, then
Ppur,n(t) = Qpur,n(t) = 0.

4 Second-order cone and improved
consensus algorithm-based hybrid
bilevel optimization algorithm for the
interaction between the distribution
grid and PV microgrids

The differentiated demand response makes the coupling
relationship between the distribution grid and PV microgrid
complex. The hybrid bilevel optimization between the distribution
grid and PV microgrids needs frequent interaction. Specifically,
the PV microgrids in the lower level are optimized by using
the power output of generator sets transmitted from the
upper level. At the same time, the distribution grid in the
upper level is optimized by using the power output of the PV
microgrids transmitted from the lower level. The hybrid bilevel
optimization for the interaction between the distribution grid
and PV microgrids is shown in Algorithm 1 and carried out as
follows.

4.1 Improved consensus algorithm-based
distributed dispatching of PV microgrids

Consensus algorithm allows the PV microgrid to realize
distributed dispatching through the interaction of information and
has the advantages of simple dispatching and easy implementation.
However, the traditional consensus algorithm ignores the
differentiated output, energy storage, and other characteristics
of PV microgrids, and regards each PV microgrid as the same
individual for dispatching, resulting in a slow response speed and
poor dispatching effect. To solve the aforementioned problems,
this paper fully considers the differentiated output, energy storage,
and other characteristics of the PV microgrid, and designs
the differentiated consensus iteration coefficient based on the
differentiated characteristics of PV microgrids to effectively
improve the distributed dispatching response speed of the PV
microgrids.

1: Step 1: Improved consensus algorithm-based

distributed dispatching of PV microgrids.

2: Input the total active output power of the

upper-level generator sets Pϑ−1
G,n (t).

3: Calculate the consensus variables ηi(t) based on

Eq. 21.

4: Calculate the improved adjacency matrix

Z = (zi,j(t)) and the target deviation variable Δd

based on Eqs 22, 23.

5: Do

6:  Carry out the consensus iteration based on

Eq. 24.

7:  Calculate the output power and energy

storage device power of each PV microgrid after

the consensus variables are updated based on Eq.

25.

8:  If: the output power of PV microgrid does not

satisfy the constraints in Eq. 14.

9:   Modify the energy storage device power and

output power based on Eqs 26, 27.

10:  End if

11:  Update the consensus variables based on

Eq. 27.

12: Until: satisfy convergence condition Eq.

28.

13: The active output power of the PV microgrid

P
pv,ϑ
i
(t) is calculated based on Eq. 25.

14: Step 2: Second-order cone-based centralized

dispatching of the distribution grid

15: Input the active output power of each

lower-level PV microgrid.

16: Calculate the active output power and reactive

output power of the PV microgrid injected into

node n based on Eq. 19.

17: Construct the upper-level optimization model

based on Eq. 18.

18: Employ second-order cone techniques to

transform the upper-level optimization model into

a convex feasible region second-order cone

programming model based on Eqs 29–32.

19: The Gurobi solver is used to complete the

upper-level optimization, and the active power

Pϑ
G,n(t) and reactive power output Gϑ

G,n(t) of the

generator set are obtained.

20: Step 3: Bilevel interaction

21:  If: the active output power of PV P
pv,ϑ
i
(t) or

the generator set Pϑ
G,n(t) does not satisfy the

convergence conditions in Eq. 33.

22:   ϑ = ϑ+1 and return to Step 1 for next

iteration.

23:  End if

24: Complete the hybrid bilevel optimization.

Algorithm 1. Second-order cone and improved consensus algorithm-based
hybrid bilevel optimization algorithm for the interaction between the
distribution grid and PVmicrogrids
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First, we construct the Lagrangian function, denoted as L, which
can be expressed as

L (t) =
I

∑
i=1
[gepi (t) + g

dr
i (t) − g

pv
i (t)]

+ λ(PPDR (t) −
Nbus

∑
n=1

PG,n (t) −
I

∑
i=1

Ppvi (t)), (20)

where λ is the Lagrange multiplier.
We take the partial derivative of the Lagrangian function L(t)

with respect to the PV microgrid output Ppvi (t) to obtain the
consensus variable, which can be expressed as

ηi (t) =
∂L

∂Ppvi (t)
= σ+ cki(t) − (2δ

pv,es
i + 2α

pvp
i + β

pvp
i )P

pv
i (t) , (21)

where ηi(t) represents the consensus variable for PV microgrid i at
time slot t.

After obtaining the consensus variable, the consensus algorithm
needs to construct a communication iteration matrix, with matrix
elements serving as iteration coefficients to determine whether
entities are adjacent. In the general consensus algorithm, the
communication iteration matrix typically has matrix elements set
to 1 for adjacent entities. However, in cases where the convergence
precision remains unchanged, variations in the matrix elements
do not affect the final convergence results. Given the differences
in PV generation capacity, internal load demands, and PV energy
storage capacity among different PV microgrids, the efficiency of
convergence can be improved by setting the weight proportion
of adjacent PV microgrid's power output capacity as the matrix
element. Therefore, the communication iteration matrix is denoted
as Z = (zi,j(t))I×I, and its elements are defined as

zi,j (t) =

{{{{
{{{{
{

ω[Ppv,totali (t) − Ppv,loadi (t)] + χPpv,esi (t)

ω[Ppv,totalj (t) − Ppv,loadj (t)] + χPpv,esj (t)
, (vi,vj) ∈ E,

0,others,

(22)

where zi,j(t) represents the communication weight for the iteration
between the PV microgrids i and j. ω and χ are weight coefficients.
(vi,vj) ∈ E denotes the existence of an edge in the directed graph
between two points, indicating that PV microgrids i and j are
neighbors.

According to Eq. 14, the power balance constraint for the lower-
level microgrid group optimization is considered. The deviation
between the current state of the microgrid and the target state is
calculated to obtain the target deviation variable Δd. This provides
the basis for the step size of the lower-level consensus algorithm
iteration in this round. Δd is calculated as

Δd = PPDR (t) −
Nbus

∑
n=1

PG,n (t) −
I

∑
i=1

Ppvi (t) . (23)

The consensus variables of the PV microgrids are updated as

ηite+1i (t) = η
ite
i (t) + εiΔd+

I

∑
j=1,i≠j

zi,j (t)(η
ite
i (t) − η

ite
j (t)) , (24)

where ite represents the number of consensus iterations. zij(t) is
the element in the i-th row and j-th column of the communication

matrix Z. Δd is the target deviation variable. ɛi is the step size
correction coefficient for the PV microgrid i.

For each updated consensus variable ηite+1i (t), the corresponding
power of the PV microgrid may not meet the constraints in Eq. 14,
so the consensus variable ηite+1i (t) needs to be corrected as follows.

First, we calculate the output power of each PV microgrid and
the output power of the energy storage devices in the PVmicrogrids
as

Ppvi (t) =
σ+ cki(t) − η

ite+1
i (t)

2δpv,esi + 2α
pvp
i + β

pvp
i

,

Ppv,esi (t) = P
pv
i (t) − P

pv,total
i (t) + Ppv,loadi (t) .

(25)

Ppv,esi (t) > 0 indicates that the PV energy storage system is
discharging, while Ppv,esi (t) < 0 indicates that the PV energy storage
system is charging.

Then, we consider the power constraints of each PVmicrogrid's
energy storage system based on Eq. 14. If the power exceeds the
constraint boundaries, we adjust it to the nearest boundary and
update the corresponding PV microgrid's output power as

Ppv,esi (t) =

{{{{{{{
{{{{{{{
{

[Si (t) − Smin
i ]E

max
i

Δt
,Ppv,esi (t) >

[Si (t) − Smin
i ]E

max
i

Δt
,

[Si (t) − S
max
i ]E

max
i

Δt
,Ppv,esi (t) <

[Si (t) − S
max
i ]E

max
i

Δt
,

Ppv,esi (t) ,others,

Ppvi (t) = P
pv,total
i (t) − Ppv,loadi (t) + Ppv,esi (t) . (26)

Finally, we take into account the output power constraints of
PV microgrids based on Eq. 14. If the power exceeds the constraint
boundaries, we adjust it to the nearest boundary and update the
consensus variables as

Ppvi (t) =
{{{{
{{{{
{

Ppv,max
i (t) ,Ppvi (t) > P

pv,max
i (t) ,

Ppv,min
i (t) ,Ppvi (t) < P

pv,min
i (t) ,

Ppvi (t) ,others,

ηite+1i (t) = σ+ cki(t) − (2δ
pv,es
i + 2α

pvp
i + β

pvp
i )P

pv
i (t) . (27)

After updating all consensus variables, we update the target
deviation variable Δd according to Eq. 23. Then, we check whether
the consensus variables have converged. The convergence condition
is given by

{{{{{
{{{{{
{

I

∑
i=1
‖ηite+1i (t) − η

ite
i (t)‖

2
2

I
≤ φ1,

|Δd| ≤ φ2,

(28)

where the first term indicates the need for convergence of PV
microgrid consensus variables and the second term indicates that the
total output power of the PVmicrogrids canmeet the power demand
of the grid. φ1 and φ2 are convergence precisions of the consensus
algorithm.

If the consensus variables converge, the active power output
of each PV microgrid is obtained according to Eq. 25 and sent to
the upper level for grid loss optimization. Otherwise, the consensus
iterations continue until convergence is achieved.
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The proposed algorithm does not depend on the form of PV
cost function, which is scalable and can be applied to other non-
convex cost functions. For all forms, we only need to take the
partial derivative of the Lagrange function L(t) with respect to the
PV microgrid output Ppvi (t) to obtain the consensus variable. The
consensus variables derived from different forms of cost functions
are different, but as long as there is a one-to-one correspondence
between the consensus variables and the PV microgrid output,
consensus optimization can be performed.

4.2 Second-order cone-based centralized
dispatching of the distribution grid

The upper-level distribution grid model aims to minimize the
weighted sum of grid loss and voltage deviation. The output power
of each PV microgrid obtained from the lower-level optimization is
incorporated into the upper-level optimal power flow model. This
allows us to solve for the generator set outputs in the distribution
grid that satisfy the power flow constraints. The solution steps for
the upper-level distribution grid model are as follows.

1) The output power of each PV microgrid, obtained from the
lower-level optimization, is substituted into the line parameters of
the distribution grid.

2) The power balance constraints in Eq. 18 lead to non-convex
non-linearity in the upper-level model. We employ second-order
cone techniques to transform the upper-level optimization model
into a convex feasible region second-order cone programming
model.

First, there exists

{{{{
{{{{
{

en (t)em (t) +wn (t)wm (t) = |Un (t)| |Um (t)|cosθnm (t) ,

en (t)wm (t) − em (t)wn (t) = |Un (t)| |Um (t)| sinθnm (t) ,

|Un (t)|
2 = e2n (t) +w2

n (t) ,

(29)

where en(t) and wn(t) represent the real and imaginary parts of the
voltage vector at node n. em(t) and wm(t) represent the real and
imaginary parts of the voltage vector at nodem.

Then, we define intermediate variables snm, ynn, and ynm, which
satisfy

{{{{{{{
{{{{{{{
{

snm (t) = en (t)wm (t) − em (t)wn (t) ,

ynn (t) = e
2
n (t) +w2

n (t) ,

ynm (t) = en (t)em (t) +wn (t)wm (t) ,

y2nm (t) + s
2
nm (t) = ynn (t)ynm (t) .

(30)

The active and reactive power flow balance constraints of the
upper-level distribution grid can be transformed into

{{{{{{{{{{{{
{{{{{{{{{{{{
{

PG,n (t) + Ppur,n (t) − PL,n (t) =

Gnn (t)ynn (t) +
Nbus

∑
m=1,m≠n
[Gnm (t)ynm (t) −Bnm (t) snm (t)] ,

QG,n (t) +Qpur,n (t) −QL,n (t) =

−Bnn (t)ynn (t) +
Nbus

∑
m=1,m≠n
[−Bnm (t)ynm (t) −Gnm (t) snm (t)] ,

(31)

simultaneously satisfying

{{{{{{{{{{{{
{{{{{{{{{{{{
{

ynm (t) = ymn (t) ,

snm (t) = −smn (t) ,

Umin
n

2 (t) ≤ ynn (t) ≤ U
max
n

2 (t) ,

y2nm (t) + s
2
nm (t) = ynn (t)ymm (t) ,

y2nm (t) + s
2
nm (t) + [

ynn (t) − smm (t)
2

]
2
≤ [

ynn (t) + smm (t)
2

]
2
.

(32)

3) We utilize the Gurobi solver to solve the upper-level
optimization model and obtain the active power and reactive power
outputs of the upper-level generator sets.

4.3 The iterative interaction process
between the distribution grid and PV
microgrid
Step 1: Based on the (ϑ− 1)-th iteration of the upper-level generator
active power output Pϑ−1G,n(t), the improved consensus algorithm is
utilized to realize the distributed dispatching of PV microgrids.
Then, output the active power output of the PVmicrogrid asPpv,ϑi (t).
Step 2: Based on the obtained active power output of the PV
microgrid Ppv,ϑi (t), the distribution grid utilizes the Gurobi solver
to solve the optimization objective. It then outputs the active power
output PϑG,n(t) and reactive power output Gϑ

G,n(t) of the upper-level
generator set.
Step 3: Steps 1, 2 constitute one iteration of the optimization
process. After completing one iteration, check whether the power
output of each PV microgrid and the active power output of
each generator set in adjacent iterations satisfy the termination
conditions, as shown as follows. If they do, the iteration process ends,
and the power output Pϑ,pvi (t) of the PV microgrid at this point is
the final power output. At the same time, the active power output
PϑG,n(t) of the upper-level generator set corresponds to the optimal
active power output for minimum grid loss. If not, we set ϑ = ϑ+ 1
and return to Step 1 for the next iteration.

{{{{{{{{{{
{{{{{{{{{{
{

Nbus

∑
n=1
‖PϑG,n (t) − P

ϑ−1
G,n (t)‖

2
2

Nbus
≤ φ3,

I

∑
i=1
‖Ppv,ϑi (t) − P

pv,ϑ−1
i (t)‖

2

2

I
≤ φ4,

(33)

where φ3 and φ4 represent the precision criteria for terminating the
iteration between the distribution grid and PV microgrids.

5 Case results and analysis

To validate the feasibility of the proposed model and solution
algorithm in this paper, a simulation study is conducted using the
modified IEEE-33 node distribution grid system shown in Figure 2
as the research case (Fu et al., 2020; Ni and Zheng, 2021).

As shown in Figure 2, the distribution grid consists of a total of
five generator sets, namely, GS1–GS5, connected to nodes 8, 15, 21,
23, and 29, respectively. Additionally, there are three PVmicrogrids,
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FIGURE 2
Simulation scenario of the proposed algorithm based on the IEEE-33 node distribution grid system.

TABLE 1 Self-elasticity coefficients.

μt,t

t ∈V1 t ∈V2 t ∈V3

0.38 0.12 0.05

designated as PV Microgrid 1–PV Microgrid 3, connected to this
distribution grid with corresponding nodes 12, 19, and 23.

5.1 The parameter settings for simulation

This paper defines one time slot as 1 h, and the price-based
demand response load shifting occurs over a total of T = 24 time
slots. For example, the 3rd time slot corresponds to 3:00–4:00.
The load consumption is divided into three periods: peak, off-
peak, and valley. The peak period includes time slots 11–12 and
16–21, the off-peak period includes time slots 8–10 and 13–15,
and the valley period includes time slots 1–7 and 22–24. Based
on this, the sets of time slots for each period are defined as
follows: peak time slots set V1 = {11,12,16,17,18,19,20,21}, off-
peak time slots set V2 = {8,9,10,13,14,15}, and valley time slots set
V3 = {1,2,3,4,5,6,7,22,23,24}. The price-based demand response
price elasticity coefficients are given in Table 1, and the cross-price
elasticity coefficients are presented in Table 2 (Shailendra and Bhim,
2019).

In this paper, the PV microgrids and distribution grid are
considered an interconnected system capable of directly achieving
energy mutual assistance. The capacity and parameters of each

PV microgrid are shown in Table 3 (Valibeygi Amri and de,
2021).

5.2 Simulation result

Taking the PV microgrid consensus iteration at a certain
moment as an example, Figure 3 reflects the consensus iteration
error of the PV microgrid versus the consensus iteration number.
ηave represents the consensus iteration error, defined as the average
norm of the difference between adjacent iterations of all consensus
variables in the PV microgrid. ηave is calculated as

ηave =

I

∑
i=1
‖ηite+1i (t) − η

ite
i (t)‖

2
2

I
. (34)

According to Eq. 28, the consensus iteration terminates only
when both the consensus iteration error ηave and the target deviation
variable Δd satisfy the convergence accuracy of the consensus
algorithm. From the figure, it can be observed that Δd and ηave satisfy
the convergence accuracy of the consensus algorithm in the 8th
and 13th iterations, respectively. Therefore, the consensus iteration
terminates in the 13th iteration.

Figures 4, 5 show the output power of the PV microgrid versus
the consensus iteration number for the proposed algorithm and
traditional consensus algorithm, respectively. From the figure, it can
be observed that the output power of the PV microgrid for the
proposed algorithm and traditional consensus algorithm reaches
convergence in the 13th and 19th consensus iteration numbers,
respectively. It effectively proves the effectiveness of the proposed
algorithm in accelerating consensus convergence.

Figure 6 reflects the iteration error of bilevel optimization versus
the iteration number of bilevel optimization ϑ. Pϑ,aveG represents
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TABLE 2 Cross-elasticity coefficients.

μt,x ,x < t

t ∈V1,
x ∈V1

t ∈V2,
x ∈V2

t ∈V3,
x ∈V3

t ∈V1,
x ∈V2

t ∈V1,
x ∈V3

t ∈V2,
x ∈V3

t ∈V2,
x ∈V1

t ∈V3,
x ∈V1

t ∈V3,
x ∈V2

0.01 0.03 0.01 0.02 0.05 0.03 0.02 0.05 0.03

TABLE 3 Capacity and parameters of the PVmicrogrids.

ζpvi (t) αpvpi βpvpi γpvpi δpv,esi Emax
i /kW

PV microgrid 1 0.15 0.0004 0.25 20 0.52 300

PV microgrid 2 0.16 0.0008 0.20 20 0.52 150

PV microgrid 3 0.15 0.0006 0.15 15 0.49 200

FIGURE 3
Consensus iteration error of the PV microgrid.

FIGURE 4
Output power of the PV microgrid versus the consensus iteration
number of the proposed algorithm.

FIGURE 5
Output power of the PV microgrid versus the consensus iteration
number of the traditional consensus algorithm.

FIGURE 6
Iteration error of bilevel optimization.
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FIGURE 7
Voltage fluctuation: (A) before bilevel optimization and (B) after bilevel optimization.

FIGURE 8
Voltage deviation and grid loss versus the scaling factor of the
proposed algorithm.

the upper-level iteration error of the active power outputs of the
generator sets, defined as the average norm of the difference between
adjacent iterations of the active power outputs of all generator sets.
Ppv,ϑ,ave represents the lower-level iteration error of the outputs of
the PV microgrids, defined as the average norm of the difference
between adjacent iterations of the outputs of all PVmicrogrids.Pϑ,aveG
and Ppv,ϑ,ave are calculated as

{{{{{{{{{{
{{{{{{{{{{
{

Pϑ,aveG =

Nbus

∑
n=1
‖PϑG,n (t) − P

ϑ−1
G,n (t)‖

2
2

Nbus
,

Ppv,ϑ,ave =

I

∑
i=1
‖Ppv,ϑi (t) − P

pv,ϑ−1
i (t)‖

2

2

I
.

(35)

According to Eq. 35, the iteration between the distribution grid
and the PV microgrids terminates only when both the iteration
error of the active power output of the generator set Pϑ,aveG and the

iteration error of the output of the PV microgrid Ppv,ϑ,ave satisfy the
termination condition accuracy. From the figure, it can be observed
that the iteration optimization between the distribution grid and
the PV microgrid satisfies the termination condition in the 22nd
interaction.

Figures 7A, B show the voltage of the IEEE-33 node distribution
grid system before and after bilevel optimization, respectively.
From the figures, it can be observed that the voltage fluctuations
of each node are smaller after optimization compared to before
optimization. This is because the proposed algorithm solves the
distribution grid optimization problem by minimizing the weighted
sum of grid loss and voltage deviation as the objective. It effectively
reduces the voltage fluctuations at the node.

Figure 8 shows the voltage deviation and grid loss versus the
scaling factor for the proposed algorithm. As the scaling factor
increases, the voltage deviation gradually decreases and the grid
loss gradually increases. For example, the grid loss increases by
18.33% and the voltage deviation decreases by 10.21% when the
scaling factor increases from 4 to 6. This is because the larger
the scaling factor, the more attention the proposed algorithm
pays in optimizing the voltage deviation, thus ignoring the grid
loss.

5.3 Algorithm comparison

To better validate the effectiveness of the proposed second-
order cone and improved consensus algorithm-based hybrid
bilevel optimization algorithm for the interaction between
the distribution grid and PV microgrids, two comparative
algorithms are designed for verification in this paper: 1) iterative
interaction optimization algorithm between the distribution
grid and PV microgrid based on particle swarm optimization-
Gurobi (IIOA-PSOG) (Silva de Souza et al., 2017; Li et al., 2016)
and 2) iterative interaction optimization algorithm between the
distribution grid and PVmicrogrid based on traditional consensus-
Gurobi (IIOA-TCG) Fan et al. (2020); Burgos-Mellado et al.
(2020).
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FIGURE 9
(A) Weighted sum of grid loss and voltage deviation versus the iteration number and (B) difference between electricity sale revenue and dispatching
cost versus the consensus iteration number.

FIGURE 10
Weighted sum of grid loss and voltage deviation versus the time slot.

When the two comparative algorithms are applied to the bilevel
optimization between the distribution grid and PV microgrid,
the upper-level distribution grid optimization problem is solved
using the same approach as the proposed algorithm, utilizing the
Gurobi solver. The lower-level problem, on the other hand, is solved
using particle swarm optimization (PSO) and traditional consensus
algorithms, respectively, to find the optimal power output of the PV
microgrid.

Taking 4:00–5:00 as an example, Figure 9A shows the weighted
sum of grid loss and voltage deviation versus the iteration number
for the three algorithms. From the figure, it can be observed that
the proposed algorithm converges the fastest. When convergence
is achieved, the optimization results of the proposed algorithm
are 19.23% and 8.71% lower compared to IIOA-PSOG and
IIOA-TCG algorithms, respectively. This is because the proposed
algorithm incorporates a target deviation variable in the consensus
optimization process, which measures the deviation between the

FIGURE 11
Difference between electricity sale revenue and dispatching cost
versus the time slot.

sumof the generator andPVmicrogrid outputs and the grid demand
at the current time. Additionally, the proposed algorithm takes into
account the differentiated characteristics of PV microgrids during
the lower-level consensus iteration process, effectively reducing the
convergence time of the consensus iteration, thereby accelerating the
iteration efficiency of hybrid bilevel optimization. This effectively
improves the efficiency of the iteration optimization, mitigates
voltage deviations betweennodes, and consequently reduces the grid
loss in the distribution grid.

Taking 8:00-9:00 as an example, Figure 9B shows the difference
between electricity sale revenue and dispatching cost versus the
consensus iteration number for the three algorithms. From the
figure, it can be observed that the proposed algorithm converges
the fastest. When convergence is achieved, the optimization
results of the proposed algorithm increase by 45.24% and
15.09% compared to IIOA-PSOG and IIOA-TCG algorithms,
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FIGURE 12
Algorithm runtime versus the time slot.

respectively. This is because the proposed algorithm incorporates
communication weights between adjacent PV microgrids based
on their output capabilities, which effectively accelerates the
convergence speed of the consensus iteration. Additionally, the
proposed algorithm introduces a target deviation variable in the
consensus optimization process, effectively exploiting the potential
of PV microgrids to participate in grid demand response. As a
result, the revenue from electricity sales of the PV microgrids is
enhanced.

Figure 10 shows the weighted sum of grid loss and voltage
deviation versus the time slot for the three algorithms. From the
figure, it can be observed that during the low load period, all three
algorithms yield lower numerical results in terms of the weighted
sum. Conversely, during the high load period, the numerical results
for the weighted sum are significantly improved. This observation
aligns with the actual operation of the grid. Furthermore, the
proposed algorithm consistently yields the lowest numerical results
for the weighted sumof grid loss and voltage deviation in the context
of hybrid bilevel optimization. Taking 12:00–13:00 as an example,
the proposed algorithm reduces numerical results for the weighted
sum of grid loss and voltage deviation by 23.03% and 13.01%
compared to IIOA-PSOG and IIOA-TCG, respectively, thereby
validating the effectiveness of applying the proposed algorithm
to the hybrid bilevel optimization based interaction between the
distribution grid and PV microgrids.

Figure 11 shows the difference between electricity sale revenue
and dispatching cost versus the time slot for the three algorithms.
Under the influence of PV output, the three algorithms show a
trend of first increasing and then decreasing. From the figure, it
can be observed that the proposed algorithm consistently yields
the highest numerical results for the difference between electricity
sale revenue and dispatching cost. Taking 12:00-13:00 as an
example, the proposed algorithm improves numerical results for
the difference between electricity sale revenue and dispatching
cost by 49.17% and 12.58% compared to IIOA-PSOG and IIOA-
TCG, respectively, thereby validating the effectiveness of applying

the proposed algorithm to the hybrid bilevel optimization-based
interaction between the distribution grid and PV microgrids. It
demonstrates that the proposed algorithm can effectively enhance
the revenue from the participation of the PV microgrid in demand
response.

Figure 12 shows the algorithm runtime versus the time slot for
the three algorithms. From the figure, it can be observed that the
proposed algorithm consistently yields the lowest numerical results
for the algorithm runtime. Taking 12:00-13:00 as an example, the
proposed algorithm reduces numerical results for the algorithm
runtime by 31.82% and 24.66% compared to IIOA-PSOG and IIOA-
TCG, respectively.

6 Conclusion

In this paper, we proposed a second-order cone and improved
consensus algorithm-based hybrid bilevel optimization algorithm
for the interaction between the distribution grid and PVmicrogrids.
In the lower level, considering the differentiated characteristics of
PV microgrids, the communication weights between the adjacent
PV microgrids are determined based on the ratio of their output
capabilities in the consensus iteration process. The PV microgrids
perform distributed optimization based on an improved consensus
algorithm for utilizing the active power output of the generator set,
and the output power of each PV microgrid is determined and
injected into the upper-level distribution grid. In the upper level,
the injected power from the PV microgrids is used as inputs for
the centralized optimization objective, which is solved using the
Gurobi solver. The outputs include the active power and reactive
power of the generating units. Simulation results show that the
proposed algorithm can achieve the hybrid bilevel optimization-
based interaction between the distribution grid and PV microgrids
with differentiated demand response, and effectively reduce the
dispatching cost of PV microgrids and speed up the convergence
of consensus iteration. Compared with IIOA-PSOG and IIOA-TCG,
the difference between electricity sale revenue and dispatching cost
of the proposed algorithm is increased by 45.24% and 15.09%,
respectively, and the weighted sum of grid loss and voltage deviation
is reduced by 23.03% and 13.01%, respectively. In the future, we
will further study the interaction optimization of the PVmicrogrids
and distribution grid considering energy storage sharing of PV
microgrids.
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