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Interval model of a wind turbine
power curve
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Yulei Li, Ruyu Bi, Haitao Zhao and Lingxiao Jiao*

State Grid Hubei Extra High Voltage Company, Wuhan, Hubei, China

The wind turbine power curve model is critical to a wind turbine’s power
prediction and performance analysis. However, abnormal data in the training
set decrease the prediction accuracy of trained models. This paper proposes
a sample average approach-based method to construct an interval model of
a wind turbine, which increases robustness against abnormal data and further
improves the model accuracy. We compare our proposed methods with the
traditional neural network-based and Bayesian neural network-based models in
experimental data-based validations. Our model shows better performance in
both accuracy and computational time.
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1 Introduction

Wind power has become a significant renewable power source of global energy systems
(Gilbert et al., 2020). To ensure operation safety and high efficiency, it is critical to monitor
the operation conditions of wind turbines to predict wind power output and detect potential
faults (Wang andLiu, 2021).TheSupervisoryControl andDataAcquisition (SCADA) system
provides wind turbine data, for example, wind speed and power, for establishing models
for wind turbine power prediction and fault detection (Y. Wang et al., 2019). A significant
proportion of the SCADA data is abnormal due to communication failures, maintenance,
and other reasons (Morrison et al., 2022). A model trained by a dataset with abnormal data
is biased from a real model and suffers from reduced accuracy (Ye et al., 2021). It is necessary
to consider the data cleaning-based method to obtain a model with improved robustness
against abnormal data.

Prior results of the data cleaning method were based on clustering algorithms
(Zheng et al., 2015; 2010; Yesilbudak, 2016). In clustering algorithm-based methods, k-
means, manifold spectral clustering, and other algorithms are applied to separate the wind
power curve into partitions and then identify the outliers based on distances to the cluster
centers. An alternative method is to determine the upper and lower boundaries of the wind
power curve by boundary models. For example, Shen et al. (2019) used change point and
quantile to estimate a contour for normal data. However, the aforementioned methods fail
to identify the outliers when there are many cluster centers. The setting of the algorithm
parameters, for example, cluster number in the clustering algorithm-based method, is also
unexplainable. These reasons make the clustering algorithm-based and existing boundary
methods suffer from issues of misidentification.

Normal distribution model-based methods, proposed to overcome issues of
misidentification, use the normal distribution to fit the power data’s distribution and
then calculate the probability contours. Data with low probability are regarded as
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abnormal data. Ouyang et al. (2017) calculated mean and standard
deviation values based on exponential smoothing. Stephen et al.
(2011) used bivariate joint distribution to fit the wind power data’s
distribution.

However, the aforementioned existing methods for abnormal
detection toward improving the model accuracy have the following
disadvantages:

• Many real outliers, especially those near the normal region,
cannot be recognized.
• There are toomany hyperparameters to be set.The performance
highly depends on the hyperparameters, while the function of
each hyperparameter is unexplainable.
• To ensure performance, the prior information on the normal
points should be available, which is not practical in general
cases.

Another practical way to quantify uncertainty is to directly
use a confidence interval-aware model, known as the interval
predictor model (Campi et al., 2009; Garattia et al., 2019). The
scenario approach presented by Calafiore and Campi (2006); Campi
and Garatti (2019); and (2011); Campi et al. (2015) can be used
to establish the interval predictor model. However, the scenario
approach cannot give an exact confidence bound since a small
number of samples will give a bound with high risk, and a large
number of samples will give a conservative bound. Luedtke and
Ahmed (2008) proposed a sample average approach to obtain an
approximate solution that exactly converges to the original as the
sample number increases. In this paper, we propose the sample
average approach-based interval models and extend them into
extreme learning machines to provide a fast algorithm for training
neural networks that can exactly give the desired confidence interval.
The proposed interval model solves the abnormal detection and
wind power curve regression problems together in a direct way.

We implement experimental data-based validation to compare the
proposed methods with several existing methods.

The rest of this paper is organized in the followingway: Section 2
briefly introduces the wind power curve and then gives a formal
problem statement. In Section 3, extreme learning machine and
the theory of sample average approach for chance-constrained
optimization are briefly reviewed; Section 4 presents the proposed
interval models combining the extreme learning machine and
sample average approach; and Section 5 presents the results and
discussions of experimental data-based validation. Finally, Section 6
concludes the paper.

2 Problem description

As shown in Figure 1, a wind turbine power curve has the
following three critical points, namely, A, B, and C, which divide
the wind turbine power curve into four segments (Marvuglia and
Messineo, 2012; Shokrzadeh et al., 2014). Point A is the cut-in
wind speed from where the wind turbine starts to output the
power. Point B represents the rated power before which the output
power increases as the wind speed increases. Point C is the cut-out
speed from where the output wind power decreases even with the
increased wind speed.

The segment between points B and C gives the rated level of the
wind power output. The segment between points A and B shows a
non-linear correlation between wind speed and power. Let v be the
wind speed and P be the wind power.The non-linear correlation can
be described approximately by the following equation:

P = 1
2
CpρπR

2v3, (1)

whereCp is the coefficient of wind turbine power, ρ is the air density,
and R is wind rotor’s radius.

FIGURE 1
Brief illustration of the wind turbine power curve and estimation biases using abnormal data.
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A dataset obtained by the SCADA system can be defined by the
following equation:

DS
N = {(vi,Pi)}

N
i=1, (2)

where N is the number of the data samples. As shown in Figure 1,
the SCADA system’s data have normal and abnormal data. In other
words,DS

N is a corrupted dataset. Using the normal data, we can get
an estimated curve (blue dashed line) close to the real curve (purple
solid line). However, with the corrupted data, the estimated curve
(red dashed line) is biased from the real curve.

Therefore, it is necessary to investigate a robust power curve
estimation method for the abnormal data. In this paper, we address
the following problem.

min
f

Nc

∑
i=1
|Pi − f(vi) |2

s.t. (vi,Pi) ∈ D̃Nr
.

(3)

Here, the set D̃Nr
is a subset of DS

N, which is obtained by cleaning
the abnormal data. Thus, we have to address the following two sub-
problems:

• data cleaning problem to obtain a cleaned data D̃Nr
;

• regression problem described by (3).

3 Preliminaries

This section briefly reviews the extreme learning machine and
sample average approach as a preparation for introducing our
proposed interval models.

3.1 Extreme learning machine

Extreme learning machine is a fast algorithm to train a single-
layer neural network (Huang et al., 2006). A single-layer neural
network has an input layer, a hidden layer, and an output layer. Let
a positive integer L be the number of neurons. The hidden layer can
be defined as a vector function by the following expression:

h (x) ≔ [h1 (x) ,…,hL (x)]⊤.

Each hi(x), i = 1,…,L is a neuron. Often, we choose the neuron
as follows:

hi (x) ≔ G(ai,bi,x) ,

where ai,bi are the hyperparameters in the i− th neuron. The
neuron can be a sigmoid function or a Gaussian function, etc. Let

β≔ [β1,…,βL]
⊤

be the coefficient of the output layer. Then, we can write the single-
layer network as follows:

y (x) = β⊤h (x) =
L

∑
i=1

βihi (x) . (4)

As a summary, the parameters that need to be trained are
coefficient vector β and hyperparameters (ai,bi)

L
i=1. The extreme

learning machine is used to train β, (ai,bi)
L
i=1 with a giving setDN.

The algorithm of the extreme learning machine is summarized
as follows:

• randomly generate hyperparameters (ai,bi)
L
i=1;

• estimate β by solving

min
β

N

∑
t=1
‖β⊤h(xt) − yt‖

2, (5)

which gives the solution as

β* ≔ (H
⊤H)−1H⊤YN, (6)

whereH ∈ ℝN×L is defined as

[[[[

[

G (a1,b1,x1) … G (aL,bL,x1)

… … …

G (a1,b1,xN) … G (aL,bL,xN)

]]]]

]

(7)

and YN is defined as

YN ≔
[[[[

[

y1
…

yN

]]]]

]

. (8)

Theorem 2.2 of Huang et al. (2006) provides the universal
approximation property of an extreme learning machine-based
single neural network regarding a dataset DN. We summarize it in
Lemma 1.

Lemma 1: For any given small ɛ and activation function G(⋅) which
is infinitely differentiable in any interval, there exists N̄ such that, for
N > N̄ arbitrary distinct samples (xt,yt), for any (ai,bi)Li=1 randomly
extracted according to any continuous probability distribution, with
probability one,

N

∑
t=1
‖β⊤* h(xt) − yt‖

2 < ε. (9)

Lemma 1 shows that we could use a single-layer neural network
to approximate the wind power curve.

3.2 Sample average approach

Chance-constrained optimization seeks to optimize an objective
under a stochastic constraint (Campi et al., 2015; Shen et al., 2020;
2021), which is written as follows:

min
z∈Z

J (z)

s.t.Prξ {G (z,ξ) ≤ 0} ≥ 1− α, ξ ∈ Ξ,
(10)

where z ∈Z ⊂ ℝnu denotes the input variable with the compact
feasible set Z , uncertainty is represented by ξ ∈ Ξ ⊂ ℝnξ defined
on probability space (Ξ,B(Ξ),Prξ), J(z):Z → ℝ and ∀ξ ∈ Ξ,G:Z ×
Ξ → ℝl are continuous and differentiable objective function and
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constraint function in z, respectively. Problem (10) is a relaxation
of robust optimization in which α is zero. The optimal objective
function of (10) is defined by J*α. Let Z*

α be the optimal solution set
of (10).

The sample-based approximation is a practical way to solve
chance-constrained optimization. This paper adopts the sample
average approach presented by Luedtke and Ahmed (2008). In the
sample average approach, samples are extracted from the sample
space Ξ, and then, an approximate problem of the original chance-
constrained optimization is established. Let (ξ(1),…,ξ(N)) be an
independent Monte Carlo sample set of the random variable ξ.
After choosing ϵ ∈ [0,1) and η > 0, with sample set (ξ(1),…,ξ(N)), the
sample average approximation problem is defined as follows:

min
z∈Z

J (z)

s.t. z ∈ZN
ϵ,γ,

(11)

where ZN
ϵ,γ is defined as follows:

ZN
ϵ,γ = {z ∈Z |

1
N

N

∑
i=1
𝕀(G(z,ξ(i)) + γ) ≥ 1− ϵ}, (12)

where Λη(⋅) is defined by the following equation:

𝕀(t) =
{
{
{

0, t > 0,

1, if t ≤ 0.
(13)

Let ̃JNϵ,γ be the optimal objective function of (10) and ̃ZN
ϵ,γ be the

optimal solution. Note that both ̃JNϵ,γ and ̃ZN
ϵ,γ are decided by the

sample set, and the sample set is randomly extracted. Thus, ̃JNϵ,γ is a
random variable, and ̃ZN

ϵ,γ is a random set.The uniform convergence
of ̃JNϵ,γ and ̃Z

N
ϵ,γ should be addressed.

The following assumption on G(⋅) holds throughout this paper.

Assumption 1: There exists L > 0 such that

|G (z,ξ) −G(z′,ξ) | ≤ L‖z− z′‖∞, ∀z,z
′ ∈Z and ∀ξ ∈ Ξ. (14)

Assumption 1 is reasonable since we could choose an activation
function that makes the neural networks satisfy it and also preserve
the universal approximation.

The uniform convergence of ̃JNϵ,γ and ̃ZN
ϵ,γ is summarized from

Luedtke and Ahmed (2008).

Lemma 2: Suppose that Assumption 1 holds as N→∞, γ→ 0, and
ϵ→ α, ̃JNϵ,γ→ J*α, and 𝔻( ̃Z

N
ϵ,γ,Z*

α) → 0 with probability 1.
Lemma 2 shows that the approximate problem’s solution

converges to one in the solution set of the original problem if the
number of samples increases to infinite. In addition, for a certain
bounded value, we could use a large enough sample number to
ensure that the approximate problem’s solution is within that bound.

4 Proposed method

This section presents the proposed extreme learning machine
with a confidence region. The convergence analysis is given. In
addition, the proposed algorithm is presented.

4.1 Extreme learning machine with a
confidence region

Theprevious extreme learningmachine gives a single prediction
value for a given input. In this paper, we investigate a computation
method to give a confidence region for a given input with the
center of the confidence region as the estimation of the curve
and the normal data located in the confidence region with high
probability. In this way, we can solve problem (3).The concept of the
extreme learningmachinewith the confidence region is illustrated in
Figure 2

We want to establish an interval model to give a power curve’s
interval for any given wind speed and require the correct wind
power prediction to be within the interval at a given probability.This

FIGURE 2
Basic concept of the extreme learning machine with a confidence region.
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FIGURE 3
Experimental dataset: (A) data without labels and (B) data with labels.

FIGURE 4
Examples of boundaries: (A) SSELM, (B) BELM, and (C) SNN.

interval should be the smallest since a large interval has the issue of
being too conservative. An interval model based on a single-layer
neural network can be defined by the following equation:

Ipower ≔ { ̃P = β⊤h (v) + e,β ∈ B ⊆ ℝL,e ∈ [−γ,γ] ,γ ∈ ℝ+} . (15)

Let

θ ≔ (β,e) (16)

be the parameter vector that specifies the interval. We have a set
of θ as Θ = B × [−γ,γ]. The wind power set for a given v and
hyperparameters (ai,bi)

L
i=1 can be obtained by Θ.

In this paper, we use a ball set for Ipower . With a little
manipulation of notation, Ipower is also used for the ball interval of
wind power.Therefore, the setB is a ball. Let c and r be the center of
B. Then, the set B can be specified by the following equation:

B = {β ∈ ℝL:‖β− c‖ ≤ r} . (17)

With B defined by (17), we can rewrite Ipower in the following form:

Ipower (v, (ai,bi)Li=1,c, r,γ) = [c
⊤h (v) − (r‖h (v)‖+ γ) ,

c⊤h (v) + (r‖h (v)‖+ γ)] .
(18)

TABLE 1 Abnormal data detection accuracy (%) of different methods.

SSELM BELM SNN

Accuracy 91.3291 78.9714 63.5733

Then, the problem of solving the extreme learningmachine with
a confidence region is written as follows:

min
(ai,bi)

L
i=1,c,r,γ

ηr+ γ

s.t. r,γ > 0,

ℙ{P (u) ∈ Ipower (v, (ai,bi)Li=1,c, r,γ) ,∀v} ≥ 1− ε.

(19)

Here, η is a positive number. By using the extreme learning machine
algorithm (Lemma 1), we can obtain (ai,bi)

L
i=1 randomly. Then,

after obtaining (ai,bi)
L
i=1 randomly, we simplify the problem to the

following one:

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,

ℙ{P (u) ∈ Ipower (v, (ai,bi)Li=1,c, r,γ) ,∀v} ≥ 1− ε.

(20)
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FIGURE 5
Results of wind power predictions on a test set by different methods: (A) ELM, (B) SSELM, (C) BELM, and (D) SNN.

TABLE 2 Error statistics of different methods.

TrueELM SSELM ELM BELM SNN

Root of MSE 31.7651 31.8510 34.4626 32.9476 34.2956

MAE 21.3421 21.3935 23.3502 22.3977 22.8960

Let z andZε be the decision variable and feasible region of (20),
respectively. Let

ℓ*ε ≔min
z∈Zε

ηr+ γ (21)

be the optimal objective value of problem (20) and

Z*
ε ≔ {z ∈Zε:ηr+ γ = ℓ*ε} (22)

be the optimal solution set. Let z*ε ∈ Z*
ε be an optimal solution. With

z*ε, we can obtain I*
power for any wind speed v. We can reject all data

outside of I*
power as abnormal data.

4.2 Sample-based approximation and
proposed algorithm

Due to chance constraints, problem (20) is not intractable.
With the sample set DS

N, we can obtain an approximate problem of
problem (20) by the following expression:

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,
N

∑
t=1
𝕀{Pt ∈ Ipower (vt, (ai,bi)Li=1,c, r,γ)} ≥ (1− ε

′)N.

(23)

Here, 𝕀{⋅} is an indicator function defined by (13). Let ̃ℓNε′ and Z̃N
ε′ be

the optimal objective value and optimal solution set of problem (23),
respectively.

Theorem 1: As N→∞ and ɛ′ → ɛ, ̃ℓNε′ → ℓ*ε, and 𝔻(Z̃
N
ε′ ,Z

*
ε) → 0

with probability 1.

 Inputs: Dataset DS
N
, ɛ′

  1: Solve Problem (23) to obtain z̃Nε′ ∈ Z̃
N
ε′

  2: Abnormal data detection

D̃Nr
= {(vt,Pt) ∈DS

N
:Pt ∈ Ipower (vt, (ai,bi)Li=1, c̃, ̃r, ̃γ) .} (24)

  3: Estimated curve

̃Pt = β̃
⊤
h (vt) , t = 1,…,N. (25)

 Output: D̃Nr
, ̃Pt, t = 1,…,N.

Algorithm 1. Proposed algorithm of the extreme learning machine with a
confidence region.

Proof. Theorem 1 can be proved by directly applying Lemma 2
since problem (20) satisfies Assumption 1.

The proposed algorithm of the extreme learning machine with a
confidence region is presented as follows.

Notice that (25) gives the estimated curve.The confidence bound
(upper and lower bounds) can be given using the interval obtained
by solving Problem (23).

5 Experimental data-based validation

This section presents the results of experimental data-based
validations. First, the experimental dataset is introduced. Then, the
results given by the proposed method and several existing methods
are compared.

5.1 Experimental data and settings

Figure 3 plots the data used in this validation. The dataset was
collected from a wind farm in Hubei, China. Figure 3A shows all
data, including abnormal data and normal data. Specialists were
approached to give labels on the data set. The data with labels are
plotted in Figure 3B.
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In this paper, we compare the performance of the following
methods:

• TrueELM: extreme learning machine using normal data;
• SSELM: the proposed extreme learning machine combined
with the sample average approach;
• ELM: extreme learning machine without data cleaning;
• BELM: Bayesian extreme learning machine proposed by Soria-
Olivas et al. (2011);
• SNN: Neural network trained by the scenario approach
presented by Sadeghi et al. (2019).

In BELM, the parameter β is assumed to obey some predefined
distribution. First, a prior distribution is set.With newdata, the prior
distribution is adjusted to a posterior distribution so that the data
have maximum likelihood.Then, the corresponding output will also
have a conditional probability, from which the confidence interval
can be calculated. In addition, SNN can be regarded as a special case
of SSELM with ɛ′ = 0.

We evaluate the mean square error (MSE) and mean absolute
error (MAE) regarding the normal data in the evaluations.

5.2 Results and discussions

Figure 4 gives the examples of boundaries estimated by SSELM,
BELM, and SNN. For each method, 10,000 samples are used.
For SSELM, the probability threshold is set as 0.09. Each method
also gives a corresponding center point of the confidence region.
The abnormal data detection performance of different methods is
summarized in Table 1. SSELM shows a better performance than
other methods. The reason that SNN shows a poor performance
is that it includes more abnormal data since it essentially gives a
completely robust interval.

The results of wind power predictions on a text set are plotted in
Figure 5. Note that the proposedmethod, SSELM, gives a prediction
that concentrates around the real value with a shorter distance.More
comprehensive results of error statistics are summarized in Table 2,
which shows that the proposed method, SSELM, performs very
close to the results the method gave using normal data. This shows
the effectiveness of the proposed method. The proposed method
increases the robustness of the regression against the abnormal data
since it can clean the abnormal data effectively and thus increases
the accuracy of regression.

6 Conclusion

This paper proposes an interval model of wind turbine power
curves to improve the accuracy of wind power prediction. The
interval model combines an extreme learning machine and the
sample average approach. Thus, the proposed interval model can
give a confidence region and center point of the wind power

prediction for a given wind speed. The confidence region can
be used for abnormal data detection, and the center point can
be used as the estimation of the wind turbine power curve
point. Experimental data-based validations have been conducted to
compare the proposed method with several existing methods. The
results show that the proposed method improves the accuracy of
both abnormal detection and wind power curve estimation.
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