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The rapid development of low-carbon energy technologies and energy storage
technologies has provided an important and feasible path to decarbonizing the
power system. In this context, there is an increasing number of studies on
renewable energy, carbon capture, utilization and storage (CCUS) and energy
storage expansion planning. However, most of the existing studies attribute the
carbon responsibilities to the source side and a small number to the load side.
Expansion planning studies that consider the overall carbon emissions of the
system to be shared between the source and the load side are still relatively few.
Therefore, it is necessary for the source and the load side to share the
responsibility for the total system carbon emissions. To fill this research gap,
this paper proposes a source-load bilateral carbon incentivemechanism for wind-
CCUS-battery power systems based on the carbon emission flow theory. Besides,
a bi-layer wind-CCUS-battery expansion stochastic planning framework
considering wind and load uncertainties is constructed. The first layer takes the
minimum expectation of power generation costs, fixed investment costs of wind
turbines and CCUS units and carbon incentive costs as the objective function from
a source-side perspective. The second layer takes the minimum battery
investment cost and the expectation of electricity purchasing costs and load-
side carbon incentive costs as the objective function from a load-side perspective.
Finally, the proposed model is tested on the IEEE 24 bus power system for validity
and advantage. The results show that the current high investment cost is not
favorable to CCUS construction. At this time, the bilateral carbon incentive
mechanism is more conducive to promoting system carbon reduction than the
unilateral carbon incentive mechanism. In the future, as the cost of CCUS
decreases, the source-side carbon incentive mechanism is more conducive to
system carbon reduction than the bilateral carbon incentive mechanism. Due to
the consideration of the stochastic uncertainty of wind turbines and loads, the
research in this paper is closer to the reality, which can provide a reference for the
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future carbon emission reduction path of the power system, especially for the
quantitative analysis of carbon emission reduction of CCUS, which is an important
guiding significance for the promotion of the engineering practice of CCUS.

KEYWORDS

bi-layer expansion stochastic planning, carbon emission flow theory, carbon emission
reduction, source-load bilateral carbon incentive mechanism, wind-CCUS-battery power
systems

1 Introduction

Climate change is a common challenge faced by mankind, and
the Paris Agreement, adopted at the Paris Climate Change
Conference in 2015, signals the urgency of addressing the climate
crisis to all countries in the world by setting targets (Ostberg et al.,
2018; Wang Y. et al., 2022; Meinshausen et al., 2022). To cope with
global warming, countries are advocating a “low-carbon economy”,
such as China has put forward the goal of “carbon peak and carbon
neutrality”, committing to strive to peak carbon dioxide emissions
by 2030, and strive for carbon neutrality by 2060 (Zhuo et al., 2022).
In 2021, the European Commission announced a climate package
called “Fit for 55”, committing to a 55% reduction in greenhouse gas
emissions by the end of 2030 compared to 1990 (Sun et al., 2022a).
Russian claimed a carbon emission reduction of 30% by 2030 (Guo
et al., 2022). As a main fossil fuel industry, the carbon emissions
from the power sector account for about 40% of the total carbon
emissions from energy consumption in China (Guo et al., 2022).
With the rapid development of electric vehicles and smart homes in
recent years, electricity carbon emissions are expected to account for
a higher proportion of the total energy carbon emissions in the
future. Therefore, carbon emission reduction in the power sector is
of great significance to carbon emission reduction in the whole
energy system. Carbon emissions from the power sector come
mainly from coal-fired and gas-fired power plants, while clean
energy power generation, such as wind power, solar power,
hydroelectric power and nuclear power, produces almost no
carbon dioxide emissions. Thus, there are three main carbon
reduction pathways for the power sector (Algarni et al., 2021;
Deng et al., 2023): the first is to reduce the use of coal-fired
generators, the second is to increase the generation of electricity
from renewable energy sources, and the third is to impose carbon
capture, utilization and storage (CCUS) technology on coal-fired
power plants. Since coal-fired generators usually meet baseload,
reducing the use of coal-fired generators has risk implications for
power system security, and morever there is limited scope for
reducing coal consumption per unit of electricity generation.
Thus, the latter two pathways are more worthy of study. In
addition, renewable energy sources with intermittent output drive
the development of energy storage. The time-shift characteristic of
energy storage facilitates the system accommodation of renewable
energy, which in turn reduces system carbon emissions (Li et al.,
2019; Pourakbari-Kasmaei et al., 2020; Li et al., 2021; Guo et al.,
2022). Therefore, low-carbon oriented coordinated planning of
renewable energy, energy storage and CCUS is a direction worth
exploring.

Currently, the expansion planning for renewable energy mainly
focuses on two aspects: capacity expansion planning and incentive
policy. In terms of renewable energy capacity expansion planning,

Moreira et al. (2017) proposed a two-stage min-max-min model for
co-optimizing the expansion of the transmission system and
renewable generation capacity to meet renewable targets under
high security standards and renewable uncertainty. A large
number of studies have focused on the optimal planning of
integrated energy systems (Huang et al., 2019; Gabbar et al.,
2020; Liu and Wang, 2020; Shi et al., 2020; Liu et al., 2021; Lin
et al., 2022). Huang et al. (2019) proposed a two-stage mixed-integer
linear programming approach for multi-energy system planning
considering distributed renewable energy integration. Liu et al.
(2021) proposed a novel multi-objective interval optimization
framework for the energy hub planning problem from the
perspective of source-load synergy, taking into account the
supply- and demand-side uncertainty. Gabbar et al. (2020)
studied the optimal planning of nuclear-renewable micro-hybrid
energy system. Liu and Wang (2020) developed a two-stage
optimization model to study the energy storage and renewable
energy planning, with the investment, operation, and
maintenance costs of energy storage and wind turbines, as well
as the annual network loss costs as the objective function. Shi et al.
(2020) proposed a hierarchical optimization algorithm to
simultaneously optimize the capacity of renewable energy and
energy storage capacity. Lin et al. (2022) established a multi-
scenario stochastic programming model of an integrated energy
system by considering the multiple uncertainties of wind and solar
power output, load demands, energy prices, and pollutant emission
factors. It can be seen that the above studies basically take the
economic cost sucn as investment cost, operation and maintenace
cost as the objective function, and part of the literature also takes
into account the utilization rate of renewable energy, renewable
energy power generation, annual network loss costs and other
indexes in the objective function. But basically they do not take
into account the environmental benefits of renewable energy, and
they do not consider the emission reduction benefits of new energy
access to the system from the perspective of “low-carbon power”.

Since the cost of renewable energy generation is higher than the
cost of conventional energy generation, incentive policies are
essential in renewable energy generation expansion planning. To
promote the development of clean energy, each country has adopted
certain supportive policies, mainly of two kinds: one is to give
certain subsidies to support, and the other is to promote through
market-oriented trading incentives. The first policy is mainly
realized in the form of subsidies or tax breaks. Helm and Mier
(2021) studied the optimal subsidies and tax policies for renewable
energy and storage energy. Martelli et al. (2020) proposed a
renewable energy subsidy and carbon tax optimization method
for multi-energy systems based on bilevel planning, and
determined the optimal renewable energy subsidy and carbon tax
for small-mediummulti-energy systems. Masoumzadeh et al. (2020)
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proposed a novel interactive tax/subsidy incentive framework on
both emission reduction and resource adequacy in competitive
electricity markets. Wu et al. (2020) and Luo et al. (2021)
studied the impact of government subsidies on renewable energy
generation based on actual data in China.

Government subsidies are more common in the early stage of
renewable energy development, and with the rapid development of
renewable energy, government subsidy policy is not sustainable (Wu
et al., 2020). The design of market-oriented carbon trading incentive
mechanisms to promote the development of renewable energy has
received more and more attention. Since carbon emissions are
directly related to power generation, traditional research on
power system carbon trading incentive mechanisms focuses on
the power generation side. Tan et al. (2021) and Wang R. et al.
(2022) have studied carbon trading incentive mechanisms for the
expansion planing of new energy units on the power generation side.
In recent years, with the in-depth study of demand-side response,
some scholars have put forward the theory of carbon emission flow,
then the carbon emission of loads can be quantitatively analyzed, so
as to establish a carbon trading incentive mechanism on the load
side. Feng and Zhou (2022) and Yan et al. (2023) have studied the
carbon trading incentive mechanism on the load side. It can be seen
that the current design of the carbon trading incentive mechanism is
mainly for the generation side or the load side. However, in the
power system, both generators and loads have the potential to
reduce carbon emissions. Designing carbon trading incentive
mechanism only on one side cannot fully stimulate the carbon
reduction potential of both sides. Nan et al. (2022a); Nan et al.
(2022b). also established two-side carbon trading mechanisms, but
did not consider the effect of CCUS on carbon emission reduction.
While as the current energy structure of the power system is still
dominated by coal-fired power units with high carbon emissions,
and the low-carbon operational potential of the integrated energy
system cannot be fully tapped through carbon trading incentives
alone. As a result, retrofit technologies such as Carbon Capture and
Storage Utilization (CCUS) for high carbon emitting coal-fired units
are receiving increasing attention.

CCUS technology is currently the only key technology that can
realize the low-carbon use of fossil energy (Liu Z. X. et al., 2023; Liu E.
et al., 2023). The Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report concluded that if there is no CCUS, then the
vast majority of climate routes will not be able to achieve the 1.5°C/2°C
temperature control target (Li et al., 2022). Hence, research on CCUS
has received increasing attention. Current research on CCUS mainly
focuses on the analysis of investment cost. Yang et al. (2019) used the
real option approach to compare the impacts of different subsidy
schemes on the investment benefit of CCUS projects in China. Yao
et al. (2023) analyzed the cost and benefit of applying CCUS to
thermal power units. Gowd et al. (2023) analyzed the sustainable
development of CCUS at the economic and policy insights. Liu S. et al.
(2023) quantitatively evaluated the techno-economic feature and
potential of CCUS in China Energy Group by using systematical
source-sink matching and carbon reduction contribution methods. It
can be seen that the existing studies mainly focus on the modeling,
operation mechanism and investment benefit analysis of CCUS itself,
and there are fewer studies on the quantitative analysis of CCUS to
promote carbon emission reduction, and even fewer studies on the
renewable energy expansion planning considering CCUS. At present,

the studies on renewable energy expansion planning basically do not
take into account the carbon emission reduction effect of CCUS, and
there are no studies on the capacity planning of CCUS.

Tomake up for the shortcomings of the above studies, this paper
proposes a bilateral carbon incentive (BCI) mechanism, which
equally shares the responsibility of carbon emissions to the
generation side and load side. Meanwhile, a bi-layer wind-CCUS-
battery expansion stochastic planning framework is constructed.
The main contributions are as follows:

1) A bi-layer wind-CCUS-battery expansion stochastic planning
framework considering both wind and load uncertainties is built.
The model co-plans the capacity of wind turbine generators
(WTG), CCUS devices retrofitted to coal-fired units, and
demand-side battery (DSB).

2) Based on the carbon emission flow theory, a bilateral step-type
carbon incentive mechanism is proposed. The incentive
mechanism takes into account the carbon responsibility of
both the generating units and the loads to fully stimulate the
carbon reduction potential of both the source and the load side.

3) The constructed bi-layer planning framework is transformed
into a mixed integer linear programming problem. The model is
solved by invoking the Gurobi optimization solver and the
validity and superiority of the model is verified by case analysis.

The article is organized as follows: Section 2 presents the
problem description. Section 3 describes uncertainty modeling,
CCUS modeling and bilateral carbon incentive mechanism.
Section 4 illustrates the proposed bi-layer stochastic planning
framework. Section 5 demonstrates the case analysis. Finally, the
work of this paper is summarized in Section 6.

2 Problem description

The schematic diagram of the system studied in this paper is
shown in Figure 1, where the source side consists of coal-fired
power plant and wind power plant, and the load side consists of
loads and demand-side batteries. From the perspective of carbon
emissions, coal-fired power plants emit large amounts of carbon
dioxide through the combustion of coal, while some coal-fired
power plants retrofitted with CCUS have reduced net carbon
emissions because some of the carbon dioxide produced is
absorbed. Wind power plants produce clean energy with no
carbon emissions. According to the carbon emission flow
theory, there is a dependency relationship between the carbon
flow and power flow. Virtual carbon emission flows can be
viewed as accompanying the power flow from the power plant
through the electricity network to the consumer side. Thus,
physically, the carbon emissions of the entire system are net
emissions from the power plants and are not directly related to
the users. However, in terms of carbon liability, demand-side
consumption of electric energy drives the generation of carbon
emissions from power plants. Therefore, both the demand side
and the source side should share the responsibility for system
carbon emissions.

Based on the carbon emission flow theory, this paper shares the
system carbon emission responsibility between the source side and
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the demand side, and constructs a bilateral carbon incentive
mechanism. Then, this paper simultaneously considers wind
power and load uncertainties, and a bi-layer stochastic planning
framework with the proposed bilateral carbon incentive mechanism
is constructed to determine the wind turbine and CCUS device
capacities at the source side, and the battery storage capacities at the
load side. The main challenges faced in the research of this paper
(Meinshausen et al., 2022): wind and load uncertainty modeling, and
CCUS modeling (Ostberg et al., 2018); bilateral carbon incentive
mechanism construction (Wang Y. et al., 2022); capacity synergistic
planning of wind turbines, CCUS devices, and demand-side
batteries. These are elaborated upon subsequently.

3 Modeling methodology

3.1 Stochastic uncertainty model of wind
power and load

The output of generators is adjusted in real time according to
the load demand, and the output of wind turbines is subject to
the change of wind speed. Since both wind speed and load
demand have a large uncertainty, to study the capacity
planning of the wind turbine, demand-side energy storage
and CCUS, it is necessary to model the uncertainty of wind
speed and load.

FIGURE 1
Wind-CCUS-battery expansion planning system structure diagram.

FIGURE 2
CCUS model diagram.
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3.1.1 Stochastic fuzzy modelling of wind power
Since wind speed is usually affected by season, temperature,

atmosphere, geographical location and other natural laws with
strong randomness, the probability distribution parameters of
wind speed are fuzzy due to the restriction of finite wind speed
statistics. To effectively solve the problem that the traditional
wind speed uncertainty model is unable to take into account the
coexistence of randomness and fuzzy, a stochastic fuzzy
uncertainty model of daily wind speed is adopted in this paper
(Ma Rui et al., 2015; Chen et al., 2021). The shape parameter k
and scale parameter c of the probability distribution of daily wind
speed are defined as fuzzy variables, where the parameters k can
be represented by triangular fuzzy variables ξk � (ξ1k, ξ2k, ξ3k) and

the parameters c can be represented by trapezoidal fuzzy
variables, and their corresponding affiliation functions are
represented as Eqs 1, 2, respectively. The daily wind speed is
defined as a stochastic fuzzy variable ξv and its chance measure
distribution function is obtained as Eq. 3.

uk k( ) �

k − ξ1k
ξ2k − ξ1k

, ξ1k ≤ k≤ ξ
2
k

ξ3k − k

ξ3k − ξ2k
, ξ2k ≤ k≤ ξ

3
k

ξ3k − k

ξ3k − ξ2k
, else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

FIGURE 3
Bi-layer co-optimization framework.
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uc c( ) �

c − ξ1c
ξ2c − ξ1c

, ξ1c ≤ k≤ ξ2c

1, ξ2c ≤ c≤ ξ3c

ξ4c − c

ξ4c − ξ3c
, ξ3c ≤ c≤ ξ4c

0, else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

F ξv( ) � Ch v< ξv( )� 1−exp − ξv
ξc

( )ξk⎡⎣ ⎤⎦ (3)

Then invert (Wang Y. et al., 2022) to obtain the value of the
stochastic fuzzy variable wind speed.

v � c −ln 1 − F v( )( )[ ] 1
k

(4)

After obtaining the value of wind speed v, the output of the wind
turbine can be obtained through the relationship function between
the output of the wind turbine PWTG

max and the wind speed v, as shown
in Eq. 5. Through the above equations, the 24-h output curve of wind
turbines can be obtained by simulation.

FIGURE 4
The modified IEEE 24-bus power system.
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TABLE 1 Parameters of each generator.

Generator no. Type Capacity/(MW) Cost coefficient/(USD/MWh) Carbon intensity/(tCO2/MWh)

G1 Wind turbine — 15 0

G2 Coal-fired 192 38 1.31

G3 Coal-fired 300 42 1.25

G4 Coal-fired 591 42 1.25

G5 Coal-fired 215 38 1.31

G6 Wind turbine — 15 0

G7 Coal-fired 400 42 1.25

G8 Coal-fired 400 42 1.25

G9 Coal-fired 300 38 1.31

G10 Wind turbine — 15 0

TABLE 2 Parameters of the WTG, CCUS and DSB to be planned.

WTG CCUS DSB

Parameter Value Parameter Value Parameter Value

vci 3 m/s acmax 0.9 (α max, α min) (90%,10%)

vr 7 m/s η1 0.8 (ηcha, ηdis) (95%,95%)

vco 25 m/s η2 0.6 γloss 20%/month

(ζ1k, ζ2k, ζ3k) (1.14,1.75,3.64) α1 0.01 cP 100 USD/kW

(ζ1c , ζ2c , ζ3c ) (3.77,5.22,6.22) α2 0.01 cC 250 USD/kWh

cWI 1095 USD/kW Mmax 2000 NY,DSB 8 Years

NY,WTG 20 Years cCCUS 60 USD/t CO2 Γ 8

PWTG
N,max 500 MW

FIGURE 5
Wind speed simulation results. (A) thewind speed variation before and after scenario for one day. (B) thewind power output of reduced scenarios for
one day.
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PWTG
max �

0, v< vci or v≥ vco;

v3 − v3ci
v3r − v3ci

Pwt,r, vci ≤ v≤ vr

Pwt,r, v> vr

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (5)

where vci, vco and vr are the cut-in wind speed, cut-out wind speed
and rated wind speed of the WTGs, respectively, m/s. Pwt,r is the
rated power of a single wind turbine, MW.

3.1.2 Uncertainty modelling of power load
For load modeling, typical daily load curves are usually used in

conventional planning optimizationmodels without considering the load
uncertainty. To model load uncertainty more accurately, random load
deviations that satisfy the normal distribution are taken into account. The
stochastic power demand curve can be obtained from Eq. 6.

PLoad � PLoad,Typical+ΔPLoad

ΔPLoad ~ N 0, σ2( ){ (6)

FIGURE 6
Power load simulation results.

TABLE 3 The benchmark data of each power load.

Load no. L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Bus 3 4 5 6 7 8 9 10 14 15 19 20

Load power/(MW) 180 74 71 136 125 171 175 195 194 317 181 128

TABLE 4 Time-of-use tariffs and parameters of the proposed BCI mechanism.

Time-of-use tariffs Carbon incentive price

Period Electricity price/(USD/kWh) Carbon responsibility range/t CO2 Carbon incentive price/(USD/t CO2)

0:00–8:00 0.036 0——RALL,i λ1� −4

8:00–22:00 0.125 RALL,i——(1 + α)RALL,i λ2� 6

22:00–24:00 0.036 (1 + α)RALL,i——(1 + 2α)RALL,i λ3� 9

(1 + 2α)RALL,i——∞ λ4� 12

TABLE 5 The carbon allowances allocated for source side and load side.

Source-side carbon allowance/t CO2

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 92.0 79.1 196.2 105.6 0 68.8 71.9 147.4 0

Load-side carbon allowance/t CO2

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

71.3 29.4 28.5 53.4 47.9 65.7 67.4 75.0 76.1 125.6 71.1 49.7
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where PLoad, PLoad,Typical and ΔPLoad are the stochastic power load,
typical daily power load and random power load deviation; σ2 is the
variance of normal distribution of power load deviation.

3.1.3 Scenario generation
Scenario-based analysis is a common method to solve the

uncertainty problem, including two steps: scenario generation
and scenario reduction. According to the chance measure
distribution function of wind power and probability distribution
function of load deviations, scenarios can be generated by stochastic
simulation. To improve the solving efficiency, the backward scenario
reduction is adopted to obtain representative scenarios. The specific
steps of the scenario generation and reduction methods adopted in
this paper are as follows:

1) Scenario generation
a) Based on Latin hypercube sampling and affiliation functions

as (Meinshausen et al., 2022) and (Ostberg et al., 2018),
randomly obtain N sets of stochastic fuzzy variables θk and
θc. The chance measure of corresponding N sets of Weibull
distribution parameters is as Eq. (7).

Poss � Pos θk, θc{ } � Pos θk{ } ∧ Pos θc{ } � min uk θk( ), uc θc( ){ } (7)

b) By Latin hypercubic sampling, F(v) that satisfies a Weibull
distribution function is sampled T times between [0,1].

c) Based on the inverse transformation shown as Eq. 5, the wind
speeds at T different moments inN scenarios are obtained, which
is denoted as S � S1, S2,/,SN{ }. Any scenario of S is denoted as
Si � (vi0, vi1,/,vit,/viT), which occurs with probability Pi. The
sum of the probability densities of the N scenarios is equal to 1.

2) Scenario reduction

The backward scenario reduction method is adopted in this
paper to obtain the most representative fewer scenarios. According
to theN scenarios of wind power obtained in first step, the Euclidean
distances between each scenario can be calculated as:

d Si, Sj( ) � ����������∑T
t�0

vit − vjt( )2√√
(8)

The probabilistic distance between scenarios Si and Sj is:

Pd Si, Sj( ) � Pi × d Si, Sj( ) (9)

a) Calculate the sum of probability distances between each scenario
and the remaining scenarios. The sum of probability distances
between scenario i and the set of remaining scenarios J is as
follows:

Pd Si( ) � Pi × ∑
j∈J

d Si, Sj( ) (10)

Then find the scenario in which the probability distance sum is
the smallest, denoted as Sk, then that scenario is the one to be
eliminated.

b) Find the scenario with the smallest Euclidean distance from
scenario Sk, denoted as So, then the scenario So is the alternative
scenario of scenario Sk.

c) Eliminate the scenario Sk and accumulate the probabilities of the
scenarios Sk to the alternative scenario So to form a new set of
scenarios.

d) Repeat the above steps and keep iteratively eliminating the scenarios
until the number of scenarios satisfying the requirements, and a new
set of scenarios So � So,1, So,2,/,So,Ns{ } is obtained.
Using the same method described above, the corresponding

loaded scenes can be obtained.

TABLE 6 Results of WTG, CCUS and DSB capacity planning in three different
carbon incentive mechanisms.

Capacity Carbon incentive mechanism

Case 1 Case 2 Case 3

WTG/(MW) G1 500 500 0

G6 0 219.5 0

G10 449.4 0 331.5

Total 949.4 719.5 331.5

CCUS/(t CO2) G2 0 0 0

G5 0 0 0

G9 0 0 0

Total 0 0 0

DSB/(MWh) L1 438.6 0 452.2

L2 135.3 0 142.7

L3 163.8 0 133.1

L4 219.3 0 324.6

L5 218.1 0 311.1

L6 396.3 0 427.1

L7 391.1 0 434.8

L8 468.8 0 494.8

L9 408.5 0 471.5

L10 581.4 0 780.8

L11 404.1 0 436.7

L12 320.4 0 312.7

Total 4146.5 0 4722.1

TABLE 7 Investment costs and carbon reduction of three cases.

Optimized results Carbon-trading mechanism

Case 1 Case 2 Case 3

System daily total cost (106 USD) 5.2326 5.2411 5.2691

Carbon reduction (103 t CO2) 6.428 4.987 1.911
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3.2 CCUS modeling

CCUS device can capture and separate CO2 from the flue gas
emitted by coal power units, including three links: CO2 capture,
utilization and storage, is currently the key technology to achieve
low-carbon coal power units. Although the current cost of CCUS
technology is very high, it can be foreseen that with the large-scale
application in the future, the cost of the CCUS device will be
reduced, which can significantly reduce the overall emission
reduction costs of power plants (Liu Z. X. et al., 2023; Han
et al., 2023). To this end, this paper analyzes the emission
reduction effect of CCUS using the post-combustion capture
method installed in traditional thermal power plants. This
paper focuses on the carbon capture link, the principle of which
is shown as Figure 2:

The mathematical model is as follows:

1) The actual carbon emissions from thermal power units at
moment t are:

Mnet,t � 1 − αc,t( )Mems,t (11)
Mems,t � eG × PGen,t (12)

where Mnet,t is the net carbon emission of the thermal power
unit, i.e., the amount of CO2 emitted after CCUS capture;
Mems,t is the initial carbon emission of the thermal power
unit; αc,t is the carbon capture rate of the CCUS equipment
at time t; eG is the carbon emission intensity of the thermal
power unit; PGen,t is the power generation output of the thermal
power unit. And the amount of carbon captured at time t can be
obtained by Eq. 13.

Min,t � αc,t × Mems,t (13)

2) The carbon dioxide content in the lean-rich liquid storage at
time t is:

Mt � Mt−1 + Min,t−1 +Mout,t−1( )×Δt (14)

where Mt is the carbon dioxide content in the depleted liquid
storage at moment t; Mt−1 is the carbon dioxide content in the
depleted liquid memory at the previous moment; Min,t−1 is the
amount of carbon captured at the previous moment, which can be
obtained by Eq. 13; Mout,t−1 is the amount of carbon utilized or
storage at the previous moment; Δt is the time interval.

3) Power consumption of the CCUS device at moment t:

PCCUS,t � α1 × Min,t + α2 × Mout,t (15)
This equation represents the power consumed by the CCUS in

relation to the amount of carbon in and out at a given moment; α1
and α2 are power consumption coefficients.

4) The net power output of the thermal unit to the system at
time t is:

Pout
Gen,t � PGen,t − PCCUS,t (16)

FIGURE 8
Optimized system daily total costs and carbon reduction in three
cases.

FIGURE 7
Capacity planning results of WTG, CCUS and DSB in three cases.

Frontiers in Energy Research frontiersin.org10

Deng et al. 10.3389/fenrg.2023.1304538

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1304538


5) The cost of carbon capture equipment deployment is:

Cos tCCUS � cu × Mmax (17)
where cu is the investment cost coefficient of the CCUS device.

3.3 Bilateral carbon incentive trading
mechanisms

3.3.1 Carbon flow theory
In the power system, the carbon emission is emitted in the

generation side along with the electric power generation.

However, the production of electric power is caused by power
consumption at the load side. Therefore, in a sense, the load is the
source of carbon emissions from generating units. In order to
incentivize load-side users to consume more low-carbon
electricity, it is necessary to let the users understand the
composition of the sources of electricity they consume and the
corresponding carbon emission responsibility. For this purpose,
it is necessary to find the relationship between the carbon
emissions and the power flow in the power system. This
problem can be solved by the carbon emission flow theory
(Wang C. et al., 2022; Liu et al., 2022; Huang et al., 2023),
which establishes the correspondence between the carbon
emission responsibilities and the flow of each bus and branch
in the power system, as follows:

FIGURE 9
Bus carbon intensity before and after the expansion planning. (A) The carbon intensity before expansion planning. (B) The carbon intensity in case1
with source-load BCI. (C) The carbon intensity in case2 with source-side UCI. (D) The carbon intensity in case3 with load-side UCI.
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According to the theory of flow tracing, each load is supplied by
all the power sources in the network based on the principle of
“proportional sharing”, and then we can get the power contribution
of any generating unit to any outgoing line load. For carbon
emission flow analysis as well, the carbon emission flow of each
incoming line of the node is uniformly mixed at the node, and the
carbon emission flowing through each outgoing line is a
proportional mix of each incoming line with equal branch
carbon intensity. Thus, the power contribution from any
generating unit to any load can be obtained by constantly tracing
the power flow, as shown in Eq. 18).

PD� B· E − A( )−1 · PG� T·PG (18)

Aij � Pji/PB
i , j ∈ i+;

0, else
{ (19)

Bij � PL
i /PB

i , i � j;
0, i ≠ j;

{ (20)

Pi � ∑
j∈i+

Pji + Pout
Gen,i (21)

where PG denotes the output power column vector of the power
generators, which in the model of this paper refers to the net power
output from the generators to the grid as shown in Eq. 16; PD is the
column vector of the power demand; T is the allocation matrix from
generators to loads; PB

i is the power flux at bus i, which is defined as
Eq. 21.

By the same token, based on the analogous relationship between
carbon flow rate in carbon emission flow analysis and active power
in flow analysis, the relationship between generator carbon flow rate
and load carbon flow rate can be obtained:

RD � TCEF · RG (22)
TCEF� T (23)

Therefore, by calculating the carbon emission responsibility of
each generator, the carbon emission responsibility of each load can
be obtained by utilizing Eq. 22. The carbon emission responsibility
of generators is calculated as Eq. 24.

RG� 0.5·eG · PG·Δt (24)
As Eq. 24 shows, the carbon emission responsibility of

generators is equal to the carbon emission factor of the
generating unit multiplied by the output of the generating unit.
In this paper, since some thermal power units are installed with
CCUS equipment, the carbon emissions of thermal power units are
net carbon dioxide emissions, which can be calculated by Eq. 11.
Because the source and load side play equally important roles in
carbon emission reduction under the bilateral carbon incentive
mechanism, the carbon emission responsibility of the source and
load side is shared equally in this paper, i.e., the source and load side
each share 50% of the carbon emission responsibility.

To further characterize the carbon emission of each bus in the
system, the bus carbon flow rate can be obtained through Eq. 25,
then the carbon emission intensity of each node is shown in
Eq. 26.

RB � E − A( )−1 · RG (25)
eBi � RB

i

PB
i

(26)

3.3.2 Carbon emission allowance at source and
load side

To get the carbon emission quota for the source and load
side, this paper firstly obtains original carbon emissions
through economic dispatch after planning. According to the
principle of equalization, the source side and the load side share
50% of the carbon emission respectively. Then obtains the
carbon emissions Xi of both the source side and the load
side can be obtained based on the carbon emission flow
theory, Xi which can be used as the carbon quota of each
unit or load. The free carbon allowances of each unit and
load are obtained through Eq 27.

RALL,i � ψALL∑T
t�1
Xi,t/T (27)

where ψALL is the free carbon allowance factor.

FIGURE 10
Carbon reduction and system daily total cost with different CCUS
invest in the two different carbon incentive mechanisms.

FIGURE 11
Optimized system daily total costs and carbon reduction in case
1 and 2.
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3.3.3 Bilateral stepped carbon incentive
mechanism

This paper proposes a double-end stepped carbon incentive
mechanism. Compared with the traditional single-end carbon
incentive mechanism, the proposed double-end stepped carbon
incentive mechanism shares the carbon emissions equally
between the source side and the load side, and carry out
carbon incentive at both sides. The details are as follows:
firstly, the net carbon emission of each generating unit is
calculated under the planning model, and the responsibility
of carbon emission is equally shared by the source side and load
side. Then, based on the carbon emission flow theory, the
carbon emission responsibility of each load is obtained to
participate in the carbon trading market. Finally, the carbon
emission of the source side and load side participate in the
stepped carbon incentive respectively. Under the stepped
carbon incentive mechanism, the carbon emissions trading
volume is divided into multiple intervals. The more carbon
emission responsibility, the higher the corresponding carbon
incentive price. When the carbon emission responsibility is
lower than the free carbon allowance, the power plant can
make a profit in the carbon trading market; When the
carbon emission responsibility is higher than the free carbon
allowance, the power plant will pay for the carbon incentive
cost. The carbon incentive cost of a unit or load is calculated as
follows:

CCT�
λ1 Ri−RALL( ),0≤Ri≤RALL

λ2 Ri−RALL( ),RALL≤Ri≤ 1+a( )RALL

λ2aRALL+λ3 Ri− 1+a( )RALL( ), 1+a( )RALL≤Ri≤ 1+2a( )RALL

λ2+λ3( )aRALL+λ4 Ri− 1+2a( )RALL( ),Ri≥ 1+2a( )RALL

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(28)

where Ri is the carbon emission responsibility of the generators or
loads to participate in the carbon trading market; λ1/λ2/λ3/λ4 are
stepped carbon trading prices; a is the coefficient of carbon
responsibility step.

4 Two-layer stochastic source-load
expansion planning model

The planning problem studied in this paper involves both
wind power capacity and CCUS capacity expansion planning at
the source side and energy storage capacity expansion planning at
the load side, and the connection between the source end and the
load end is established through the carbon emission flow theory.
To solve such planning problems, a two-layer stochastic source-
load expansion planning model is proposed in this paper. The
two-layer cooperative planning is used to achieve the optimal
arrangement of the capacity of wind turbines, CCUS and energy
storage. The source-side optimization results are obtained
through the optimization of the upper layer, and then through
the carbon emission flow theory, the carbon emission
responsibility of the load side is obtained, which in turn
participates in the lower layer optimization model. The details
are described as follows: the upper layer optimizes the installed
capacity of wind power and CCUS with the objective of
minimizing the total cost of wind power investment cost,

CCUS investment cost, power generation cost and carbon
incentive cost at the source side. The actual carbon emission
of each generator at the source side is also obtained after the
optimization of the upper layer. Then the carbon emission
intensities of the load is determined based on the carbon
emission flow theory, which is then entered into the lower
layer. The lower layer aims to minimize the total cost of
energy storage investment cost, power purchase cost and load-
side carbon incentive cost, obtains the optimal energy storage
capacity, and returns the charging and discharging power of the
energy storage device as the load demand response to the upper
layer. Then the next loop of optimization is carried out in the
upper layer. Finally, the optimal planning results are obtained
through repeated optimization of the upper and lower layers until
the results converge. The convergence condition of the proposed
model is that the difference between the demand responses after
two consecutive optimizations is smaller enough and small than a
predefined threshold parameter. Based on the two-layer
stochastic source-load expansion planning model developed in
this paper, the economic operation of the whole system and
carbon emission reduction targets can be achieved by optimally
configure wind power, CCUS and energy storage capacities.

4.1 Upper layer: source-side wind turbine
and, CCUS capacity planning model

4.1.1 Objective function
The upper layer is mainly to optimize the wind power capacity

and CCUS capacity at the source end. According to Section 3.1.1, it
can be seen that the wind turbine at the source end is a stochastic
fuzzy uncertain model, for this reason, the upper layer
optimization belongs to the stochastic optimization model,
which is divided into two phases: tactical layer and operational
layer. The upper layer takes the total economic cost at the source
side as the objective function, including the investment cost of
wind power, the investment cost of CCUS, and the expected value
of power generation cost and carbon incentive cost. The decision
variables of the tactical layer are the capacities of the WTG and
CCUS. The decision variables of the operational layer are the
outputs of each generator, and the objective is to minimize the
expected value of power generation cost and carbon incentive cost.
The complete objective function of the upper level can be
expressed as Eqs 29, 30.

ObjCost source � min Ε b PWTG
N,w , s( )[ ] + ∑NW

w�1
cWP

WTG
N,w +∑Nu

u�1
cuM

CCUS
u

⎛⎝ ⎞⎠
(29)

b PWTG
N,w , s( ) � minP s( ) ∑

s∈SW

poss ∑T
t�0

∑NG

g�1
cgP

G
g,t,s + CCT

g,t,s( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (30)

where cW is the investment cost coefficient of wind turbine
generators; PWTG

N,w is the maximum capacity of WTG; cu is the
investment cost coefficient of CCUS; MCCUS

u is the maximum
capacity of CCUS; cg is the cost per unit of power generation;
PG
g,t,s is the output power of each generator; CCT

g,t,s is the carbon
incentive cost of each generator.
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4.1.2 Constraints
In this paper, the DC power flow model is adopted to model the

power system constraints:

1) Power flow constraints

PG
g,s � PCCUS

i,s + ∑
j∈Ωi

Pij,s + PL
i,s, g ∈ ΩG (31)

Pij,s � θij,s
xij

(32)

Pij,min ≤Pij,s ≤Pij,max (33)
where PG

g,s, P
CCUS
i,s , Pij,s, PL

i,s are the output power of generator, power
consumption of CCUS device, power flow of branch i − j and power
load at node i respectively; θij,s and xij are the phase angle difference
and reactance of branch i − j; Pij,max and Pij,min are maximum and
minimum transmission capacity limits.

2) Generator output constraints

PG
g,min ≤P

G
g,s ≤P

G
g,max, g ∈ ΩG (34)

0≤PG
g,s ≤P

WTG
s,max, g ∈ ΩW (35)

where PG
g,min, P

G
g,max are the minimum and maximum capacity of

generator output; PWTG
s,max is the maximum capacity WTG; ΩG and

ΩW are set of generators and wind turbines.

3) Phase angle constraints

θij, min ≤ θij,s ≤ θij, max (36)
θref,s� 0 (37)

where θij, max, θij, min, θref,s are the maximum, minimum phase angle
difference and phase angle of the slack bus.

4) Wind power capacity constraints

0≤PWTG
N,w ≤PWTG

N,max (38)

5) CCUS operational constraints
a) Carbon capture equipment capacity constraints

0≤Mt ≤Mmax (39)

b) Incoming and outgoing carbon constraints

0≤Min,t ≤ η1 × Mtmax −Mt( )
0≤Mout,t ≤ η2 × Mt

{ (40)

where η1 and η2 are coefficients, i.e., the amount of incoming carbon
during each hour is positively correlated with the remaining space of
carbon dioxide the CCUS device, and the amount of outgoing
carbon during each hour is positively correlated with the carbon
dioxide amount in the CCUS device.

c) Carbon capture rate limitations

0≤ αc ≤ αcmax

αc + σ × Mt ≤ 1
{ (41)

where the carbon capture rate αc is negatively correlated with the
amount of CCUS stored at any moment, where αcmax is the upper
limit of the carbon capture rate and σ is the coefficient.

FIGURE 12
Bus carbon intensity in case 1, 2. (A) The carbon intensity in case1 with source-load BCI. (B) The carbon intensity in case2 with source-side UCI.
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4.2 Lower level: load-side energy storage
capacity planning model

4.2.1 Objective function
The lower layer is mainly to plan the energy storage capacity at

the load side. According to the previous analysis, it is known that the
load also has stochastic uncertainty, so like the source-side planning,
the planning of the load side is also divided into two stage: tactical
level and operational level. The objective function is to minimize the
total economic cost at the load side, which includes the investment
cost of energy storage, the expected value of power purchase cost and
carbon incentive cost at the load side. The decision variables of the
tactical layer are the energy storage capacity configured for each
load. The decision variables of the operational layer are the charging
and discharging power of the storage device, and the objective is to
minimize the expected value of power purchase cost and carbon
incentive cost. The complete objective function of the lower level can
be expressed as Eqs 42, 43.

ObjCost load � min Ε f PDSB
N,i , S( )[ ] +∑NL

i

cpP
DSB
N,i + ccE

DSB
N,i( )⎛⎝ ⎞⎠

(42)

f PDSB
N,i , S( ) � minPDSB s( ) ∑

s∈SL

Poss × ⎛⎝∑T
t�0
⎛⎝∑NL

i�1
(celet (PL

i,t,s + PDSB,cha
i,t,s

−PDSB,dis
i,t,s ) + CCT

i,t,s)⎞⎠⎞⎠ (43)

where cp/cc is the power/capacity investment cost coefficient of the
DSB; PDSB

N,i /E
DSB
N,i is the rated power of DSB/capacity of DSB; celet is

the electricity purchasing price; PDSB,cha
i,t,s /PDSB,dis

i,t,s is the charge/
discharge power of DSB; CCT

i,t,s is the carbon incentive cost.

4.2.2 Constraints
1) energy storage state of charge constraints

EDSB
t+1,s � 1 − γloss( )EDSB

t,s + ηchaP
DSB,cha
t,s − PDSB,dis

t,s /ηdis( )·Δt (44)
E0,s � ET,s (45)

where γloss is the self-discharge rate of the DSB; ηcha/ηdis is the charge
and discharge efficiency.

2) Upper and lower limits of charge/discharge rate constraints

α minE
DSB
N,i ≤EDSB

i,t,s ≤ α maxE
DSB
N,i (46)

0≤PDSB,cha
i,t,s ≤Bcha

i,t,sP
DSB
N,i (47)

0≤PDSB,dis
i,t,s ≤Bdis

i,t,sP
DSB
N,i (48)

where αmin/α max it the minimum and maximum operation depth of
DSB; Bcha

i,t,s/B
dis
i,t,s is the charge/discharge state variables.

3) Charging and discharging state constraints

The energy storage device cannot be in the charging state and the
discharging state at the same time. The constraints can be expressed
as the following equations, which are nonlinear constraints that need
to be linearized by big-M method (Xue et al., 2022).

0≤Bcha
i,t,s + Bdis

i,t,s ≤ 1 (49)
Bcha
i,t,s, B

dis
i,t,s ∈ 0, 1{ } (50)

4) The ratio of rated capacity to rated power constraints

Γ � EDSB
N,i

PDSB
N,i

(51)

4.3 Optimization procedure for bi-layer co-
optimization

Sections 4.1 and 4.2 introduce the optimization models at the
source and load sides, respectively. The bi-layer co-optimization
optimization procedure of both two sides is elaborated in this section
as follows:

Step 1: Initial parameter setting: Firstly, set the initial system
parameters, and then generate the wind power load scenario
through the methods introduced in 3.1.1 and 3.1.2.

Step 2: Upper layer planning model: source-side wind power capacity
and CCUS capacity optimization. Based on the planning model
introduced in Section 4.1, the optimized capacities of wind turbines
and CCUS are obtained, and the initial carbon emission profile and net
carbon emission profile of each generator at the source side are calculated.

Step 3: Load bus carbon intensity calculation: Based on the step 2,
the bus carbon intensity of each load can be calculated according to
the carbon emission flow theory introduced in Section 3.3.1.

Step 4: Lower level planning model: Through the planning model
introduced in Section 4.2, the optimized capacity of the load-side
energy storage device is obtained, and the charging and discharging
quantity situation of the energy storage device is calculated.

Step 5: Demand-side response: The energy storage charging and
discharging amount obtained in step 4 is taken as the demand-side
response and returned to the upper optimization model in step 2,
and go to the next loop.

Step 6: Iterative optimization: The convergence condition of the
optimization is that the change in the demand-side response
between two times is less than a given threshold. Then the
optimization procedure is terminated, and the termination
condition is as shown in Eq. 52.

P
DSB,cha q( )
i,t,s − P

DSB,dis q( )
i,t,s( ) − P

DSB,cha q−1( )
i,t,s − P

DSB,dis q−1( )
i,t,s( )∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣

P
L q( )
i,t,s + P

DSB,cha q( )
i,t,s − P

DSB,dis q( )
i,t,s

≤ ε

(52)

Step7: Output the final optimal planning results.
The flowchart of the whole optimization model is shown in

Figure 3.
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5 CASE studies

In this section, cases with different carbon incentive
mechanisms and working condition were tested on the IEEE
24 bus power system for validity and advantage. The wind-
CCUS-battery power system planning framework with source-
load bilateral carbon incentive mechanism was optimized on the
MATLAB and YALMIP platform with Gurobi solver.

5.1 Basic parameters

The modified IEEE 24-bus power system is shown in Figure 4
(Zimmerman et al., 2011). The modified power system contains
10 generators, 24 buses, 34 transmission branches and 12 power
loads, in which including seven coal-fired power generators and
three expansion planning wind turbine generators. Besides, the
expansion planning CCUS will be placed at three predetermined
coal-fired power plants, and DSB are placed at each load bus. The
predetermined positions of WTG and CCUS are shown in Figure 4.
The parameters for each device are set as follows.

5.1.1 Equipment parameters
The detailed parameters of each generator such as generator

type, capacity, cost coefficient, can carbon emission intensity are
shown in Table 1 (Zimmerman et al., 2011; Nan et al., 2022a). The
parameters of the WTG, CCUS and DSB to be planed are shown in
Tables 2 (Mei et al., 2021; Zhong et al., 2021; Sun et al., 2022b; Gowd
et al., 2023).

5.1.2 Operating parameters
As described in Section 3, the wind power output can be

obtained by wind speed, and the wind speed can be simulated by
stochastic fuzzy modelling and scenario generation method. It is
known that in order to solve the computational time and
efficiency problems caused by large-scale scenarios, the
scenario reduction approach is used to obtain several typical
scenarios so as to achieve the effect of reducing the
computational complexity. In the simulation analysis of this
paper, the target number of scenes is set to 5 in order to
reduce the computation time. The number of target scenes can
also be set to other values as needed. Thus we can simulate the
wind speed variation curve for 1 day by using the method
described earlier, as shown in Figure 5A. Then the power
output curve can be obtained, as shown in Figure 5B. The
power load deviations before and after the scenario reduction
can be simulated by applying the same method, as shown in
Figure 6A. The per-unit power load curves of reduced scenarios
are shown in Figure 6B. Table 3 represents the benchmark power
for all loads.

5.1.3 Time-of-use tariffs and carbon incentive
parameters

The time-of-use tariffs and parameters of the proposed bilateral
carbon incentive (BCI) mechanism are shown in Table 4. Besides, the
carbon allowances allocated for source side can obtained by the initial
economic dispatch results, and load-side carbon allowances can be
obtained based on carbon emission flow theory, are shown in Table 5.

5.2 Analysis of results under different carbon
incentive mechanisms

To illustrate the effectiveness of the bilateral carbon incentive
(BCI) mechanism proposed in this paper, this paper compares and
analyzes the carbon emission reduction under three incentive
mechanisms, which are source-load bilateral carbon incentive
mechanism (source-load BCI), source-side unilateral carbon
incentive mechanism (source-side UCI), and load-side unilateral
carbon incentive mechanism (load-side UCI), as follows:

Case 1: source-load BCI, i.e., the carbon emissions responsibility of
the generators is shared equally by the power generation side and the
load side, with each side bearing 50% of the carbon emissions
responsibility (Nan et al., 2022a; Nan et al., 2022b).

Case 2: source-side UCI, i.e., the carbon emissions responsibility of
the generators is fully borne by the power generation side (Tan et al.,
2021; Wang et al., 2022b).

Case 3: load-side UCI, i.e., the responsibility of carbon emissions
from generators is borne by users (Feng and Zhou, 2022; Yan et al.,
2023).

The simulations under three incentive mechanisms are carried
out to obtain the system planning results, and the specific analysis is
shown in the following sections.

5.2.1 Analysis of wind power, CCUS, and energy
storage planning capacity

The results of capacity planning for wind turbines, energy
storage and CCUS in three cases are shown in Table 6; Figure 7.

The planning capacity of CCUS under the three incentive
mechanisms is 0. This is mainly because the current investment
cost of CCUS is too large, and the carbon emission reduction benefit
brought by installing CCUS is not enough to offset the investment
cost. This is also the common problem in the actual project,
i.e., under the existing technical conditions, after the enterprise
invests a huge amount of money on CCUS, it cannot realize the
benefit of emission reduction. This problem is expected to be solved
gradually with the progress of CCUS technology, large-scale
application and carbon incentive price rising in the future.

The planning capacity of wind turbines under Case 1 is the largest,
and the total planning capacity of wind power reaches 949.4 MW. Unit
1 reaches the maximum capacity, 500 MW. The capacity of load-side
energy storage devices reaches 4,146.5 MWh. The planning capacity of
load-side energy storage under Case 2 is all 0, because at this time, all
the responsibility for the carbon emissions of generating units is borne
by the source side. There is no incentive for load-side carbon reduction,
so installing energy storage devices will not only cannot reduce the
carbon emission cost, but also increase the additional investment cost.
Therefore, no energy storage device is installed at the load side under
this incentive mechanism. For the capacity planning of wind turbines,
since the carbon emission incentive under Case 2 is at the source side,
carbon emission reduction can be promoted by optimizing the
configuration of wind turbines. The total planning capacity of wind
turbines at this time reaches 719.5 MW. Under Case 3, the carbon
emission reduction of wind turbines at the source side needs to be
converted to the load side through the carbon emission flow theory to
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participate in carbon trading, and the incentive effect is not as good as
that of direct incentives on the source side. Therefore, the planning
capacity of wind turbines on the source side is also lower than that of
Cases 1 and 2, and the planning capacity of the wind turbines is only
331.5 MW. However, when the load-side incentive is applied, the
carbon emission reduction effect of the energy storage device can be
fully utilized through the demand response, and the planning capacity
of the energy storage device at the load-side at this time is the largest,
which is 4,722.1 MWh.

In summary, the analysis shows that, under the source-side UCI
mechanism, it can motivate carbon emission reduction of source-side
wind turbines, But it is not effective for stimulating load side energy
storage configuration. Under the load-side UCI mechanism, it can
promote load-side energy storage configuration and carbon reduction,
but cannot incentivize the carbon emission reduction of source-side
wind turbines. Under the source-load BCI incentive mechanism, the
source-side and load-side share the total carbon emissions of the
generator equally and participate in carbon incentives, which can fully
utilize the roles of wind turbines and energy storage.

5.2.2 Analysis of carbon reduction benefits
Further comparing the investment costs and carbon emissions

under three cases, as shown in Table 7 and Figure 8, it can be seen
that the total system investment costs do not differ much under
three cases, The total cost on the source side includes the installed
cost of wind turbines and,CCUS, and daily operation cost which is
composed of the power generation cost and carbon incentive cost.
The total cost on the load side includes the investment cost of the
energy storage and the daily operation cost, which is composed of
electricity purchasing cost and carbon incentive cost. Under three
incentive mechanisms, the carbon emission reduction effect of Case
1 is the best, with a daily reduction of 6.428×103 tCO2 and the
smallest daily cost of the system, which is 5.2326×106 USD. The
carbon emission reduction effect of Case 2 is the second best, with a
carbon emission reduction and daily economic cost of 4.987×103

tCO2 and 5.2411×106 USD, respectively. The carbon emission
reduction effect of Case 3 is the worst, with a carbon emission
reduction and daily economic cost of 1.911×103 tCO2 and
5.2691×106 USD, respectively. Under the load-side carbon
incentive mechanism of Case 3, because the carbon emission
reduction only origins from demand response, the total amount
of carbon emission reduction is much less than that of Cases 1 and 2.
The carbon emission intensity on each bus is shown in Figure 9.

In summary, under the existing technical conditions, due to the
high investment cost of CCUS, the source-load BCI mechanism has
obvious carbon emission reduction effect compared with the
traditional single-end carbon incentive mechanism. The source-
load BCI mechanism can better play the role of carbon incentives for
both the source side and the load side, and promote the
improvement of the output structure of the power generation
side, wind consumption and carbon-oriented demand response.

5.2.3 Analysis of the impact of CCUS costs on
carbon emission reduction

According to the previous analysis, it can be seen that there is no
economic benefit in building CCUS due to the huge investment cost
of CCUS at this stage. However, with the future technological
progress and further large-scale popularization of CCUS, it is

believed that the cost of CCUS will gradually decrease. In order
to further analyze the carbon emission reduction effect of CCUS on
the power system, this paper further analyzes the effect of each
carbon incentive mechanism under different carbon capture cost.
The unit carbon capture investment cost of CCUS is set to different
values from 10USD/t~110USD/t CO2, and the capacity expansion
planning is carried out under different carbon incentive
mechanisms. According to the previous analysis, under the load-
side BCI mechanism, the source side does not bear the responsibility
of carbon emission, so adding CCUS at the source side will not
benefit from carbon incentive, but increase the investment cost at
the source side, leading to the non-configuration of CCUS at this
time. For this reason, in the analysis of the impact of CCUS cost on
carbon emission reduction, we only focus on the two cases of the
source-side carbon incentive and the double-side carbon incentive,
i.e., Case 1 and Case 2. The total economic cost of the system and
carbon emission reduction under different unit CCUS investment
costs are shown in Figure 10.

It can be seen that when the unit investment cost of CCUS is
more than 35USD/t CO2, Case 1 has a better carbon emission
reduction effect than Case 2, which is mainly due to the fact that at
this time, the investment cost of carbon capture is too high, and the
benefits of carbon incentives are not enough to compensate for the
cost of the investment, as analyzed in Section 5.2.1.

When the unit investment cost of CCUS is less than 35USD/
tCO2, Case 2 has a better carbon emission reduction effect than
Case 1. This is because when the cost of carbon capture decreases,
due to the good carbon capture effect of the CCUS unit, deep
emission reduction can be achieved. Compared to case 1, the
carbon emission responsibility under Case 2 is fully borne by
the source-side, leading to more configuration of CCUS and a
better carbon emission reduction effect. To further analyze the
emission reduction effect of CCUS, the carbon emission reduction
result is simulated when the unit investment cost of CCUS is
20USD/tCO2, as shown in Figure 11. It shows that the daily carbon
emission can be reduced by 11.312 × 103t CO2 under Case 2, with a
carbon emission reduction rate of 23.22%, whereas the daily
carbon reduction under Case 1 is 6.558 × 103t CO2, with a
carbon emission reduction rate reaches 13.46%. The total daily
cost of Case 1 and Case 2 is basically the same, which shows that
the carbon emission reduction effect of the source-side BCI
mechanism is better when the unit investment cost of CCUS is
relatively low. Figure 12 shows the carbon emission intensity of
each bus when unit investment cost of CCUS is 20USD/tCO2,
which denotes that the carbon reduction effect of Case 2 is more
obvious.

6 Conclusion

This paper established a source-load bilateral carbon incentive
(Source-load BCI) mechanism for wind-CCUS-battery power
systems based on the carbon emission flow theory to motivate
the capacity planning of WTG, CCUS and DSB. A bi-layer wind-
CCUS-battery expansion stochastic planning framework
considering wind and load uncertainties was constructed.
Simulation analysis was conducted to compare the carbon
emission benefits under three different incentive mechanisms,
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and the impact of CCUS costs on carbon emission reductions from
different carbon incentive mechanisms was analyzed. In short, the
main conclusions can be obtained as follows:

1) Under the existing technology conditions, even with the carbon
incentive mechanism, it is not enough to incentivize CCUS
investment planning due to the high investment cost of CCUS.

2) Without installing CCUS, the bilateral carbon incentive mechanism
is more conducive to promoting system carbon reduction than the
traditional unilateral carbon incentive mechanism. The carbon
reduction rate after expansion planning under source-load BCI is
13.1%, which has superiority over the other two UCT mechanisms,
with the carbon reduction rate of 10.2% (source-side UCI) and 3.9%
(load-sideUCI),respectively.Bilateral carbon incentives can promote
source-side investment in green energy and load-side investment in
energy storage equipment to regulate electricity demand, thus
stimulating the potential for carbon reduction at both the source
and load side.

3) In the future, as the CCUS technologymatures and the investment
cost of CCUS decreases, CCUS will have the possibility of large-
scale development and application. The carbon emission
reduction rate under source-side carbon incentive mechanism
is 23.22%, which is much higer than the source-load carbon
incentive mechanism, with the carbon emission reduction rate
of 13.46%. At this time, the system using source-side carbon
incentive mechanism can reduce carbon more significantly than
bilateral carbon incentive mechanism, while the difference in total
daily cost between the two is not significant.

This paper analyzes the results of new energy expansion planning
under three different carbon trading incentive mechanisms, and
analyzes the planning results under different CCUS unit
investment costs. However, the installation of CCUS is not only
related to its own investment cost, but also related to the carbon
price in carbon trading, when the carbon price is high enough, it can
also promote the installation of CCUS so as to benefit from carbon
emission reduction, so in the future, we can also analyze the impact of
carbon price, carbon tax and other perspectives on the planning
capacity of CCUS, so as to better improve the carbon trading
mechanism, and to promote the development of the power system
of decarbonization.
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