AUTHOR=Wang Lu , Liao Yilan
TITLE=A short-term hybrid wind speed prediction model based on decomposition and improved optimization algorithm
JOURNAL=Frontiers in Energy Research
VOLUME=11
YEAR=2023
URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2023.1298088
DOI=10.3389/fenrg.2023.1298088
ISSN=2296-598X
ABSTRACT=
Introduction: In the field of wind power generation, short-term wind speed prediction plays an increasingly important role as the foundation for effective utilization of wind energy. However, accurately predicting wind speed is highly challenging due to its complexity and randomness in practical applications. Currently, single algorithms exhibit poor accuracy in short-term wind speed prediction, leading to the widespread adoption of hybrid wind speed prediction models based on deep learning techniques. To comprehensively enhance the predictive performance of short-term wind speed models, this study proposes a hybrid model, VMDAttention LSTM-ASSA, which consists of three stages: decomposition of the original wind speed sequence, prediction of each mode component, and weight optimization.
Methods: To comprehensively enhance the predictive performance of short-term wind speed models, this study proposes a hybrid model, VMDAttention LSTM-ASSA, which consists of three stages: decomposition of the original wind speed sequence, prediction of each mode component, and weight optimization. Firstly, the model incorporates an attention mechanism into the LSTM model to extract important temporal slices from each mode component, effectively improving the slice prediction accuracy. Secondly, two different search operators are introduced to enhance the original Salp Swarm Algorithm, addressing the issue of getting trapped in local optima and achieving globally optimal short-term wind speed predictions.
Result: Through comparative experiments using multiple-site short-term wind speed datasets, this study demonstrates that the proposed VMD-AtLSTM-ASSA model outperforms other hybrid prediction models (VMD-RNN, VMD-BPNN, VMD-GRU, VMD-LSTM) with a maximum reduction of 80.33% in MAPE values. The experimental results validate the high accuracy and stability of the VMD-AtLSTM-ASSA model.
Discussion: Short-term wind speed prediction is of paramount importance for the effective utilization of wind power generation, and our research provides strong support for enhancing the efficiency and reliability of wind power generation systems. Future research directions may include further improvements in model performance and extension into other meteorological and environmental application domains.