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Introduction: In the field of wind power generation, short-term wind speed
prediction plays an increasingly important role as the foundation for effective
utilization of wind energy. However, accurately predicting wind speed is highly
challenging due to its complexity and randomness in practical applications.
Currently, single algorithms exhibit poor accuracy in short-term wind speed
prediction, leading to the widespread adoption of hybrid wind speed prediction
models based on deep learning techniques. To comprehensively enhance the
predictive performance of short-term wind speed models, this study proposes a
hybrid model, VMDAttention LSTM-ASSA, which consists of three stages:
decomposition of the original wind speed sequence, prediction of each mode
component, and weight optimization.

Methods: To comprehensively enhance the predictive performance of short-term
wind speed models, this study proposes a hybrid model, VMDAttention LSTM-
ASSA, which consists of three stages: decomposition of the original wind speed
sequence, prediction of each mode component, and weight optimization. Firstly,
the model incorporates an attention mechanism into the LSTM model to extract
important temporal slices from each mode component, effectively improving the
slice prediction accuracy. Secondly, two different search operators are introduced
to enhance the original Salp Swarm Algorithm, addressing the issue of getting
trapped in local optima and achieving globally optimal short-term wind speed
predictions.

Result: Through comparative experiments using multiple-site short-term wind
speed datasets, this study demonstrates that the proposed VMD-AtLSTM-ASSA
model outperforms other hybrid prediction models (VMD-RNN, VMD-BPNN,
VMD-GRU, VMD-LSTM) with a maximum reduction of 80.33% in MAPE values.
The experimental results validate the high accuracy and stability of the VMD-
AtLSTM-ASSA model.

Discussion: Short-termwind speed prediction is of paramount importance for the
effective utilization of wind power generation, and our research provides strong
support for enhancing the efficiency and reliability of wind power generation
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systems. Future research directions may include further improvements in model
performance and extension into other meteorological and environmental
application domains.
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variational modal decomposition, attention, long short-term memory, salp swarm
algorithm, short-term wind speed prediction

1 Introduction

Wind energy plays an important role in many new energy
sources. According to the latest report released by the Global
Wind Energy Council (GWEC) (Guliyev, 2020), the global
installed capacity of wind power will reach 743 GW in 2020, with
a 53% year-on-year growth in new installations. However, the
stochastic, fluctuating and intermittent nature of wind farms
poses significant challenges to the operation and control of the
entire power system including wind farms (Lacal-Arantegui, 2019).
Among them, short-term wind speed prediction is an indispensable
factor for the development of daily scheduling plans. Therefore,
proposing a method to accurately predict the short-term wind speed
has an important impact on the economic and reliable operation of
the power system (Rizwan-ul-Hassan et al., 2021).

Currently, short-term wind speed prediction methods are divided
into twomain categories: physical process-drivenmodels (Higashiyama
et al., 2018) and data-driven models (Yuan et al., 2017). Data-driven
models are divided into statistical models (Liu et al., 2010) and artificial
intelligence models (Khodayar et al., 2017). Physical process-driven
models are mostly numerical weather prediction (NWP) models
(Lowery and O’Malley, 2012), which make predictions based on
local environmental information, such as, temperature, humidity,
and geography. These methods are usually time-consuming and
unsuitable for short-term and ultrashort-term wind speed forecasting
due to excessive model considerations and model over-complexity
(Wang and Li, 2018). In contrast, statistical models are more
suitable for short-term wind speed forecasting. Statistical models
learn the patterns of historical wind speed data and establish non-
linearmapping relationships between the data, thus realizing time series
forecasting (Rodrigues Moreno et al., 2020). Commonly used statistical
methods are time series modeling (Liu et al., 2020b), Kalman filtering
(Paliwal and Basu, 1987),Markov chain (Sahin and Sen, 2001), Bayesian
method (Liu et al., 2020a) and so on. Statistical models have high
prediction accuracy for static time series, but when facing highly
nonlinear and complex wind speed data, these methods are less
scalable and less effective in fitting.

In recent years, artificial intelligence models, including machine
learning and deep learning models, have become increasingly popular
in the field of short-term wind speed prediction (Scutaru et al., 2020).
Compared with physical and statistical models, artificial intelligence
models have greatly improved the accuracy of predicting wind speed.
Among these, artificial neural network-basedmodels seem to be the best
choice because they can learn directly from historical data of wind speed
without any a priori concepts and are more adaptable to practical
applications (Tascikaraoglu and Uzunoglu, 2014). The most basic
artificial neural network model is the back propagation neural
network (BPNN) (Wang et al., 2015). Theoretically, as long as the
number of neural units in the hidden layer of a BPNN reaches a certain

number, then any nonlinear function can be fitted. However, BPNNs
also have obvious shortcomings, firstly, it is easy to fall into the local
optimum rather than obtaining the global optimal solution, and
secondly, the learning efficiency caused by the need for too many
trainings is low, and the convergence speed is not ideal. The other
artificial neural network model, recurrent neural network (RNN)
(Zaremba et al., 2015), is better at finding local correlations
compared to BPNN. It can pass previous state information to
neurons at the current time step. This mechanism allows the RNN
to deal with dependencies in long sequences and also allows the same
parameters to be shared between each time step, which gives it a smaller
number of parameters and faster training speed, which fits well with the
temporal continuum of wind speed prediction (Tanaka et al., 2015; Yu
et al., 2018; Duan et al., 2021). However, the problem of
backpropagation in the network architecture of RNNs leads to the
problem of gradient vanishing and gradient explosion. This means that
there are difficulties with very long sequences and the gradient decreases
to near zero in hard-to-handle iterations. In order to overcome this
problem, “gate control” techniques are used in RNNmodels, such as the
long short-termmemory (LSTM) (Hochreiter and Schmidhuber, 1997)
and gate recurrent unit (GRU) (Niu et al., 2020), The GRU model
adopts a simplified gating mechanism to prevent overfitting, but its
prediction results are more logically correlated with recent time steps,
whichmay lead to the loss of useful information fromdistant time steps.
On the other hand, the LSTM model can effectively handle long-term
dependencies, avoiding the issues of gradient vanishing or exploding.
Experimental validation using multiple wind speed datasets has
demonstrated the superior predictive performance of LSTM (Altan
et al., 2021; Jaseena andKovoor, 2021; Shahid et al., 2021). However, the
computational structure of LSTM is relatively complex and it has a
larger number of parameters, which could potentially lead to overfitting.
Therefore, the key focus of research lies in effectively capturing
important information based on the data conditions within the
LSTM network, aiming to improve the prediction accuracy and
robustness of wind speed forecasts.

Due to the distinct characteristics exhibited by various singlemodels,
hybrid models can effectively leverage the advantages of different
individual models to achieve enhanced wind speed prediction
performance. Consequently, hybrid prediction models based on
decomposition and optimization have emerged as a research hotspot
in the field of wind speed prediction in recent years. In order to ensure
the sufficiency and integrity of feature decomposition and
reconstruction, some scholars have proposed a novel hybrid model
based on singular spectrum analysis and temporal convolutional
attention network with adaptive receptive field (ARFTCAN). The
results demonstrate that the proposed model effectively supports the
adaptability of short-term wind power forecasting (WPF) across all four
seasons (Shao et al., 2022). Furthermore, another group of researchers
have introduced a wind speed prediction method that combines
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quaternion convolutional neural network (QCNN), Bi-LSTM, and
adaptive decomposition techniques. This approach offers highly
accurate forecasting results for long-term wind speed prediction
(Neshat et al., 2022). Short-term hybrid wind speed prediction
models usually include three steps: decomposition, prediction, and
optimization (Ma et al., 2009). In the signal decomposition step, the
unstable original wind speed sequence is decomposed into multiple IMF
components with significant frequency characteristics by data
decomposition methods, which reduces the complexity of the original
data and performs noise reduction, e.g., empirical mode decomposition
(EMD) (Ren et al., 2016) performs adaptive decomposition of nonlinear
and highly fluctuating data in the original wind speed sequence to
improve the prediction performance of wind speed prediction models
(Naik et al., 2018). However, the EMD has the problems of large
reconstruction error, poor decomposition completeness, and large
noise residuals. Therefore, Literature (Hu et al., 2021) proposed a
method using variational mode decomposition to mine the features
of the wind speed sequence and eliminate the noise to predict each
intrinsic mode function (IMF), which has obvious accuracy advantages
over other decomposition methods in wind speed prediction.

In constructing the wind speed hybrid model, usually after signal
decomposition of the data, a parameter optimization algorithm is
also used to optimize the weights of each IMF to improve the
performance of the prediction algorithm. Among the parameter
optimization algorithms, the swarm intelligence optimization
algorithm is the most commonly used algorithm for wind speed
prediction. The swarm intelligence optimization algorithm is a
number of algorithms proposed for solving optimization
problems through the simulation study of the behavior of animal
groups, which overcomes the limitations of the traditional
algorithms when dealing with some complex problems such as,
nonlinear, multi-constraint, multi-variable, etc., and demonstrates a
better optimization ability. Some common ones are grey wolf
optimizer (GWO) (Fu et al., 2019), differential evolution (DE)
(Storn and Price, 1997), particle swarm optimization (PSO)
(Kennedy, 2011), covariance matrix adaptation evolution strategy
(CMAES) (Hansen and Ostermeier, 2001), whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016), salp swarm
algorithm (SSA) (Mirjalili et al., 2017), etc. These algorithms
have their respective advantages, but the salp swarm algorithm
(SSA), as an algorithm that achieves parameter optimization by
simulating the behavior of salp populations, exhibits significant
advantages in terms of parameter configuration, robustness, and
convergence speed. For example, SSA only requires adjusting the
position and velocity of salp individuals to update the search space.
It utilizes information transmission and competition mechanisms
among salp individuals to promote diversity and convergence
during the search process (Mirjalili et al., 2017), achieving a
balance between global and local search. Furthermore, SSA
demonstrates superior robustness and faster convergence speed
in solving complex optimization problems. However, like other
heuristic algorithms, the algorithm also suffers from problems
such as, a high likelihood of falling into local optimum, low
optimization accuracy, and unstable solution results (Faris et al.,
2018; Kang et al., 2019). Therefore, many scholars have improved
the deficiencies of the salp swarm algorithm accordingly. For
example, Literature (Faris et al., 2018) used adaptive operators to
help the salp swarm algorithm break through the optimal local

constraints in the process of follower position updating, so that the
individual salp swarm has strong global convergence ability in the
early stage, thus obtaining relatively accurate results in the later
stage. Some researchers have also designed three new
communication strategies, significantly improving the
collaborative capability of SSA (Pan et al., 2021). Alternatively,
starting from interval prediction, a novel prediction model based
on wind speed distribution and multi-objective optimization is
proposed by improving the SSA combination module (Wang and
Cheng, 2021). The aforementioned studies by these scholars lay the
foundation for the proposed multi-objective adaptive learning salp
swarm algorithm (ASSA) in this paper.

In summary, this study proposes the VMD-Attention LSTM-
ASSA (VMD-AtLSTM-ASSA) hybrid short-term wind speed
prediction model containing decomposition, prediction, and
optimization for short-term wind speed prediction. The
variational mode decomposition (VMD), as a decomposition
model in the hybrid model, decomposes the wind speed series
data into a series of intrinsic mode functions (IMFs) that can
adaptively update the optimal center frequency and bandwidth of
each IMF component, which is helpful for the subsequent work of
using the long short term memory networks (LSTM) prediction
model to incorporate the attention mechanism effectively, which
extracts the important slice information in each IMF component for
high-precision prediction. Finally, the multi-objective adaptive
learning rate salp swarm algorithm (ASSA) model is used to find
the optimal weights for each IMF component, which is finally
weighted to obtain the high-precision wind speed prediction value.

The main contributions and innovations of this paper are as
follows.

(a) The use of long short term memory networks (LSTM) with the
inclusion of an attention mechanism to individually predict the
intrinsic mode functions (IMFs) obtained through variational
mode decomposition (VMD). The Attention mechanism
identifies the importance of slice information within each
modal component, effectively improving the prediction
accuracy and robustness of the LSTM network.

(b) On the basis of the salp swarm algorithm (SSA), improvements
are made to address the problems of local optima trapping and
premature convergence in the original salp swarm algorithm.
This is achieved by proposing the adaptive learning operator
and multi-objective operator in the multi-objective adaptive
learning rate salp swarm optimization algorithm ASSA.
Ultimately, this approach achieves global optimality and
improves wind speed prediction accuracy.

(c) Through comprehensive comparisons with popular deep
learning prediction models, decomposition models, and
optimization models, this paper verifies the superiority of the
proposed hybrid wind speed prediction model VMD-AtLSTM-
ASSA in terms of individual components as well as overall
predictive performance.

The structure of this paper is described as follows: Section 2
presents the algorithmic principles of the proposed model, including
the model framework and execution process, and the model
principles; Section 3 presents and discusses the case study;
Section 4 gives the conclusions and future work.
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2 Methodology

2.1 Overall framework and execution
process of VMD-AtLSTM-ASSA

This section describes the framework structure of the proposed
VMD-AtLSTM-ASSA combined model, and the specific flowchart is
shown in Figure 1. The execution process of this study is in three
phases, which are A. Wind speed sequence decomposition, B.
Prediction of wind speed IMF components, and C. Weight
optimization. In this study, the wind speed sequence decomposition
stage utilizes the variational mode decomposition (VMD) model to
decompose the complex original sequence into stable mode
components, aiming to reduce the impact of non-stationarity and
complexity of the original wind speed sequence on prediction accuracy.
In the prediction stage, the LSTM model with attention mechanism
(AtLSTM) is used to predict the wind speed from the decomposed IMF
components. Since the predicted values of each IMF component are of
differing importance to the actual values, the proposed multi-objective
adaptive learning rate salp swarm algorithm (ASSA) algorithm is used
to give the optimal weights to each component and then superimpose
them to obtain the final highly accurate predicted values of wind speed.

2.2 Principle of VMD-AtLSTM-ASSA

2.2.1 Wind speed sequence
decomposition—variational mode decomposition

The VMD is a signal decomposition method (Dragomiretskiy and
Zosso, 2014), and the overall framework is a variational problem. That
is, assuming that each “mode” is a finite bandwidth with different center
frequencies, minimizing the sum of the estimated bandwidths of each
mode becomes a problem. In order to solve this variational problem, the
method adopts the alternating direction multiplier method, which
constantly updates each mode and its center frequency, gradually
demodulates each mode to the corresponding fundamental
frequency band, and finally extracts each mode to the corresponding
center frequency. Therefore, in this study, the VMD technique is
employed to decompose the complex original wind speed sequence.
The main objective is to decompose the original wind speed sequence,
which exhibits nonlinearity and randomness, into a series of frequency-
stable mode components, aiming to maximize the improvement in
prediction accuracy. The specific process of VMD is as follows, and the
results of the mode decomposition are shown in Figure 2.

Step 1: Assuming that each wind speed’s intrinsic mode functions
have a finite bandwidth with a center frequency, now find the
decomposed wind speed modes such that the sum of the
estimated bandwidths of each wind speed mode is minimized.
The specific model is as follows:

min
uk{ } Wk{ }

∑
k

∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jWkt

������� �������22⎧⎨⎩ ⎫⎬⎭ (1)

s.t.∑
k

uk t( )� f (2)

Where, k is the number of modes to be decomposed (positive
integer), uk and wk correspond to the k IMF and the center

frequency of the decomposition, δ(t) is the Dirac function, and *
is the convolution operator.

Step 2: In order to solve the above model, introduce the penalty
factor α (to reduce the effect of Gaussian noise) and Lagrange
multiplier operator, transform the constrained problem into an
unconstrained problem, and get the generalized Lagrange
expression: the above equation constrained problem is equivalent
to an unconstrained optimization problem through the generalized
Lagrange function, and the mathematical formulas are as follows:

L uk{ }, Wk{ }, λ( ): � a∑
k

∂ δ t( ) + j
πt( )*uk t( )[ ]e−jWkt

����� �����22
+ f t( ) −∑

k
uk t( )

�������� ��������22 +〈λ t( ), f t( ) −∑
k

uk t( )〉
(3)

Step 3: Iteratively update the parameters, uk wk and λ by
multiplier alternating direction method with the following
equation.

ûn+1k w( ) �
f̂ w( ) − ∑

i≠k
ûi w( ) + λ̂ w( )

2

1 + 2α w − wk( )2 (4)

wn+1
k � ∫∞

0
w ûn+1k w( )∣∣∣∣ ∣∣∣∣2dw∫∞

0
ûn+1k w( )∣∣∣∣ ∣∣∣∣2dw (5)

λ̂
n+1

w( ) � λ̂
n
w( ) + γ f̂ w( ) −∑

k

ûn+1k w( )⎛⎝ ⎞⎠ (6)

Where γ is the noise tolerance, which meets the fidelity
requirement of signal decomposition; n is the number of
iterations; ûn+1k (w), ûn+1i (w), f̂(w), λ̂(w) correspond to the
Fourier transforms of un+1k (t), ui(t)n�1, f(t), λ(t), respectively.

Step 4: For a given precision ∈ (∈> 0), if Eq. 7 is satisfied, the
iteration stops, otherwise return to Step 3), and finally you can
get the K, a decomposition of the IMF component denoted as
IMFk.

∑
k

un+1k − ûnk
���� ����22

unk
���� ����22 < ∈ (7)

The subsequent analysis focuses on the 15 intrinsic mode
functions (IMFs) obtained through the variational mode
decomposition (VMD), which are then utilized for short-term
wind speed prediction using an Attention LSTM model.
Additionally, the study investigates the optimization of weights
associated with each IMF. The detailed process can be found in
the flowchart depicted in Figure 1.

2.2.2 Prediction of wind speed IMF
components—attention LSTM

The IMFs obtained by applying the variational mode
decomposition (VMD) to the original wind speed sequence are
individually predicted using an Attention LSTM model. LSTM
network is a special type of recurrent neural network (RNN)
(Hossain and Mahmood, 2020). Due to its special design, LSTM
network memorizes long-term information by default, which can
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effectively solve the long-term and short-term dependence problem
when dealing with nonlinear sequence data. Compared to RNN
networks, LSTM networks overcome the problems of gradient

vanishing and gradient explosion as well as long-term memory
(Hochreiter and Schmidhuber, 1997), because the core of the LSTM
network is a memory cell state that replaces the hidden layer of

FIGURE 1
Framework and execution process of VMD-AtLSTM-ASSA model. This framework is divided into three steps, (A) is wind speed sequence
decomposition, (B) is prediction of wind speed IMF conponents, and (C) is weight optimisation, and the three steps complete the prediction of the whole
wind speed sequence in order.
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traditional neurons Ct, which is similar to a conveyor belt so that the
information is less likely to be forgotten, and therefore improves the
accuracy of the short-term wind speed prediction. However, since in
this study, each IMF component is predicted by LSTM model using
rolling slice prediction method with a step size of 60, in fact, not
every slice plays a key role in the prediction of the wind speed of each
IMF component. Therefore, the attention mechanism (Potocnik
et al., 2021) is introduced to effectively obtain the important feature
relationships of the short-term wind speed slices of the component,
so that different weights are assigned to each sample slice to improve
the accuracy and also greatly improve the computational accuracy.
Figure 1 describes the computation process of Attention LSTM. The
principle of the Attention LSTMmechanism is explained as follows:

First, each IMF after decomposition is used as an input to the
LSTM xt, and the flow of the LSTM network is as follows:

Step 1: Decide what information to discard from the memory cell
state (calculate the “forget gate” state).

f t � σ Wf · ht−1 +Wf · xt + bf( ) (8)
σ x( ) � 1

1 + ex
(9)

In the above equation, ht−1 represents the received output of the
previous node, xt is the input of IMFk, Wf is the corresponding
weight matrix, bf represents the deviation of the “forget gate”, and f t
represents the state of the “oblivious gate”.

Step 2:Decide which information is stored in the memory cell state
(calculate the “input gate” state) and calculate the candidate values
for the memory cell state.

it � σ Wi · ht−1 +Wi · xt + bi( ) (10)
~Ct � tanh Wc · ht−1 +Wc · xt + bc( ) (11)

tanh x( ) � ex − e−x

ex + e−x
(12)

In the above equation, ht−1 and xt are the same as above, Wi and
Wc are the corresponding weight matrices, bi and bc represent the

FIGURE 2
Results of variational mode decomposition (VMD) for three sites.

TABLE 1 Characteristics of the three-site wind speed datasets.

Dataset Number Statistical indicators

Mean (m/s) Sd. (m/s) Max (m/s) Min (m/s)

Site1 3,000 7.6373 1.7722 14.4030 1.8014

Site2 3,000 7.2664 1.9386 15.8270 3.0015

Site3 3,000 8.0485 3.3500 18.1090 0.8450

TABLE 2 Three evaluation indicators for model evaluation.

Metrice Definition Equation

RMSE Root mean square error

RMSE �
������������
1
N∑N

i�1
(ê1 − ei)2

√√
MAE Mean absolute error

MSE � 1
N∑N

i�1
|ê1 − ei|

MAPE Mean Absolute percentage error
MAPE � 1

N∑N
i�1
|ê1−eiei

|× 100
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deviation of the “input gate” and the deviation of the candidate value
of the memory cell state, it represents the input states, and ~Ct

represents the candidate value of the memory cell state.

Step 3: Update the current moment memory cell state with the
“forget gate” state, the “input gate” state, the previous moment
memory cell state, and the candidate value of memory cell state:

Ct � f t*Ct�1 + it*~Ct (13)

In the above equation Ct denotes the state of the memory cell at
the current moment.

Step 4: Determine what information to output from the memory
cell state (calculate the “output gate” state):

ot � σ Wo · ht−1 +Wo · xt + bo( ) (14)
ht � ot*tanh Ct( ) (15)

In the above equation, ot represents the state of “output gate”,
Wo is the corresponding weight matrix, bo represents the deviation
of “output gate”, and ht represents the output of current node.

When predicting each wind speed IMF component, it is
obviously not rigorous enough to assign the same weight to all
input slice information.While the Attentionmechanism can capture
the important features of wind speed, the Attention mechanism
evaluates the importance of different input features, focuses the
important information with high weights, ignores the less relevant
information with low weights, and finally assigns different weights to
them reasonably. Therefore, the Attention mechanism is introduced
into the LSTM prediction of each IMF component, and the specific
implementation steps of the mechanism are as follows: firstly, the
weight coefficients are calculated, i.e., the attention distribution of
the slices inside each IMF component is calculated; secondly, the

TABLE 3 Related parameter settings.

Model Parameter Parameter value

SVR Step size 60

Kernal linear

RNN Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

BPNN Step size 60

Learning rate 1e-4

Epochs 150

Batch size 64

LSTM Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

Number of hidden neurons 64

GRU Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

Number of hidden neurons 64

AtLSTM Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

Number of hidden neurons 64

VMD noise margin 0

Alpha 7,000

number of decomposition modes 15

ASSA Population size 10

Number of iterations 50

TABLE 4 Comparison of prediction errors of five single models with AtLSTM.

Dataset Measurement model Evaluation indicators

RMSE MAE MAPE

Site1 SVR 0.5831 0.4505 7.0699

BPNN 0.6044 0.4657 7.2671

RNN 0.5348 0.3997 6.2173

GRU 0.5332 0.3967 6.1847

LSTM 0.5309 0.3954 6.1427

AtLSTM 0.5067 0.3839 5.8560

Site2 SVR 0.5409 0.4424 7.6596

BPNN 0.5067 0.3988 6.6723

RNN 0.5078 0.4075 7.1344

GRU 0.4571 0.3545 5.7271

LSTM 0.4562 0.3466 5.6348

AtLSTM 0.4418 0.3454 5.3974

Site3 SVR 0.6314 0.5270 9.4655

BPNN 0.3089 0.2229 3.9711

RNN 0.2058 0.1386 2.5879

GRU 0.2039 0.1333 2.5565

LSTM 0.2024 0.1252 2.5397

AtLSTM 0.1998 0.1249 2.5198

The best values for the evaluation indicators are bolded.
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weighted summation of the calculated weight coefficients is carried
out, i.e., the weighted average of the slices of each IMF component is
calculated, and the calculation process is as follows:

Step 1: Multiply the sliced samples ai in each wind speed IMF
component with the corresponding parameter matrix Wq,Wk,Wv

to get the corresponding query (qi), key (ki), and value (vi):

FIGURE 3
Bar charts of the fitting curves and metrics for 5 individual models and Attention LSTM.
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qi � Wq · ai i � 1, 2, 3 . . .( ), (16)
ki � Wk · ai i � 1, 2, 3 . . .( ), (17)
vi � Wv · ai i � 1, 2, 3 . . .( ) (18)

Step 2: query and key perform similarity calculation to get the
weights αi,j:

αi,j � qi · kj i, j � 1, 2, 3 . . .( ) (19)

Step 3: The weights αi,j are softmax normalized to get the
normalized weights α′i,j:

α′i,j� softmax αi,j( ), (20)

softmax xi,j( ) � exp xi,j( )∑
j
exp xi,j( ) (21)

Step 4: The normalized weights are weighted and summed with
VALUE to get the final output of a certain IMF component
prediction bi:

bi � ∑
j

αi,j
′ · vj( ) (22)

2.2.3 Weight optimisation - multi-objective
adaptive learning rate salp swarm algorithm

After the prediction of each IMF component sequence, the
salp swarm algorithm (SSA) will find the optimal weights of each
component, and finally weigh the superposition to get the final
short-term wind speed prediction. The salp swarm algorithm
(SSA) simulates the group behavior of salp swarm chains, which
is a novel swarm intelligence optimization algorithm (Mirjalili

et al., 2017). In this study, the sum of IMF components represents
the salp swarm, while the individual intrinsic mode function
(IMF) represents the individual salp. During the foraging
process, the salp swarm will move towards the food in a chain
behavior, and the salp at the head of the chain becomes the leader,
and the subsequent ones become the followers. During the
movement process, the leader carries out global exploration,
while the followers fully carry out local exploration, and this
search pattern greatly increases the precision of optimization.
This foraging process is the process of finding the optimal
weights for each wind speed IMF component in this study,
where important information is given high weights and
information of low relevance is given ground weights.

However, in the SSA, the salp swarm leader is eager to reach
the local optimum from the beginning, which leads to insufficient
searching and sometimes the algorithm has a low convergence
accuracy. Therefore, this paper proposes multi-objective adaptive
learning rate salp swarm algorithm (ASSA). Aiming to solve the
problem of a lack of global awareness in population updating, we
add two different learning operators in leader position updating
and follower position updating respectively, which effectively
solves the problem of the SSA easily falling into local extremes
and improves the optimization accuracy of the algorithm. The
flowchart of multi-objective adaptive learning rate salp swarm
algorithm (ASSA) is shown in Figure 1, The optimization steps
are as follows (Mirjalili et al., 2017):

Step 1: Population initialization. Let the search space be the
Euclidean space of D × N, D represents the dimension of the
space, and N represents the number of populations. The position
of the salp swarm (IMF) is denoted by Xn � [Xn1,Xn2, . . . ,XnD]T and
the position of food (target weight) Fn � [Fn1, Fn2, . . . ,FnD]T is
denoted by n = 1, 2, 3,. . .,N. The upper bound of the search
space is ub � [ub1, ub2, . . . ,ubD] and the lower bounds are lb �
[lb1, lb2, . . . ,lbD] and j = 1, 2, 3,. . .,N. Leaders in the population
are denoted by X1

d and followers by Xi
d, ; i �

2, 3, 4, . . . ,N d � 1, 2, 3, . . . ,D

Step 2: Leader position update. During the movement and foraging
process of the salp swarm chain, the position of the food source is the
target position of all salp swarm individuals, so the leader’s position
update formula is expressed as:

X1
d � Fd + c1 ub − lb( )c2 + lb( ), c3 ≥ 0.5

Fd + c1 ub − lb( )c2 + lb( ), c3 < 0.5
{ (23)

Where: X1
d and Fd are the position of the first salp (leader) and

the position of the food in the d dimension, respectively; ub and lb are
the corresponding upper and lower bounds, respectively. Where c1,
c2, c3 are the control parameters. Eq. 23 shows that the update of the
leader’s position is only related to the position of the food, c1 is the
convergence factor in the optimization algorithm, which plays the
role of balancing the global search and local exploitation, and the
expression of c1 is:

c1� 2e−
41
L( )2 (24)

Where: l is the current iteration number; L is the maximum
iteration number. The convergence factor is a decreasing function

TABLE 5 Model error comparison of four decomposition methods combined
with AtLSTM.

Dataset Measurement model Evaluation indicators

RMSE MAE MAPE

Site1 EMD-AtLSTM 0.3472 0.2673 4.1494

EEMD-AtLSTM 0.1830 0.1445 2.2421

CEEMDAN-AtLSTM 0.4289 0.3472 6.0182

VMD-AtLSTM 0.1813 0.1411 2.1213

Site2 EMD-AtLSTM 0.2323 0.1743 2.7800

EEMD-AtLSTM 0.2058 0.1712 2.8656

CEEMDAN-AtLSTM 0.2296 0.1725 2.7366

VMD-AtLSTM 0.1678 0.1356 2.4595

Site3 EMD-AtLSTM 0.1440 0.1052 1.9368

EEMD-AtLSTM 0.1281 0.1037 1.7263

CEEMDAN-AtLSTM 0.1169 0.1095 1.4721

VMD-AtLSTM 0.1072 0.0856 1.4199

The best values for the evaluation indicators are bolded.
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from 2 to 0. The control parameters c2, c3 are randomnumbers between
0 and 1, which are used to enhance the randomness of X1

d to improve
the global search ability and individual diversity of the chain cluster.

Step 3: Follower position update. During the movement and
foraging process of the salp swarm chain, the followers move
forward sequentially in a chain by influencing each other
between the front and back individuals. Their displacements

conform to Newton’s laws of motion, and the equation for the
follower’s motion displacement is:

X � 1
2
at2 − v0t (25)

Where: t is the time; a is the acceleration, calculated as
a � (vfinal − v0)/t; v0 is the initial velocity, and
vfinal � (Xi

d − Xi−1
d )/t. Considering that in the optimization

FIGURE 4
Circular bar charts comparing the fitting curves and error metrics of the four decomposition methods combined with AtLSTM.
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algorithm, t is iterative, let t = 1 and v0 = 0. Then the following
equation can be obtained:

X � Xi
d − Xi−1

d

2
(26)

Where: i≥ 2; Xi
d,X

i−1
d are the positions of the two salps

immediately connected to each other in the d dimension,
respectively. Therefore, the position of the follower is denoted as:

Xi′
d �

Xi
d − Xi−1

d

2
(27)

where Xi′
d and Xi−1

d are the position of the updated follower and the
position of the pre-updated follower in dimension d, respectively.

However, in the SSA algorithm, the salp swarm leader runs to
the global optimum from the beginning of the iteration, which leads
to insufficient global search, and an occasionally low convergence
accuracy of the algorithm. To address this problem, this paper

proposes the ASSA algorithm. For the problem of lack of global
awareness in the population update, we add two different learning
operators on the leader position update and follower position update
respectively, which effectively solves the problem of the SSA
algorithm easily falling into the local extreme value and improves
the algorithm’s optimization accuracy.

The learning operator for leader position update is added to
make the population search more biased towards large-scale search
in the early stage and focused towards the global optimal solution in
the late stage of the search. The improved salp swarm leader position
update process is:

xi,j � Fd−k·c1 max −min( )c2+min (28)
k � exp −count

iter
( ) (29)

where count is the current iteration number in the range, [0, iter] iter
is the maximum iteration number.

TABLE 6 Comparison of prediction errors based on VMD combined with various deep learning prediction models.

Dataset Measurement model Evaluation indicators Running time(s)

RMSE MAE MAPE

Site1 VMD-SVR 0.3687 0.2902 4.4368 30.8748

VMD-BPNN 0.1916 0.1497 2.3733 220.6907

VMD-RNN 0.1867 0.1435 2.2144 850.7612

VMD-GRU 0.1825 0.1409 2.1041 1990.3243

VMD-LSTM 0.1810 0.1402 2.1066 2100.4321

VMD-AtLSTM 0.1803 0.1401 2.1213 2400.8764

VMD-AtLSTM-SSA 0.1574 0.1212 2.0123 2405.5656

VMD-AtLSTM-ASSA 0.1553 0.1204 1.8353 2410.0908

Site2 VMD-SVR 0.5746 0.4599 8.1926 28.5463

VMD-BPNN 0.2030 0.1581 2.8487 180.6700

VMD-RNN 0.1790 0.1420 2.3702 780.3212

VMD-GRU 0.1723 0.1375 2.3942 1897.5009

VMD-LSTM 0.1707 0.1361 2.3410 1901.3221

VMD-AtLSTM 0.1678 0.1356 2.4595 2287.6543

VMD-AtLSTM-SSA 0.1356 0.1091 1.7755 2293.1112

VMD-AtLSTM-ASSA 0.1319 0.1003 1.6111 2296.9898

Site3 VMD-SVR 0.5082 0.4252 7.1296 26.1276

VMD-BPNN 0.1023 0.0734 1.3104 175.3435

VMD-RNN 0.1004 0.0823 1.3261 809.9987

VMD-GRU 0.1060 0.0851 1.4559 1799.3212

VMD-LSTM 0.1090 0.0764 1.4377 1831.3221

VMD-AtLSTM 0.1062 0.0756 1.4309 2108.8876

VMD-AtLSTM-SSA 0.0758 0.0540 1.0272 2118.7650

VMD-AtLSTM-ASSA 0.0444 0.0273 1.0008 2123.5409

Values of evaluation metrics for VMD-AtLSTM,VMD-AtLSTM-SSA,VMD-AtLSTM-ASSA are bolded.
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For the position update of a salp swarm follower, the individual
position is always affected by the two individuals before and after it,
and the fitness of the two individuals is unknown. Therefore, we
propose that by calculating the fitness values of the two individuals

and restricting the poorly adapted individual, we weaken the
influence of the poorly adapted individual on the individual
update at the current moment. The improved bottles sea squirt
follower position update process is:

FIGURE 5
Curve fitting and regression fitting graphs of VMD combined with each model for prediction.
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xi,j �
1
2

xi,j + k·xi−1,j( ) f xi( )< f xi−1( )
1
2

k · xi,j + xi−1,j( ) f xi( )> f xi−1( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (30)

Where count is the current number of iterations in the range,
[0, iter] iter is the maximum number of iterations, and f(xi) is the
fitness value for each position.

This improved optimization algorithm has more than one
objective function, thus the optimization problem is changed to a
multi-objective optimization problem. We first de-measure the
objective functions to ensure that the objective functions have the
same measure; then average the objective functions, and then
transform the multi-objective optimization problem into a simple
single-objective optimization problem to solve the problem. As follows:

f xi( ) � RMSEi +MAEi( )
2

(31)

Step4: Judge whether the current iteration number count satisfies
the maximum iteration number iter, if so, output the optimal weight
results of each IMF component, otherwise return to Step2.

3 Case study

In this section, to verify the effectiveness of the proposed VMD-
AtLSTM-ASSA model, we experimentally study the model using
wind speed data collected fromwind farms in three different regions.
The VMD-AtLSTM-ASSA model is compared with popular models
in the research field. All experiments are implemented under the
deep learning framework under Python 3.7.3. The configuration of
the emulated platform is Intel(R) Core(TM) i5-8250U CPU @
1.60 GHz 1.80 GHz with 8 GB memory capacity.

3.1 Dataset

The study collected wind speed datasets from three sites on
https://data.nrel.gov/search-page, each with 3,000 data points.
Site1 came from the St. Thomas Wind Station in the Virgin
Islands, the United States; the site 2 wind speed dataset came from

the St. Croix Wind Station, the United States Virgin Islands, and the
site 3 wind speed dataset came from the Woodburn Wind Station in
the United States. At each of the three sites, the wind speed was
collected. The last 500 data points were taken as the test set in all
datasets, while the rest was taken as the training set. The
characteristics of the dataset are shown in Table 1 below.

3.2 Experiments and evaluation indicators

To validate the effectiveness and high accuracy performance of
the proposed hybrid model, three sets of comparative experiments
were conducted. Experiment 1 compared the predictive
performance of AtLSTM with currently popular single deep
learning models, verifying the superior predictive performance of
Attention LSTM. Experiment 2 compared the prediction results of
different wind speed sequence decomposition methods combined
with Attention LSTM, demonstrating the superiority of VMD
followed by Attention LSTM prediction. Experiment 3 compared
the prediction results of different deep learning models combined
with VMD, as well as the performance of models incorporating the
optimization models SSA and ASSA. This experiment validated the
superiority of the VMD-Attention LSTM hybrid model and the
excellent predictive performance and stability of the VMD-
AtLSTM-ASSA model. The details of these three sets of
comparative experiments will be presented in Sections 3.4–3.6.

In the experiments, three different evaluation indicators, root
mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE), were used to present and analyze
the experimental results, and according to the value of the evaluation
Indicators, the model’s prediction performance was evaluated (Jiang
et al., 2021). Their homologous expressions are shown in Table 2, it
is worth noting that N represents the length of a predicted
subsequence and ei and êi stand for the actual and predicted
values, respectively.

3.3 Model parameter settings

In order to verify the validity of the proposed model, the model
parameters used in this study are the same, eliminating the influence

FIGURE 6
Results of ASSA weight searching.
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of model parameter settings on experimental results. The Attention
LSTM is commonly referred to as AtLSTM in the experimental
setting. Table 3 shows the model parameter settings used.

3.4 Experiment 1: validating the accuracy
advantage of the AtLSTMmodel over a single
model

In this experiment, AtLSTM was compared with SVR, BPNN,
RNN, GRU, and LSTM models to validate the exceptional predictive
performance of the proposed model. The evaluation metrics for model
prediction performance are presented in Table 4, with bold font used to
indicate the metrics of the AtLSTM model. Figure 3 provides a visual
representation of the differences in predictive performance between the
proposed model and the four deep learning models.

From Table 4; Figure 3, it is evident that there are variations in
the experimental results across the three stations. Both LSTM and
GRU demonstrate excellent predictive performance, with LSTM
slightly outperforming GRU. By incorporating the Attention
mechanism, AtLSTM exhibits a significant improvement in
predictive performance compared to LSTM. As shown in
Table 4, for different datasets and the five models considered,
AtLSTM consistently achieves lower error values, indicating its
superior predictive ability. Specifically, in the experiments
conducted on the three stations, AtLSTM demonstrates a
maximum reduction of 16.16% in RMSE, 17.56% in MAE, and
19.42% in MAPE when compared to other prediction models,
namely, SVR, BPNN, RNN, GRU, and LSTM. Therefore, it can
be reasonably concluded that AtLSTM possesses superiority in
improving the accuracy of prediction results.

3.5 Experiment 2: Validating the
decomposition advantages of the VMD
model over other decomposition models

To demonstrate the superiority of AtLSTM based on the VMD
decomposition model over other decomposition methods in
improving wind speed prediction accuracy, we compared it with
EMD-AtLSTM, EEMD-AtLSTM, and CEEMDAN-AtLSTM to
validate the superior predictive performance of VMD-AtLSTM.
The evaluation metrics for model prediction performance are
presented in Table 5, with bold font used to indicate the metrics
of the VMD-AtLSTM model. The fitting graph and circular bar
chart in Figure 4 visually display the differences in predictive
performance between VMD-AtLSTM and the other three
decomposition models.

From Table 5, it can be observed that VMD-AtLSTM achieves
the lowest error values across the three locations. Compared to other
decomposition models, namely, EMD-AtLSTM, EEMD-AtLSTM,
and CEEMDAN-AtLSTM, VMD-AtLSTM exhibits maximum
reductions of 57.73%, 59.36%, and 64.75% in RMSE, MAE, and
MAPE values, respectively. In conclusion, it can be reasonably
argued that combining VMD with AtLSTM for wind speed
prediction demonstrates superiority in enhancing short-term
wind speed prediction accuracy compared to other signal
decomposition techniques.

3.6 Experiment 3: validating the predictive
performance advantages of VMD-AtLSTM
and VMD-AtLSTM-ASSA

In order to validate the superior predictive performance of the
proposed VMD-AtLSTM-ASSA model, we first compared the
prediction errors of VMD-SVR, VMD-BPNN, VMD-RNN,
VMD-GRU, and VMD-LSTM models, and then evaluated the
superiority of VMD-AtLSTM. Furthermore, we verified the
effectiveness of incorporating SSA in improving the accuracy of
VMD-AtLSTM. Subsequently, a comparison of prediction errors
was conducted between the VMD-AtLSTM-SSA and VMD-
AtLSTM-ASSA models, ultimately confirming the significant
positive impact of the proposed VMD-AtLSTM-ASSA on
prediction accuracy. Table 6 displays the prediction error metrics
and computational time for the eight hybrid models, while Figure 5
further illustrates the prediction results obtained by each model at
the three stations.

The results from Table 6; Figure 5 indicate that among the
VMD-based hybrid models, VMD-LSTM performs the best in terms
of prediction accuracy, followed by VMD-RNN and VMD-GRU.
The VMD-AtLSTMmodel exhibits improved accuracy compared to
VMD-LSTM, suggesting that incorporating attention mechanism
enhances the predictive accuracy of the LSTM model. Additionally,
it can be observed that VMD-AtLSTM-SSA reduces the RMSE value
by 12.7% compared to VMD-AtLSTM, while VMD-AtLSTM-ASSA
further reduces the RMSE value by 1.33% based on VMD-AtLSTM-
SSA. The proposed model achieves maximum reductions of 57.88%,
58.51%, and 58.63% in RMSE, MAE, andMAPE values, respectively,
compared to other prediction models. In summary, compared to
other VMD-based hybrid models, VMD-AtLSTM improves
prediction accuracy by incorporating attention mechanism into
LSTM and adding ASSA effectively optimizes prediction
accuracy. Figure 6 displays the results of weight searching for
15 IMF components after applying the ASSA algorithm at the
three stations. It can be observed that the importance of IMF
components varies across different datasets. IMF11 in Site1,
IMF7 in Site2, and IMF6 in Site3 are identified as the dominant
modes influencing the prediction results, and therefore assigned
higher weights.

Generally, the complexity of a model is related to its
computational time. Table 6 presents the running time of each
model, revealing that AtLSTM model takes slightly more time to
execute compared to the LSTM model due to the attention
mechanism requiring importance calculation for each slice of the
prediction sequence. However, the inclusion of the optimized model
ASSA only requires approximately 10 seconds. Overall, the VMD-
AtLSTM-ASSA model demonstrates superior predictive
performance.

4 Conclusion and future work

With the rapid development of China’s economy, the
consumption of traditional non-renewable resources (oil, coal,
etc.) is huge, and wind energy, as a renewable and clean energy
source, is becoming an important green power generation method
for the modern power grid. However, due to the non-linear and non-

Frontiers in Energy Research frontiersin.org14

Wang and Liao 10.3389/fenrg.2023.1298088

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1298088


stationary nature of wind speed, this trait seriously affects the safe
and reliable operation of the power system, and finally leads to
problems such as, difficult grid scheduling of wind farms. Therefore,
the development of a high-precision and high-reliability short-term
wind speed prediction model can, on the one hand, provide efficient
and reliable planning for wind power, and on the other hand,
stabilize the power grid and reduce the volatility. Numerous
researchers have continuously invested in the study of wind
speed prediction models, and a steady stream of wind speed
prediction models have been proposed. Some examples of such
models are, physical models based on meteorological data
prediction; statistical models to establish the relationship with
future wind speed function by calculating the historical wind
speed; artificial intelligence prediction models based on training
the model on training samples.

However, the above methods do not work well for fluctuating
and complex data, so this paper proposes a short-term wind speed
prediction model based on a mixture of the VMD model, the
Attention LSTM prediction model, and an improved salp swarm
algorithm (multi-objective adaptive learning rate salp swarm
algorithm). In this study, the VMD model is employed to
decompose the original wind speed sequence into multiple stable
intrinsic mode functions (IMFs). Subsequently, the AtLSTM model
is utilized to individually forecast each IMF component. Finally, the
proposed ASSA algorithm is applied to assign weights to each IMF
component, resulting in a weighted aggregation that yields highly
accurate short-term wind speed predictions.

In this study, by simulating wind speed data from three wind
farms and designing three aspects of comparison experiments, the
experimental results illustrate that the data preprocessing strategy
based on VMD technology can effectively reduce the volatility and
complexity of the wind speed sequence, and significantly improve
the accuracy of short-term high wind speed prediction.
Furthermore, in the prediction module, the Attention LSTM
(AtLSTM) with an incorporated attention mechanism is
introduced. This attention mechanism enables the LSTM network
to analyze the importance of each temporal slice of input data,
assigning higher weight values to slices that have a significant impact
on the prediction results. As a result, the predictive accuracy is
enhanced. Finally, the multi-objective adaptive learning rate salp
swarm algorithm (ASSA) proposed in the weight optimization part
adds two operators on the basis of salp swarm algorithm (SSA) that
effectively solve the problem of local optimal solution, which the
original algorithm is prone to, so as to improve its accuracy in
optimization searching. In summary, by setting up a large number of
different comparison experiments, it has been verified that the
hybrid short-term wind speed prediction model proposed in this
paper based on the multi-objective adaptive learning rate salp swarm
algorithm (ASSA), Attention LSTM, and VMD has fully
demonstrated the accuracy advantage of the model.

In this study, a hybrid VMD-AtLSTM-ASSA short-term wind
speed prediction model with decomposition algorithm and
optimization algorithm is proposed to address the characteristics
of short-term wind speed unsteadiness and nonlinearity and the lack
of prediction accuracy of a single model for complex data. This
proposed model shows excellent prediction performance.
Nevertheless, this model still has more application scenarios and
room for expansion. Firstly, this study mainly focuses on the

processing and prediction of wind speed time series information,
and other data inputs, such as, wind direction information, seasonal
information, and spatial information between wind farms, can be
considered to expand the model’s environmental adaptability.
Secondly, the K value of the variational modal decomposition
algorithm used in this study is determined by judging whether
the center frequency of each IMF is aliased or omitted, also, the α
value is limited to 7,000, so the K value in this paper is selected for
the experimental data in this paper, and it is not adaptive, so the
introduction of optimization algorithms can be considered to
achieve adaptive modal decomposition. Furthermore, within this
research, we have observed that VMD-GRU demonstrates
remarkable predictive accuracy and computational efficiency.
Therefore, in future studies, we plan to introduce additional
advanced models for comparative analysis. Additionally, we aim
to conduct comprehensive optimizations addressing both the
accuracy and model complexity limitations identified in these
models during our research. In addition, the optimization
algorithm for the machine learning algorithm in this study is the
salp swarm algorithm (SSA). Considering the rapid progress in the
research of swarm intelligence algorithms, more efficient swarm
intelligence optimization algorithms can be added to the future
research, and other optimization algorithms can be replaced to
improve the prediction performance of the model. Finally, the
hybrid VMD-AtLSTM-ASSA short-term wind speed prediction
model proposed in this paper is also suitable for other datasets
with complex data, high volatility, and high accuracy requirements,
such as, crude oil prices and nuclear energy consumption.
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