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With the large-scale renewable energy integrated into the distribution grid, the
grid’s regulating ability and disturbance tolerance are weakening. When
partitioning demand-side resources, it is necessary to enhance resilience to
ensure the reliability of electric power. This paper proposes a fast-partitioning
method that considers resilience, structure, and functionality to adapt to the
evolving requirements of the distribution system. Specifically, the comprehensive
partition index system is constructed with the resilience assessment index
reflecting the ability of partitions to withstand and mitigate the effects of faults,
the modularity index based on electrical distance, and regional power balance
indexes. Meanwhile, a modified genetic algorithm is proposed to calculate the
comprehensive partition index. The modified algorithm first uses a sensitivity
matrix to perform initial partitions and construct initial populations. Then, it
utilizes a triangular network adjacency matrix for chromosome encoding,
significantly reducing the algorithm’s search space and enhancing partitioning
efficiency. Finally, the applicability and effectiveness of the proposed method are
verified through simulation analysis of the IEEE 28-node system.
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1 Introduction

With the large-scale renewable energy integrated into the distribution grid, the
unpredictability and time-varying nature of various distributed energy sources and loads
have presented challenges for the planning, operation, and dispatch in distribution networks
(Mi et al., 2023). In terms of grid operation, the power supply mode in the electrical system
has transitioned from “generation following demand” to “interactive generation and
demand” (Luo et al., 2021). Traditional distribution network planning typically focuses
on radial supply networks from a single power source (Khezri et al., 2022). However, in the
context of a high percentage of new energy access, multi-source supply and the uncertainty
in renewable energy output have made distribution network planningmore complex (Fu and
Zhou, 2023). Regarding grid dispatch, distributed energy sources have small individual
capacities and are dispersed, and they are constrained by admission rules, limiting their
flexibility to participate in grid dispatch actively (Wen et al., 2021). This limitation can lead
to resource wastage due to insufficient system accommodation capacity (Zhang et al., 2023).
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Traditional centralized control strategies need to shift towards
decentralized control, considering the integration of distributed
energy sources and loads on urban power grids (Cao et al.,
2022). This change has led to a need for demand-side resources
partitioning Demand-side resources partitioning primarily involves
the combination of distributed energy devices to facilitate self-
organization and self-management within partitions.
Simultaneously, interregional coordination is achieved through
grid dispatch and management (Wei, 2015). Presently, there has
been some scholarly inquiry into demand-side resource partitioning
strategies. The current research on demand-side resources
partitioning primarily revolves around addressing two key
challenges: partitioning criteria and partitioning algorithms. The
process typically begins with the establishment of partitioning
criteria based on specific objectives. Subsequently, appropriate
partitioning algorithms are selected to iterative indexes for
partitioning criteria, ultimately achieving the best possible
partitioning solution. The criteria for partitioning typically
revolve around assessing the degree of interdependence among
partitions. Specifically, they emphasize weaker interdependencies
between partitions to promote specialization and stronger intra-
partition connections to encourage collaboration. Partitioning
algorithms are often determined by the characteristics of the
partitioning criteria’s indicators, with a primary focus on
clustering analysis and optimization algorithms. Blondel et al.
(2008) defined the electrical distance between load nodes as the
weights of the graph edges and utilized a spectral clustering
algorithm to perform cluster partitioning. Zhao et al. (2021)
assessed the quality of power grid partitioning using electrical
modularity and reactive power reserve verification as two
evaluation criteria. Moreover, an improved k-means clustering
algorithm is proposed to analyze clusters based on feature
sequences after dimension reduction. Wang et al. (2021)
introduced the complex network modularity function concept
and utilized the fast unfolding clustering algorithm to partition
photovoltaic power clusters. The application of hierarchical
clustering algorithms for demand-side resources partitioning
offers the advantages of simplicity and relatively efficient
computation. However, it is essential to recognize that this
method frequently needs more robust global search capabilities
and is prone to get trapped in local optima.

Demand-side resources partitioning often requires considering
the optimality of multiple criterion indicators. Optimization
algorithms have mature applications in solving multi-objective
optimization problems in power systems. Some scholars have
applied these algorithms to solve demand-side resource
partitioning problems. Wu et al. (2022) introduced an energy
bipartite modularity index that quantifies the energy coupling
degree between partitions. By integrating this index with
predictive scenarios, dynamic partitioning was achieved using a
multi-objective ant colony algorithm. Liu et al. (2022) applied a
network-based fast-partitioning algorithm to perform reactive and
active power partitioning in distribution grids. Pan et al. (2021)
utilized the Louvain community detection algorithm to generate
double clusters focused on combined heat and power partitions. Liu
et al. (2021) established gain and loss functions based on modularity
and stability indices. These functions served as the basis for label
propagation, and an improved label propagation algorithm was used

for dynamic partitioning in distribution grids. Zheng et al. (2021)
enhanced modularity increments by considering distributed
generation (DG) integration locations and improved the
modularity increment matrix based on reactive power/active
power-voltage sensitivity. They employed an improved Fast-
Newman algorithm for grid partitioning. Ding et al. (2021)
developed an extended bi-level planning model considering
cluster division and solved it using an improved hybrid genetic
algorithm. Bi et al. (2019) combined the cluster accommodation
capacity index with the modularity index and proposed a heuristic
cluster division algorithm that integrates switch statuses and genetic
algorithms. While traditional optimization algorithms are suitable
for solving multi-objective optimization problems with global solid
search capabilities, they often exhibit slower convergence rates,
potentially increasing system control times and yielding unstable
search results.

Furthermore, existing research predominantly considers a single
index, such as modularity or cluster accommodation capacity, with
only a limited number of studies exploring the integration of these
metrics. Consequently, current partitioning criteria are only able to
meet the basic structural and functional requirements of
partitioning. With the widespread and high-proportion
integration of new energy sources, partitioning requirements have
expanded beyond structural strength and functionality. To enhance
the management capabilities and disturbance resilience of
distribution networks, there is also a growing need to incorporate
considerations of resilience for partitioning. Grid resilience, system
structure, and the uncertainties of distributed energy outputs all
influence the reliability and economics of partitioning. Currently,
there is no established theoretical framework for partitioning
methods that specifically address the enhancement of grid resilience.

Therefore, building upon existing research, this paper proposes a
fast-partitioning method for demand-side resources based on grid
resilience assessment. The resilience assessment index is quantified
and incorporated into constructing a comprehensive partition index
system, modularity index, and the active and reactive power balance
index. This integration aims to enhance the resilience, structural
strength, and functionality of the distribution system, ensuring the
safe and stable operation of the grid. Furthermore, a modified
genetic algorithm is proposed to obtain optimal partitioning
results. The modified algorithm is more suitable for calculating
comprehensive partition index and can improve search efficiency.
Ultimately, this method enhances the resilience of the distribution
system and achieves weak coupling between partitions to facilitate
management while promoting cooperation among nodes within
each partition.

2 Comprehensive partition index
system

The selection of the comprehensive partition index system is
determined by the partitioning objectives and principles. The
partitioning principles involve considering the complementarity
and interrelation of nodes within a cluster while ensuring a
rational allocation of resources within the partition and
maintaining the coupling relationships and voltage regulation
capability between nodes. This is specifically reflected in the
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method by adhering to the following principles: the logical principle,
which dictates that there should be no isolated nodes within the
partition, and there should be no overlapping nodes between
partitions, ensuring connectivity among nodes; the structural
principle, which requires close connections within the partition
in terms of geographical or electrical coupling, while maintaining
sparse connections between different partitions; and the functional
principle, emphasizing that the characteristics of a partition are
expressed through the combined characteristics of its individual
nodes, requiring collaborative capabilities among the nodes within
the partition to achieve more efficient system operation. In this
paper, while ensuring logical principles, a comprehensive partition
index system is constructed from three perspectives: resilience,
structural, and functionality. In terms of resilience, the
distribution system aims to effectively identify weak parts,
enhance each partition’s self-healing capability and speed, and
facilitate monitoring partitions with lower resilience. This ensures
the safety and stability of the system. The assessment index is
weighted by self-healing rate, self-healing speed, voltage violation
rate, and load rate. On the structural property, the system fosters
strong electrical coupling among nodes within partitions and weak
coupling between partitions to facilitate operational management.
This is evaluated using the modularity index. Regarding
functionality, the system maximizes the coordination between
nodes within each partition, enhancing active power
complementarity and matching while improving reactive power
balance. This is assessed using the active and reactive power
balance indexes. The comprehensive partition index system based
on the grid resilience assessment proposed in this paper is shown in
Figure 1.

2.1 Resilience assessment index

Resilience of the power system refers to the ability of the system
to withstand the impact of faults and quickly recover to a regular

supply state. To effectively assess grid resilience, this paper
constructs a comprehensive resilience assessment index based on
four aspects: self-healing rate, self-healing speed, load rate, and
voltage violation rate.

2.1.1 Self-healing rate
The self-healing rate reflects the system’s ability to effectively

withstand the impact of faults and maintain a high power supply
level. It is measured as the percentage of remaining power supply
during a fault event. A higher self-healing rate indicates a more
robust ability of the system to resist the impact of faults. Different
types of loads have varying requirements for power reliability and
quality based on their importance, so loads are categorized into
primary, secondary, and tertiary loads. Therefore, to account for the
total power restored during load recovery within a node’s
jurisdiction for different load levels, the self-healing rate Hr is
defined as follows:

Hr � ∑Tf
t�1 τ1P1,t + τ2P2,t + τ3P3,t( )∑Tf
t�1 τ1Pini

1,t + τ2Pini
2,t + τ3Pini

3,t( ) (1)

In the equation, τ1, τ2 and τ3 represent the weighted coefficients
for primary load, secondary load, and tertiary load, respectively; t is
the moment when the fault occurs; P1,t , P2,t and P3,t denotes the
actual restored power of the load after the fault, while Pini

1,t , P
ini
2,t and

Pini
3,t represent the original power of the load before the fault; Tf

represents the duration of the fault.

2.1.2 Self-healing speed
The self-healing speed reflects how quickly a system recovers

from a fault event to return to its regular power supply level. A
higher self-healing speed indicates a faster recovery speed and,
consequently, a more robust overall system resilience. After a
fault occurs, the duration of the fault event is divided into three
periods: fault location time, recovery time for the non-fault zone,
and repair time for the fault zone. Locals that did not experience a
fault would have fully recovered their power supply after the fault
location time and the recovery time for non-fault segments had
passed. At this point, all recoverable loads would have been restored.
Therefore, the self-healing speed Htime for node i is defined as
follows:

Htime � 1 − T1,i + T2,i

max T1,i + T2,i( ) (2)

In the equation, T1,i represents the fault location time for node i;
T2,i represents the non-fault segment recovery time for node i;
max(T1,i + T2,i) represents the sum of the maximum fault location
time and non-fault recovery time among all nodes in the partition.

2.1.3 Load rate
The operational conditions of electrical system node equipment

under high load rates increase system losses and directly impact the
power supply quality, economic efficiency, and system safety. If
these devices fail, it can result in a widespread power outage in the
electrical system. These high-load nodes are critical points and
potential weak links in the system. The load rate can be defined
using the following formula:

FIGURE 1
Comprehensive partition index system based on resilience
assessment.
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Hload � 1 − 1
T
∑T
t�1

Pi,t

PN ,i
(3)

In the equation, PN ,i is the rated active power of node i; Pi,t is the
actual active power of node i at time t. T is the time duration of the
typical time-varying scenario.

2.1.4 Voltage violation rate
Voltage drop is an important indicator used to measure power

quality. It is required that the voltage drop does not exceed ±5% of
the rated voltage to ensure good power quality. Excessive voltage
drop can impact the user experience and pose safety risks to the
system. The formula for calculating the voltage violation rate is as
follows:

Hv � 1 − 1
T
∑T
t�1

Ui,t − UN ,i

∣∣∣∣ ∣∣∣∣
UN ,i

(4)

In the equation, UN ,i is the rated voltage of node i; Ui,t is the
actual voltage of node i at time t.

The resilience assessment index can be calculated for a single
node by combining the four indexes with their respective weights. It
can be expressed as follows:

hi � μ1Hr + μ2Htime + μ3H load + μ4Hv (5)
In the equation, hi is the resilience assessment index of node i.

μ1, μ2 , μ3 and μ4 are weight coefficients, where the sum of all weight
coefficients equals 1.

Categorize all nodes within the partitions into three classes
based on their vulnerability: primary, secondary, and tertiary
vulnerable nodes. Primary vulnerable nodes are those whose fault
results in the most severe electric system losses and significantly
impact the system’s power supply. Secondary vulnerable nodes are
nodes of significant importance, with their fault substantially
affecting the system. Tertiary vulnerable nodes are relatively
important in the system, with their failure having a moderate
impact. Assign weights to these defined node types based on
their relative significance. Then, using the corresponding weights,
calculate the partitions’ resilience assessment index and the
comprehensive resilience assessment index. The expressions are
as (6)–(7). A higher partitioning resilience assessment index
indicates a more vital ability to withstand fault impacts within
the partitions. In comparison, a lower index suggests that the
partition is weak and requires focused monitoring to reduce
operational risks in the grid.

Ha � 1
n

∑n
i�1,i ∈Ⅰ

εIhi + ∑n
i�1,i ∈Ⅱ

εⅡhi + ∑n
i�1,i ∈Ⅲ

εⅢhi⎛⎝ ⎞⎠ (6)

ΦH � 1
m
∑m
a�1

Ha (7)

In the equation, εI, εⅡ and εⅢ are the weight coefficients for
primary, secondary, and tertiary vulnerable nodes, respectively.
Ha represents the resilience assessment index of partition a. n is
the number of nodes within the partition. m is the number of
partitions. ΦH represents the comprehensive resilience
assessment index.

2.2 Modularity index

Girvan and Newman introduced the concept of modularity to
measure the structural strength of a complex network, assess the
quality of network divisions, and determine the optimal number of
partitions. In this paper, modularity is employed to evaluate the
structural strength of the distribution network partitions. The
definition of modularity is as follows:

Θ � 1
2b

∑
i

∑
j

Aij − kikj
2b

[ ]·η i, j( ) (8)

In the equation: A represents the edge weight matrix of the
network. Aij is the edge weight between node i and node j. ki is the
sum of all edge weights for node i. b is the sum of all edge weights in
the system. If node i and node j are in the same partition, then
η(i, j) � 1; otherwise, it is 0.

Based on the calculation characteristics of Eq. 8, 0≤Θ≤ 1 is the
range of modularity values. As the modularity value approaches its
upper limit, it indicates that the partitions have stronger structural
cohesion. Therefore, the optimal partitioning result can be selected
by comparing the structural strength under different partitioning
methods.

This paper defines the edge weight matrix as determined by
sensitivity to reflect the electrical distance between different nodes.
The sensitivity relationship between voltage and reactive power can
effectively measure the degree of electrical coupling between two
nodes. The sensitivity relationship can be expressed as follows:

ΔVi � SVQΔQj (9)

In the equation, SVQ is the sensitivity matrix of voltage to
reactive power, which is generally a constant matrix. ΔQj and
ΔVi represent the changes in reactive power at node j and
voltage magnitude at node i, respectively. The electrical distance
influence factor between nodes is defined as:

Dij � lg
SVQ j, j( )
SVQ i, j( ) (10)

In the equation,Dij is the electrical distance influence factor. The
primary significance of the electrical distance influence factor is its
indication of how external nodes affect a given node. A higher value
suggests a more minor impact between two nodes, indicating a
greater electrical distance between them. If there are n nodes in the
network, the electrical distance between node i and node j is
expressed as follows:

lij �
��������������������������������������
Di1 − Dj1( )2 + Di2 − Dj2( )2 +/ + Din − Djn( )2√

(11)

In modularity settings, the edge weight relationship satisfies
0≤Aij ≤ 1, and smaller electrical distance corresponds to larger edge
weights. Set the edge weights Aij as follows:

Aij � 1 − lij
max l( ) (12)

In the equation, lij represents the electrical distance between
node i and node j, while max(l) represents the maximum electrical
distance within the entire partition.
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2.3 Active power balance index

As the penetration of new energy sources continues to increase,
it becomes essential to consider the time-varying output
characteristics of nodes and their combinations when
partitioning. This allows for the full utilization of partitioning
autonomy, ensuring that partitions can achieve source-load
complementarity or source-source complementarity.
Simultaneously, it helps mitigate the volatility and intermittency
of new energy source output. The definitions for assessing the
partitions’ active power balance in different time-varying
scenarios, as well as the comprehensive active power balance
index, are expressed as follows:

αP,a � 1 − 1
T
∑T
t�1

Ps,t

∣∣∣∣ ∣∣∣∣
max Ps,t

∣∣∣∣ ∣∣∣∣( ) (13)

ΦP � 1
m
∑m
a�1

αP,a (14)

In the equation,m represents the total number of partitions. αP,a
represents the active power balance degree for partition a. Ps,t

represents the net active power for partition a at time t. ΦP is
the comprehensive active power balance index.

2.4 Reactive power balance index

Each partition has significant reactive power requirements in
complex electrical systems with large-scale new energy source
integration. Therefore, each partition should strive to achieve a
local reactive power balance to minimize the cross-partition
transmission of reactive power and fully utilize the
accommodation capability to reduce unnecessary losses. The
definitions for assessing the partitions’ reactive power balance, as
well as the comprehensive reactive power balance index, are
expressed as follows:

αQ,a �
1 − 1

T
∑T
t�1

Qmax

Qneed
Q max ≤Qneed

100%Qmax >Qneed

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

ΦQ � 1
m
∑m
a�1

αQ,a (16)

In the equation, αQ,a represents the reactive power balance
degree for partition a. Qmax represents the maximum reactive
power that can be supplied, while Qneed represents the reactive
power demand within the partition. ΦQ is the comprehensive
reactive power balance index.

Integrating all the indexes above, the comprehensive partition
index based on grid resilience assessment can be represented as
follows:

 � λ1ΦH + λ2ΦP + λ3ΦQ + λ4Θ (17)

In the equation, λ1, λ2, λ3 and λ4 are weighting coefficients, and
their sum equals 1. A more extensive comprehensive partition index
indicates stronger grid resilience, better active and reactive power
balance, and a more robust partition structure. The ultimate goal is

to ensure that the index values for each partition are relatively high,
resulting in optimal partitions.  represents the comprehensive
partition index.

3 Fast-partitioning algorithm based on
modified genetic algorithm

Due to the broad dimensions of the comprehensive partition
index, conventional solving methods often struggle to balance all the
indexes, leading to lower solution accuracy or susceptibility to local
optima. Therefore, this paper proposes a modified genetic algorithm
for demand-side resource partition to better adapt to the rapid
calculating of the comprehensive partition index.

Unlike conventional algorithms, the genetic algorithm is based
on biological principles and mimics biological evolution under
natural selection. It can effectively utilize global information for
global search and gradually approach the global optimum with
increasing iterations. When applied to partitioning problems,
genetic algorithms typically use the comprehensive partition
index as the fitness function and perform a global search for
partition results. The algorithm determines the number of
partitions, eliminating the need for manual configuration.
However, considering the complex nature of network structures
and the impact of changes in the number of partitions and
combinations of nodes within partitions on partitioning
performance, traditional genetic algorithms may struggle to
rapidly and accurately find the global optimum. This paper
introduces improvements to the traditional genetic algorithm to
adapt to demand-side resource partitioning, improve search
efficiency, and reduce iteration time.

The chromosome encoding format of the genetic algorithm is
first modified. The adjacency matrix is constructed based on the
network nodes’ connectivity status, considering the connectivity
constraints within partitions. The existing chromosome encoding
directly utilizes the adjacency matrix, which, while capable of
representing the connectivity between nodes, encounters non-
unique expressions for disconnected states between nodes. This
results in a higher number of ineffective iterations during the
crossover and mutation processes, leading to prolonged

FIGURE 2
Chromosome encoding method.
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algorithm runtime. Therefore, in this paper, we opted to retain only
the upper triangular region of the adjacency matrix. This not only
reflects the connectivity status between nodes but also simplifies the
crossover and mutation iterative processes. Furthermore, This
encoding format allows each individual to reflect the current
node’s connectivity with the subsequent nodes. It reduces the
number of elements by half compared to the original encoding
method. It significantly shrinks the search space for the genetic
algorithm thereby reducing search time. Additionally, unlike
traditional genetic algorithms, this method does not merge nodes,
making it suitable for searching irregular partitions. As shown in
Figure 2, the network’s adjacency matrix represents the connectivity
between nodes. The matrix contains only 0 and 1, where 0 and
1 indicate whether two nodes are disconnected or connected,
respectively. During the encoding process, the algorithm
continuously searches for 1 and performs random modifications
(changing between 0 and 1) to represent whether the current node is
disconnected from or connected to the subsequent node. The
individual obtained after the modifications represents the results
of a new partition.

Furthermore, improvements have been made in the selection of
the initial population. In genetic algorithms, the choice of the initial
population significantly impacts algorithm performance and
convergence speed. Traditional genetic algorithms generate the
initial population with randomness, which can lead to the
optimization process getting stuck in local optima. Therefore, this
paper creates the initial partition based on the sensitivity matrix of
load nodes to generator nodes. The initial population is constructed
according to the initial partition results. Specifically, generator nodes
most sensitive to a load node are merged into the same partition as
that load node. This process is repeated for all load nodes and their

corresponding generator nodes, resulting in the initial partition.
Within each partition, the control capability of generator nodes over
load nodes is fully leveraged. This ensures the ability of each region
to supply both active and reactive power while effectively resisting
the impact of faults. Hence, the comprehensive partition index for
the initial partitions is relatively high. The chromosomes of the
initial individuals are coded according to the above method, and
then 1 in the coding matrix is randomly modified N times with the
value of 0 or 1. This results in an initial population with the number
of populations of N. This approach yields an initial population with
higher fitness, which can accelerate algorithm convergence and
enhance global search capabilities to avoid getting trapped in
local optima. The sensitivity relationship between load nodes and
generator nodes is represented in Eq. 18. The partitioning algorithm
flow chart is illustrated in Figure 3.

ΔVload � −L−1LLGΔVG � SLGΔVG (18)

In the equation, ΔVload represents the voltage variation at the
load node. ΔVG represents the voltage variation at the generator
node. L represents the Jacobian matrix in the PQ decomposition
method. LLG is the mutual admittance between the generator bus
and the load bus. SLG is the sensitivity matrix of the load concerning
the generator node.

In order to improve the convergence speed and global search
capability of the genetic algorithm, this paper adopted the concept of
adaptive genetic algorithms, where the crossover rate and mutation
rate are adjusted adaptively. The adjustment formula follows the
following principles: If an individual is of lower quality, meaning its
fitness value is less than the average fitness value, it is assigned a
higher crossover rate and a lower mutation rate. If an individual is of

FIGURE 3
The flow chart of the partitioning algorithm.
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higher quality, meaning its fitness value is greater than the average
fitness value, its corresponding crossover and mutation rates are
determined based on its iterative state. Considering that the iteration
count increases as the iterations progress, the patterns of individuals
becomemore similar, meaning the partitioning results becomemore
similar, and excessively high crossover rates lose their significance.
In this case, mutation rate should be increased appropriately to
enhance the algorithm’s local search capabilities. This paper uses the
adjustment method proposed by Srinivas et al., and the specific
formula follows.

pc �
pc,max −

pc,max − pc,min

I max
( )If > f avg

pc,max f ≤ f avg

⎧⎪⎪⎨⎪⎪⎩ (19)

pm �
pm,min +

pm,max − pm,min

I max
( )If ′> f avg

pm,max f ′≤ f avg

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (20)

In the equation: pc and pm represent the crossover rate and
mutation rate, respectively. pc,max , pc,min, pm,max , and pm,min are the
maximum and minimum values for crossover rate and mutation
rate. I represents the number of iterations. I max is the maximum
number of iterations. f represents the greater fitness value of the two
individuals involved in the crossover operation. f ′ represents the
individual fitness value involved in the mutation operation. f avg is
the average fitness of the population.

4 Case study

This paper validates the applicability and effectiveness of the
partitioning method using the IEEE 28-node test system. The
system consists of 28 nodes, with a maximum system load of
9.285 MW. Primary loads are categorized as nodes 1, 2, 4, 5, 6, 8,
9, 12, 13, 14, 23, 24, 27, and 28. Nodes 3, 7, 10, 15, and 16 are
categorized as secondary loads. The remaining nodes are

categorized as tertiary loads. The weighting coefficients for
primary, secondary, and tertiary loads are 10, 5, and 1,
respectively. The weighting coefficients for primary,
secondary, and tertiary nodes are 0.6, 0.3, and 0.1,
respectively. Node 7 has a photovoltaic capacity of 600 kW,
while all other photovoltaics have a capacity of 300 kW each.
Node 5 has a wind farm capacity of 1.2 MW, Node 9 has a wind
farm capacity of 400 kW, and the remaining distributed wind
turbines have a rated capacity of 300 kW each. It is assumed that
the rated wind speed for the wind turbines is 12 m/s, the cut-in
wind speed is 2.8 m/s, and the cut-out wind speed is 25 m/s. To
verify the proposed partitioning method’s feasibility,
23 December 2020, was selected as a typical scenario for
analysis. The power output of each node is shown in
Figure 4, with a noticeable reverse active power flow around
noon, indicating the highest penetration of new energy sources
in the urban distribution network.

4.1 Partitioning results

The decision for demand-side resource partitioning is made
using the fast partitioning method proposed in this paper. Firstly,
the sensitivity matrix is calculated for the selected node system to
identify the load nodes most sensitive to each generator node,
forming the initial partition. In the initial partition, each
partition contains only one generator node. Then, based on the
initial partition results, 20 random modifications are applied to the
0 and 1 in the initial individual adjacency matrix upper triangular to
create an initial population of size N = 20. The number of iterations
is set to g = 500, the crossover rate pc � (0.5, 0.9), and the mutation
rate pm � (0.4, 0.6). Finally, the fitness function calculates the fitness
of each generation’s best individual, ensuring algorithm
convergence. All the weights for the selected metrics are set to
0.25 to avoid biasing the partitioning results towards a specific
performance index due to different weight combinations in the
comprehensive partition index. This approach aims to achieve a
balance between different performance indexes and promote
collaboration within partitions while maintaining weak coupling
between them.

FIGURE 4
Time-varying power curves at each node.

FIGURE 5
Evolutionary curve of fitness.
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FIGURE 6
Optimal partitioning structure diagram based on modified genetic algorithm.

TABLE 1 Optimal partition result based on modified genetic algorithm.

Partitions Bus Ha αP,a αQ,a Θ

1 1、2、3、4、5、6、16、17、18、19、11 0.985 1 0.959 0.771

2 7、8、9、10、22、23、24、27、28 0.932 1 0.959

3 12、13、14、15 0.925 1 0.960

4 20、21 0.984 1 0.959

5 25、26 0.992 1 0.962

FIGURE 7
Partitioning structure diagram based on the k-means algorithm.
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The fitness evolution curve of the modified genetic algorithm
is shown in Figure 5. It can be observed that the initial
population obtained based on the sensitivity matrix for initial
partitioning has relatively high fitness values even with a small
number of iterations. This significantly enhances convergence
speed and partitioning efficiency while improving the
algorithm’s global optimization capability. After
145 iterations, the fitness curve gradually stabilizes. At this
point, the individuals in the population represent the optimal
partition, and based on their chromosome encoding, the optimal
partitioning result can be directly obtained. The optimal
partitioning structure is shown in Figure 6.

As shown in this figure, the optimal partitions obtained by the
modified genetic algorithm have no isolated nodes within each
partition, and there are no overlapping nodes between partitions,
which adheres to the logical principles of partitioning. Additionally,
the relatively low number of partitions is advantageous for
monitoring and adjusting each partition. The partition index
results based on the modified genetic algorithm are presented in
Table 1.

Based on this table, it is apparent that the same indexes are
relatively balanced across the different partitions. The high
regional resilience assessment index suggests good self-
recovery capability and relatively quick recovery times in the
event of a fault. Each partition also exhibits strong reactive
power supply capacity and active power balance. The modularity
index is relatively high, which suggests that the partitioning
results perform well in terms of network structure and electrical

coupling, aligning with both the logical and structural principles
of partitions.

4.2 Comparison of different algorithms

A comparison was made with the k-means algorithm to
demonstrate the reliability and superiority of the modified
genetic algorithm proposed in this paper. The demand-side
resource partitioning structure diagram based on the k-means
algorithm is shown in Figure 7, and the partition index results
are presented in Table 2. Compared to the results obtained with
the modified genetic algorithm in Figure 6, the regions in
Figure 7 contain isolated nodes, which are not conducive to
collaboration between nodes. There are also more regions,
making monitoring more complex for each partition. As
indicated in Table 2, the active and reactive balance is high in
SEC-1, SEC-2, SEC-3, SEC-4, SEC-5, SEC-6, and SEC-11 but
lower in the remaining partitions. The partition resilience
assessment index is very low in SEC-9. This partitioning
result demonstrates that using the k-means algorithm for
demand-side resource partitioning decisions cannot effectively
balance various indexes. Partial partition index values are too
low, with poor complementarity and node collaboration. This
approach does not fully leverage the advantages of partitions and
is not conducive to the safe and stable operation of the grid.

Using the modified genetic algorithm proposed in this paper for
demand-side resources partitioning decisions gives better results
than the k-means algorithm. This is because the k-means
algorithm’s initial selection of cluster centers and the randomness
in initial cluster assignment can easily lead to the algorithm getting
stuck in local optima.

To further validate the superiority of the modified genetic
algorithm proposed in this paper, the comprehensive partition
index is used to compare the partitioning results of the modified
genetic algorithm with those of the traditional genetic algorithm
and the k-means algorithm, as shown in Table 3. This table
shows that the modified genetic algorithm had the shortest
iteration time, and the comprehensive partition index
improved by 17.6% and 12.6% compared to the other two
methods, respectively. Compared to the traditional genetic
algorithm, the modified genetic algorithm showed significant
improvements in the comprehensive resilience assessment
index, modularity index, comprehensive active index, and
comprehensive reactive power balance index. In summary, it
is evident that the modified algorithm has more robust global
search capabilities after the enhancements, effectively avoiding
local optima, and it also demonstrates a faster iteration speed
and higher partitioning efficiency.

TABLE 2 Partition structure diagram based on k-means algorithm.

Partitions Bus Ha αP,a αQ,a Θ

1 1、2 0.987 1 1 0.703

2 3、4 0.890 0.878 0.904

3 5、16 0.988 1 1

4 6、17、18 0.986 1 1

5 7 0.977 1 1

6 8、9、10 0.947 0.849 0.874

7 11、12 0.951 0.588 0.606

8 13、14、15 0.666 0.512 0.527

9 19、20、21 0.266 0.712 0.734

10 22、23、24 0.907 0.601 0.619

11 25、26 0.992 1 0.962

12 27、28 0.631 0.613 0.631

TABLE 3 Comparison of comprehensive partitioning indexes from different algorithms.

Algorithms ΦH ΦP ΦQ Θ  Iteration time/s

Traditional genetic algorithm 0.723 0.751 0.808 0.715 0.749 9.552

K-means algorithm 0.815 0.855 0.813 0.703 0.769 9.683

Modified genetic algorithm 0.968 0.959 1 0.771 0.925 6.557
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5 Conclusion

Demand-side resources partitioning simplifies power system
planning and analysis, operation scheduling, and weak parts
monitoring and has a wide range of application scenarios.
However, due to the extensive and high-proportion integration
of new energy sources into the distribution network, the
regulating ability and disturbance tolerance of the grid
becomes weaker, and the weak parts in the distribution system
increase significantly. It is necessary to consider the resilience in
demand-side resource partitioning to ensure the reliability of
electric power. As traditional partitioning methods have shown
limited effectiveness, this paper proposes a method for fast
partitioning based on resilience, structure, and functionality.
The method involves constructing a comprehensive partition
index using the resilience assessment index, modularity index,
and power balance indexes and then solving it using a modified
genetic algorithm. The proposed comprehensive partition index
effectively assesses grid resilience, ensures the grid’s structural
strength and functional characteristics, and delivers strong
performance in grid planning, operation, and scheduling. The
proposed modified partitioning algorithm exhibits global solid
search capabilities, faster iteration speeds, and fewer iterations.
Above all, the proposed fast-partitioning method can effectively
address the challenges posed by the large-scale integration of new
energy sources into the distribution network to enhance the
grid’s ability to withstand and mitigate faults and reduce
operational risks.

As the penetration rate of distributed resources increases, further
research is needed to explore dynamic partitioning methods that can
respond in real-time to distributed resource output.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

YK: Data curation, Formal Analysis, Methodology, Supervision,
Writing–original draft, Writing–review and editing. SY: Data curation,
Formal Analysis,Methodology, Supervision,Writing–original draft.MD:
Data curation, Formal Analysis, Methodology, Writing–original draft.
YZ: Data curation, Formal Analysis, Investigation, Writing–review and
editing. ZD: Conceptualization, Formal Analysis, Software,
Writing–original draft. TZ: Data curation, Methodology, Software,
Writing–review and editing. JS: Conceptualization, Data curation,
Methodology, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study
received funding from the Science and Technology Project of State
Grid Jiangsu Electric Power Co., Ltd. The authors gratefully
acknowledge the support of the Science and Technology Project
of State Grid Jiangsu Electric Power Co., Ltd. (J2022045).

Conflict of interest

Authors YK, SY, MD, YZ, ZD, TZ, and JS were employed by
Marketing Service Center of State Grid Jiangsu Electric Power
Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bi, R., Liu, X., Ding, M., Fang, H., Zhang, J., and Chen, F. (2019). Renewable energy
generation cluster partition method aiming at improving accommodation capacity.
Proceeding CSEE 39 (22), 6583–6592. doi:10.13334/j.0258-8013.pcsee.182512

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding
of communities in large networks. J. Stat. Mech. theory Exp. 2008 (10), P10008. doi:10.
1088/1742-5468/2008/10/P10008

Cao, Y., Zhou, B., Chung, C. Y., Shuai, Z., Hua, Z., and Sun, Y. (2022). Dynamic
modelling and mutual coordination of electricity and watershed networks for spatio-
temporal operational flexibility enhancement under rainy climates. IEEE Trans. Smart
Grid 14 (5), 3450–3464. doi:10.1109/TSG.2022.3223877

Ding, M., Zhang, Y., Bi, R., Hu, D., and Gao, P. (2021). Coordinated grid-power
sources expansion planning for distribution network considering cluster partition.
Proceeding CSU-EPSA 33 (01), 136–143. doi:10.19635/j.cnki.csu-epsa.000487

Fu, X., and Zhou, Y. (2023). Collaborative optimization of PV greenhouses and clean
energy systems in rural areas. IEEE Trans. Sustain. Energy 14 (1), 642–656. doi:10.1109/
TSTE.2022.3223684

Khezri, R., Mahmoudi, A., and Aki, H. (2022). Optimal planning of solar photovoltaic and
battery storage systems for grid-connected residential sector: review, challenges and new
perspectives. Renew. Sustain. Energy Rev. 153, 111763. doi:10.1016/j.rser.2021.111763

Liu, L., Wu, T., Wong, H., Zheng, W., and Xu, Q. (2021). Dynamic partitioning
method of distribution network based on label propagation. Electr. Power Autom. Equip.
41 (12), 36–44. doi:10.16081/j.epae.202111020

Liu, R., Wu, K., Feng, L., Liang, R., and Wang, X. (2022). Voltage partition coordinated
optimization control of active distribution network of high penetration distribution PVs. Acta
Energiae Solaris Sin. 43 (02), 189–197. doi:10.19912/j.0254-0096.tynxb.2020-0239

Luo, X., Liu, Y., Feng, P., Gao, Y., and Guo, Z. (2021). Optimization of a solar-based
integrated energy system considering the interaction between generation, network, and
demand side. Appl. Energy 294, 116931. doi:10.1016/j.apenergy.2021.116931

Mi, Y., Chen, Y., Yuan, M., Li, Z., Tao, B., and Han, Y. (2023). Multi-timescale optimal
dispatching strategy for coordinated source-grid-load-storage interaction in active
distribution networks based on second-order cone planning. Energies 16 (3), 1356.
doi:10.3390/en16031356

Pan, M., Liu, N., and Lei, J. (2021). Dynamic partition method for distributed energy
cluster with com-bined heat and power unit. Automation Electr. Power Syst. 45 (01),
168–176. doi:10.7500/AEPS20200217013

Wang, L., Zhang, F., Kou, L., Xu, Y., and Hou, X. (2021). Large-scale distribution PV
cluster division based on fast unfolding clustering algorithm. Acta Energiae Solaris Sin.
42 (10), 29–34. doi:10.19912/j.0254-0096.tynxb.2018-0896

Frontiers in Energy Research frontiersin.org10

Kong et al. 10.3389/fenrg.2023.1301175

https://doi.org/10.13334/j.0258-8013.pcsee.182512
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1109/TSG.2022.3223877
https://doi.org/10.19635/j.cnki.csu-epsa.000487
https://doi.org/10.1109/TSTE.2022.3223684
https://doi.org/10.1109/TSTE.2022.3223684
https://doi.org/10.1016/j.rser.2021.111763
https://doi.org/10.16081/j.epae.202111020
https://doi.org/10.19912/j.0254-0096.tynxb.2020-0239
https://doi.org/10.1016/j.apenergy.2021.116931
https://doi.org/10.3390/en16031356
https://doi.org/10.7500/AEPS20200217013
https://doi.org/10.19912/j.0254-0096.tynxb.2018-0896
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1301175


Wei, Z. (2015). Overview of complex networks community structure and its
applications in electric power network analysis. Proc. CSEE 35 (7), 1567–1577.
doi:10.13334/j.0258-8013.pcsee.2015.07.003

Wen, G., Yu, X., and Liu, Z. (2021). Recent progress on the study of distributed
economic dispatch in smart grid: an overview. Front. Inf. Technol. Electron. Eng. 22 (1),
25–39. doi:10.1631/FITEE.2000205

Wu, T., Liu, L., Lin, Y., and Zheng, W. (2022). Day-ahead optimal dispatch for a
distribution network based on dynamic partitioning. Power Syst. Prot. Control 50 (15),
21–32. doi:10.19783/j.cnki.pspc.211209

Zhang, X., Fu, X., Xue, Y., Chang, X., and Bai, X. (2023). A review on basic theory and
technology of agricultural energy internet. IET Renew. Power Gener. 00, 1–14. doi:10.
1049/rpg2.12808

Zhao, J., Jia, R., Chen, L., and Zhu, T. (2021). Research on the fast partition of reactive
power and voltage based on deep learning and an improved K-Means clustering
algorithm. Power Syst. Prot. Control 49 (14), 89–95. doi:10.19783/j.cnki.pspc.201124

Zheng, X., Chen, Z., and Zeng, C. (2021). Double-layer partition voltage regulation
strategy of a distribution network with distribution generation. Power Syst. Prot. Control
49 (06), 90–97. doi:10.19783/j.cnki.pspc.200525

Frontiers in Energy Research frontiersin.org11

Kong et al. 10.3389/fenrg.2023.1301175

https://doi.org/10.13334/j.0258-8013.pcsee.2015.07.003
https://doi.org/10.1631/FITEE.2000205
https://doi.org/10.19783/j.cnki.pspc.211209
https://doi.org/10.1049/rpg2.12808
https://doi.org/10.1049/rpg2.12808
https://doi.org/10.19783/j.cnki.pspc.201124
https://doi.org/10.19783/j.cnki.pspc.200525
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1301175

	A fast-partitioning decision method for demand side resources based on grid resilience assessment
	1 Introduction
	2 Comprehensive partition index system
	2.1 Resilience assessment index
	2.1.1 Self-healing rate
	2.1.2 Self-healing speed
	2.1.3 Load rate
	2.1.4 Voltage violation rate

	2.2 Modularity index
	2.3 Active power balance index
	2.4 Reactive power balance index

	3 Fast-partitioning algorithm based on modified genetic algorithm
	4 Case study
	4.1 Partitioning results
	4.2 Comparison of different algorithms

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


