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This paper studies the effect of different turbulent wind speeds on the operation
of wind turbines. The proportion of wind power in the field of new energy
generation has increased massively and has gained wide application and
attention. However, the smooth operation and the stability of the output power
of the wind power generation system are susceptible to wind speed fluctuations.
To tackle this problem, this paper takes a 5 MW horizontal axis wind turbine as
the research object that proposes a parameter adaptive robust control method
to achieve self-optimization of controller parameters by means of Bayesian
optimization. The 5 MW wind turbine model is utilized to verify the feasibility of
the algorithm by combining the wind speed types commonly found in a high-
altitude region in northwestern. The simulation results validate the effectiveness
of the proposed scheme. The outcomes demonstrate that Bayesian optimization
can significantly decrease the effects of wind speed instability. The output power
increases by 1.9% on average at low wind speed and stabilizes on 5 MW at high
wind speed. Therefore, the stable controller for wind power output is the robust
model predictive controller with parameter improvement.

KEYWORDS

Bayesian optimization, parameter self-optimization, robust model predictive control,
5 MW wind turbine, high altitude areas in northwestern China

1 Introduction

As a renewable energy source, wind energy has the properties of high reserves, widely
spread, low emission and clean. The promotion of the wind power technology industry
is of major significance to China in achieving the goals of peak carbon dioxide emissions
and carbon neutrality, promoting energy structure transition, building a new energy system
with new energy as the mainstay, and fostering new dynamics of economic development
(Rezamand et al., 2020; Qin et al., 2021; Kumar et al., 2023). With the advancement of wind
power technique, the safe operation of wind power systems is becoming increasingly crucial.
So, the operational quality of wind power systems is amain factor of current research. As one
of themost widely used and significant models with high power generation efficiency, 5 MW
wind turbines occupy 60%–70% of the market share in the high-altitude areas of western
China. In addition, randomfluctuation ofwind speednot only affects the steady performance
of wind power generation, but also requires constant switching of control targets according
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to different wind speed ranges (Gao et al., 2022). Therefore, this
paper focuses on how to minimize the influences of wind speed
variations on the steady performance of wind turbines, which will
place further demands on the controlling methods of wind power
systems (Xu et al., 2019).

Model predictive control (MPC) and robust model predictive
control (RMPC) are two common methods which are widely used
in the wind power generation systems. (Shang et al., 2020). The
traditional method of control for wind power systems is MPC.
MPC is a model-based control approach that calculates the optimal
control input for a future period by predicting the dynamicmodel of
the system (Chen et al., 2022). The stochastic nature of wind speeds
during wind turbine generation has been the subject of intensive
research by many scholars. The load of blades and towers of wind
power systems were analyzed and an MPC algorithm was proposed
to suppress wind speed fluctuations. Simulation results show that
MPC can make the active power of the wind turbine stable and
reduce the blade load (Zhu et al., 2014). To address the nonlinear
control issue of wind turbines, a multi-model predictive control
was established for the non-linear multi-coupling characteristics
of wind power system, which has obtained good control effect
and effectively suppressed the system disturbance (Ye et al., 2015).
Multi-timescale dynamic coordination strategies were proposed
based on model predictive control for active distribution network
operation optimization, enabling flexible regulation of resources.
(Dong et al., 2016). During the control of wind power systems,MPC
was used for controlling the rotational speed of the wind turbine,
the blade angle and the output power of the generator in order
to achieve optimal power generation (David et al., 2022). For the
power control problem of wind power systems with non-linear
characteristics, a non-linear model predictive control based on an
input-output feedback linearization strategy was proposed to ensure
high efficiency and high load tracking performance (Liu and Kong,
2014). To reduce the unbalanced load on the wind turbine paddles,
an integrated control strategy combiningMPCwith neural networks
and adaptive PID was proposed to effectively achieve real-time
control of the paddle pitch angle (Wang et al., 2017). A controller
that does not require wind speed measurements was designed to
correct model uncertainty in the form of magnitude scaling errors.
(Mulders et al., 2023).

In addition, MPC is combined with distributed control
structures and deep learning algorithms to maximize the power
production of wind power systems (Yin and Zhao, 2021). However,
the stochastic nature of wind resources is dependent on wind speed
and is not removed by model updates and feedback corrections,
so effective model predictive control strategies need to be designed
to guarantee the steady and reliable performance of wind power
systems in the presence of different wind speed variations. To
address the impact of real-time wind speed uncertainty on
wind power systems, a disturbance observer was designed to
estimate unknown disturbances and improve the robustness of the
generalized predictive controller (Kamel et al., 2015). A distributed
predictive controller was designed to assume bounded disturbances
in the wind field (Zhao et al., 2015). Wind power systems have
diverse control objectives in the presence of various wind speed
ranges (Cui and Liu, 2019). The operation of wind power systems
was improved by studying transmission line fault phase selection.
(Zhang et al., 2018). A small capacity power conversion interface

capable of efficiently introduced to track the maximum power
of a wind power systemw (Wu and Wang, 2014). A prediction
model was built for doubly-fed wind turbines based on support
vector machines to achieve optimal speed tracking, which is
meaningful for wind power systems to efficiently use wind energy
to generate electricity (Liu et al., 2014). A multivariate control
strategy based on model predictive control was presented for
variable pitch control of wind energy conversion systems. The
proposed scheme enhanced the power quality and lengthen the
service time of the wind turbine parts (Soliman et al., 2011). As a
matter of fact, the ideal linear time-invariant model in practical
control hardly exists. Furthermore, wind power systems always
encounter wind speed disturbances with uncertainty (Yang et al.,
2023). Nevertheless, the above-mentioned methods of control all
indirectly take into account the influence ofwind speed instability on
the system constraints, making it difficult to design controllers that
are accurate in real time.Moreover, theMPC is applied to the control
process of wind power systems without directly considering the
uncertainty of wind speed. Consequently, the MPC algorithm needs
to be improved to enhance the robustness of wind power system
operation.

To control wind power systems more effectively, the uncertainty
of wind speed needs to be taken into account directly in the
controller design process. Existing research in model predictive
control theory has used invariant sets, linear matrix inequality
(LMI), and others as basic tools, and Lyapunov stability as
the analytical method for current predictive control problems
(Song et al., 2017). On these foundations, a min-max RMPC
strategy was designed for wind power systems (Moamed et al.,
2017). By exploiting the boundary of wind speed uncertainty, the
active power is rated at full load operation while ensuring system
stability and reducing the torque load. In order to cope with the
uncertainty caused by the stochastic and fluctuating nature of new
energy sources to the load frequency control of interconnected
systems, a RMPC strategy implemented based on Tube invariant
sets for the optimal operation of wind power systems (Zhang et al.,
2020). A RMPC based on a linear time-varying model was devised.
It completed the effective control of the turbine by enhancing
the robustness of the system when additional disturbances occur
(Falugi and Mayne, 2014). Tube was employed based continuous
time RMPC to ensure robustness of non-linear wind power systems
operating above rated wind speeds (Lasheen et al., 2017). Multi-
objective maintenance and closed-loop maintenance strategies were
introduced to address the uncertainty awareness of offshore wind
turbine decision-making under random wind speeds. The effects of
different uncertainties onmaintenance performancewere quantified
(Li et al., 2023; Li et al., 2022). Moreover, microscale obstacle
resolution models, such as MITRAS (Salim et al., 2018) and PALM
(Maronga et al., 2020), play a crucial role in the parameterization
of wind turbines in urban areas (Wurps et al., 2020; Stanly et al.,
2022). These models use standard methods, usch as simple actuator
disk and blade element momentum theory (Calaf et al., 2010; Wu
and Porté-Agel, 2011), to account for the interaction between
the wind turbines and the atmosphere. These models account
also for the effects of trees (Salim et al., 2015), including wind
speed reduction, turbulence generation, dissipation due to plant
leaf drag, and radiation absorption and shading (Krč et al., 2021;
Salim et al., 2022). The parameterization of turbulence generation
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in wind turbine wake is achieved by adding an extra part to the
turbulent mechanical generation term in the turbulent dynamic
energy equation. An open source wind model was developed based
on GIS, which is a relatively fast and accurate model that is easy to
use and capable of generatingwindfields. It can be used both indoors
and outdoors for complex urban environments (Bernard et al.,
2023).

With the development of wind power technology, RMPC is
well used for the control of wind power systems. RMPC is a
control methodology that adds robust design to MPC to effectively
overcome the effects of model errors and external disturbances
on the control system. The combined application of RMPC and
stochastic model prediction algorithms to uncertain systems is
studied comparatively, visualizing the performance and reliability of
RMPC algorithms through simulation examples (Xie et al., 2017).
Model-free adaptive control was proposed for doubly-fed wind
turbines to improve the overall operational performance of the
wind energy conversion system (Mosaad et al., 2020). Inwind power
systems, the RMPC can be applied to control the speed of the
wind turbine, the angle of the blades, the output power of the
generator, and so forth, for the purpose of robust control of the
system. The RMPC was utilized to control the output power of a
wind turbine, whichwas good at reducing output power fluctuations
(Zhang et al., 2022). A finite control set RMPC control strategy was
designed, which is important for the power quality improvement
and stable operation of doubly-fedwind power systems (Alami et al.,
2023). The fan speed and paddle angle were controlled with an
RMPC in pursuit of robust control of the system (Lio et al., 2017).
Nonlinear model predictive control was proposed for coordinated
optimization of wind energy resources in power systems. The
efficiency of wind energy capture and conversion is improved.
(Sahar et al., 2017). Also, An intelligent maximum power tracking
algorithm was developed, which improved the output power to
maximize the revenue of wind farms (Huang et al., 2015). An
additional feedback control loop is proposed for the active power
control of the wind farm. The distribution of regulated power
demand between wind turbines were improved. A wind farm
example was also simulated using PALM, thus testing the suitability
of the controller (Vali et al., 2018). All of the above approaches have
been successful in addressing the overall operational performance,
structural uncertainty or external disturbance uncertainty of wind
power systems. However, wind speed is a random and discontinuous
disturbance input and difficult to predict. Minimizing wind speed
uncertainty is a prerequisite to ensure that wind power system
control can be carried out smoothly. At the same time the
robust boundaries for stochastic perturbations are not easy to
determine, too small or large a boundary can cause problems
of under-robustness and over-conservatism of the control system.
Thus, the integrated consideration of different random wind speed
disturbance inputs and the optimization of robust boundaries
are important issues to be addressed in the control of wind
turbine.

Based on the above overview, this paper designs a robust model
predictive controller with self-optimizing parameters to increase
the efficiency of wind turbine, using a 5 MW wind turbine as
the research target. The robust boundaries are optimized based
on Bayesian optimization methods to ensure robust and low-
conservative controllers. The innovation is reflected in two aspects.

On the one hand, the wind turbine needs to switch back and forth
between control targets for different wind speeds. Moreover, the use
of RMPCmakes the wind turbinemore stable to complete the switch
between different control targets. On the other hand, Bayesian
optimization is used to achieve self-optimization of the controller
parameters to address the problem of inappropriate setting of the
robust model prediction controller weight parameters. In this paper,
different wind conditions are simulated in a high-altitude region
of northwest China and the reliability of the proposed approach
is validated through simulation studies. The results demonstrate
that this approach can strengthen the capability of wind power
systems, including improving power generation efficiency, reducing
mechanical losses and extending equipment life. In conclusion, a
robust model predictive controller based on Bayesian optimization
is an advanced method to optimize the behavior of wind power
systems.

The sections of this paper are structured as follows. Section 2
develops a wind speed model and a non-linear mathematical
model of the wind power system. Moreover, it describes the
control problems of the wind turbine behind different wind
speed. Section 3 introduces the Bayesian algorithm. It designs a
robust model predictive controller based on Bayesian parameter
self-optimization to establish an RMPC-based control scheme
for wind power systems. Section 4 simulates and analyses the
control effect of the RMPC on the wind power system under two
different wind conditions. Section 5 draws the conclusions of this
paper.

2 System models

Wind power systems are designed to consist of three
components. They are the wind turbine, the drive system and
the generator. Figure 1 is a schematic diagram of wind energy
conversion. Wind turbine enables the process of converting wind
energy into electricity. Firstly, the varying wind speed drives the
rotation of the wind wheel, converting the wind energy into
mechanical energy. Then, it is transferred to the generator via
the drive system in the unit, which turns the rotor to convert the
mechanical energy into electrical energy, which is then connected
to the grid via a two-way inverter. This paper focuses on the
control of megawatt-class variable-speed pitch wind turbines.
Figure 2 shows a specific flow chart of the methodology of this
study.

2.1 Wind speed model for wind farms

Due to the rich wind energy resources at high altitude in
northwest China, the wind direction is highly concentrated and
the wind energy has a high level of quality. In general, wind speed
becomes higher with increasing altitude. Due to the large difference
in altitude, the wind speed varies greatly, with the annual average
wind speed at 70 m high ranging from about 6 m/s to 10 m/s. High
altitude areas have a variety of wind speed types suitable for the
establishment and operation of wind farms. The wind speed at
an altitude in north-western China is used as the simulated wind
speed so that a more realistic wind speed model can be obtained.
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FIGURE 1
Diagram of wind energy conversion. The kinetic energy of the wind is converted into mechanical kinetic energy, which is then converted into electrical
kinetic energy.

vm represents the average wind speed, which conforms to the
mathematical expectations of the Weibull distribution. As shown in
Eq. 1. Its size is determined by the shape and scale parameters, s1 is
the scale parameter and s2 is the shape parameter (Usta et al., 2018).

vm =
s2
s1
(
vm
s1
)
s2−1

exp(−(
vm
s1
)
s2
) (1)

A steady wind is a wind field in which the wind speed and
direction remain constant in time and space. This wind field is
usually caused by the atmospheric circulation and the wind speed
and direction are relatively stable without significant fluctuations
or disturbances. Uniform winds are a common meteorological
condition in areas such as aviation, navigation and construction, and
can provide a stable environment for the work involved. Its wind
speed model can be described by the Eq. 2 (Cao et al., 2021).

vm = v0 +Δv (2)

where v0 is the base wind speed and Δv is the wind speed
disturbance.

Turbulent winds are wind fields in which the wind speed
and direction change randomly in time and space. Such wind
fields are usually caused by factors such as topography, buildings
and meteorological conditions, with significant fluctuations and
disturbances in wind speed and direction. Turbulent winds are
a common meteorological condition in aviation, navigation and
construction and have a significant impact on the safety and stability
of the work involved. The study and prediction of turbulent winds is
therefore of great importance. Its wind speedmodel can be described
by the Eq. 3.

vt = v0 +Δv+ δv (3)

where vt is the turbulent velocity, v0 is the basic wind speed, Δv is the
winddisturbance and δv is the turbulentwind speed. Turbulentwind
speeds are random in magnitude and direction, it can be described
by statistical methods.

Turbulent wind speeds obey the Gaussian distribution in Eq. 4.

vt ∼ N(0,σ2) (4)

where σ is the standard deviation.

2.2 Wind power system model

Before designing the RMPC, a mathematical model is needed to
describe the wind power generation system (WPGS). WPGS consist
of a number of components such as wind turbines, generators,
transmissions and controllers. Amongst other things, the wind
turbine is the core component of the WPGS and its speed and
torque have a very significant impact on the performance of the
WPGS. Therefore, this paper establishes the mathematical model of
the WPGS as shown in Eq. 5.

{{{{{{{{{{
{{{{{{{{{{
{

Jrω̇r = Tr −Ksθ−Ds
̇θ

̇θ = ωr −
ωg

NM

Jgω̇g = −Tg +
Ks

NM
θ+

Ds

NM

̇θ′

Pg = ηgωgTg

(5)

where Tr is the rotor torque, as shown in Eq. 6.

Tr =
1
2
ρπR2CP (λ,β) (6)
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FIGURE 2
Flow chart of the proposed method. The model was linearized and the
controller model was built using RMPC. Finally, the controller
parameters were optimized using Bayesian.

where CP is the power coefficient, which is associated
with the pitch angle β and tip velocity ratio λ = Rωr/v
(Lackner, 2011).

CP (λ,β) = 0.5176(
116
λs
− 0.4β− 5)exp(−21

λs
)+ 0.006795λ (7)

where λs is established using Eq. 8.

1
λs
= 1
λ+ 0.08β

− 0.035
β3 + 1

(8)

This paper sets x = [x1 x2 x3]T = [ωr θ ωg]T as state
variables, u = [u1 u2]T = [β Tg]T as input variables and y =
[y1 y2]

T = [Pg ωg]T as output. According to Eqs. 5–8, the
dynamic model of the WPGS is depicted in Eq. 9 by a non-linear
equation of state (Cui et al., 2018).

̇x (t) = f (x (t) ,u (t) ,v (t)) (9)

2.3 Description of control issues requiring
improvement

The wind turbine RMPC control block diagram is shown
in Figure 3. The reference values are brought into the quadratic
programming solver to obtain the optimal pitch angle βopt and the
optimal generator torque Tm,opt. Combining the feedback control
law K and the robust invariant set Z, the pitch moment angle and
generator torque acting on the actual wind turbine are obtained.
The actual value of the optimization problem at the next moment is
obtained through the prediction model and the feedback correction
session. The difference between the actual value and the reference
value is then solved with the quadratic programming solver until the
reference value is tracked.

In this paper, it is assumed that the wind speed stochastic
disturbance is bounded, so that this part of the uncertainty
disturbance is regarded as a factor that deviates from the stable
operating point of the wind turbine. The purpose of the controller
is to make the actual trajectory of the wind turbine closely related
to the trajectory of the nominal system of the wind turbine. Under
the action of the feedback control law, the deviation between the
actual operating state of the wind turbine and the nominal state of
the system is limited to the set of perturbation invariants. No matter
how the wind speed changes, it will never get out of the set, which is
what an invariant set means. Linearizing the mathematical model of
the wind turbine, the following equations are obtained.

̇ ̄x = A ̄x (t) +B ̄x (t) +Ev (t) (10)

Considering Ev(t) as a perturbation, Eq. 10 is discretized and
written in Eq. 11.

̄x (k+ 1) = Ad ̄x (k) +Bd ̄x (k) +w (k) (11)

Neglecting w(k) then the nominal model of the wind power
system without disturbances can be obtained as follows.

̄x (k+ 1) = Ad ̄x (k) +Bd ̄x (k) (12)

The feedback control rate and invariant set are solved by
constructing the Liapunov function. The objective function can be
expressed as Eq. 13.

min J =
Nc=1

∑
i=1
(
̃x(k+ i ∣ k)T*Q* ̃x (k+ i ∣ k)

̃u(k+ i ∣ k)T*Q* ̃u (k+ i ∣ k)
)

+ ̃x(k+Nc ∣ k)
T*F ̃x(k+Nc ∣ k) (13)

s.t. ̃x (k+ 1) = Ad ̃x (k) +Bd ̃x (k)

x (k ∣ k) = x0 (k ∣ k)

̃xmin ≤ x ≤ ̃xmax

̃umin ≤ ̃u ≤ ̃umax (14)

where Nc denotes the control time domain, Q and R denote the
positive definite weighting matrices, F is the terminal constraint
weighting matrix. ̃xmin, ̃xmax, ̃umin and ̃umax are the maximum and
minimum constraints on the state variables and input variables.
Solving the optimization objective function gives the optimal
solution.

̄x (k+ 1) = Ad ̄x (k) +Bd ̄x (k) (15)
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FIGURE 3
Wind Turbine RMPC Control Block Diagram. The optimal pitch moment angle and optimal generator torque were obtained using the quadratic
programming solver parameter values. The pitch moment angle and generator torque acting on the actual wind turbine were obtained by combining
the feedback control law K and the robust invariant set Z. The actual values of the optimization problem at the next moment were obtained by the
prediction model and the feedback correction link. The actual values of the optimization problem at the next moment were obtained through the
prediction model and the feedback correction link. Finally, the quadratic programming solver solves for the difference until the reference values were
tracked.

Take the first value and apply it to the actual system.

̄x (k+ 1) = Ad ̄x (k) +Bd ̄x (k) (16)

The obtained state variables are used as inputs to solve the
optimization problem from scratch until the control objective is
accomplished.

3 Robust controllers with adaptive
optimization of parameters

3.1 Design of the RMPC controller

After establishing a mathematical model of the system, the
RMPC controller can be designed to optimize the control of the
WPGS (Wang et al., 2011; Ping et al., 2022). RMPC of wind turbines
sets the optimization objective function by tracking the reference
values of wind turbine rotational speed, generator output power,
generator rotational speed, and pitch angle (Xie et al., 2021). The
optimal control inputs pitch angle and generator torque are solved
based on the current objective function and constraints, then applied
to the actual system. Specifically, the design of the robust model
predictive controller includes the following steps.

1) Establish the wind speed model Eq. 1 and the nonlinear
mathematical model Eq. 9 for the wind turbine. Next the nonlinear
mathematical model is linearized around the stable operating point
(x*,u*,v*). Neglecting wind speed disturbances, the nominal system
x(k+ 1) = Ax(k) +Bu(k) is obtained (Yang et al., 2022).

2) The error system is obtained and the Lyapunov function
S(e(t)) = eT(t)Pe(t) is constructed. The feedback control rate K and

the set of perturbation invariants Z are obtained using linear matrix
inequalities (Rafael and Darci, 2022).

3) Set the initial state x0(k|k) of the turbine nominal system at
moment k. Set the NC and NP values to construct the prediction
equation (Zou et al., 2014).

4) A quadratic programming solver is used to solve the
optimization objective function and obtain the optimal solution.
The input control quantity u(k) = u (k− 1) + u*(k|k) of the nominal
system is obtained by decomposing the first term u*(k|k) and
combining it with the feedback control law K to obtain the control
input of the actual system.

5) Solve for the state variables using the nominal model and
substitute them into the optimized objective function for the next
solution.

6) Perform k = k+ 1 and return to step 4.

3.2 Bayesian parametric self-optimization
algorithm

The Bayesian optimization algorithm uses a probabilistic model
agent to fit an objective function of the original cost and constructs
a collection function based on the posterior probability distribution
to select the next optimal evaluation point. In this paper, the
probability model is chosen to use Gaussian process regression
and the collection function is chosen to use a boosted probability
function (Tanoe et al., 2021).

3.2.1 Gaussian process
The Gaussian process is the most commonly used probabilistic

model in the use of Bayesian optimization. As a general paradigm
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for multivariate Gaussian probability distributions, the Gaussian
process is mainly composed of a mean function and a covariance
function.

y = GP(n (x) ,k(x,x′)) (17)

where n(x) is the mean value function, k(x,x′) is the covariance
function. The measure of x is finite-dimensionally distributed in
a Gaussian process. When fitting discrete data to a sample using
a Gaussian process, n(x) is generally set to 0. Because the Matern
covariance function depends only on the distance between two
points, it is smooth. This paper chooses Matern as k(x,x′).

3.2.2 Acquisition functions
The lift probability is the most commonly used acquisition

function. The function determines the next point to be taken from
the mean and covariance calculated by Gaussian regression. It is
shown in Eq. 18.

f (x) = P( f (xmax) + α) = φ(
μ (x) − f (xmax) − α

σ (x)
) (18)

where f(x) is the objective function value, φ(*) is the distribution
function, μ(x) is the mean, σ(x) is the variance, and α is the
hyperparameter to explore the maximum space. α = 0 makes the
value converge to f (xmax), avoiding a local optimum.

The steps for optimizing the parameters of the RMPC model
using the Bayesian algorithm in this paper are shown below.

1) Set parameters to be optimized, with the optimization objective
being the minimum global target value.

2) Optimization of the parameters of the RMPC controller using
Bayesian.

3) Return the minimum global objective value of the optimization
and the parameters of the corresponding RMPC model.

4) The minimum global objective value output by the Bayesian
optimization algorithm corresponds to the controller
optimization parameters as the final RMPC controller
parameters.

3.3 Bayesian optimization of controller
parameters

The RMPC controller objective function is shown in Eq. 19.

J (x (τ) ,u (τ)) = r1 ̇β(t)2 + r2Ṫg(t)2 + r3(Pg (t) − P*
g)

2 (19)

where τ is the time parameter. ̇β(t) is the Pitch angle change rate, Ṫg(t)
is rate of change of generator torque. Pg(t) is actual output power, P*

g
is rated output power.

The first and second terms of the objective function reflect the
control of the pitch angle and generator torque of the system, while
the last term accounts for the output power in Eq. 19 (Hyacinthe
and Sun, 2020). Pitch angle and generator torque and output power
weighting factors in the RMPC controller to be optimally adjusted.
The above parameters are optimized using a Bayesian optimization
method, as shown in Figure 4.

Considering the need for maximum power tracking and
constant power maintenance in the wind power system control task,

FIGURE 4
Diagram of the Bayesian-based parametric self-optimization
framework. The blue section shows a complete RMPC controller
process. The green part is the optimization of the RMPC controller
parameters using Bayes.

the following global objective function is established as shown in
Eq. 20.

JG =
∞

∑
k=1
(wboΔβk +wbo,PΔPg,k) (20)

where wbo is the global objective function pitch angle deviation
factor and Δβk is the pitch angle deviation. wbo,P is the global
objective function output power deviation coefficient and ΔPg,k is
the output power deviation value. The global objective value is
minimized by adjusting the optimization parameter matrix WBo =
[ωr,θ,ωg,α]

T.

arg min JG (WBo)

s.t.WBo ∈Ω
(21)

where Ω is the bounded domain of parameters that guarantee the
stability of the controller. Since the gradient and concavity properties
of the global objective function are unknown, it is assumed that the
global objective function is a Gaussian process, as shown in Eq. 22.

JG ∼ GP(μ(WBo) ,k(WBo,W*
Bo)) (22)

where μ(WBo) is the posterior mean and k(WBo,W*
Bo) is the

posterior variance. The global target values are calculated and a
Gaussian process regression is performed on the collected sample
dataset to obtain μ(WBo) and of the Gaussian process of the
alternative model, which is obtained from the upper confidence
boundary collection function to suggest sampling optimization
parameters for the next iteration. The minimum global objective
value corresponding to the controller optimization parameter value
output by the Bayesian optimization algorithm is used as the final
RMPC controller parameter.

4 Simulation analysis

4.1 Simulation parameter settings

Application of MATLAB simulation software for simulation
experiments on wind power systems. The sampling time is chosen
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FIGURE 5
Pitch angle. (A) 5 m/s. (B) 8 m/s. (C) 11.4 m/s. (D) 12 m/s. The maximum change in pitch angle is reduced under the parameter self-optimizing RMPC
controller, when the measured wind speed changes.

FIGURE 6
Generator torque. (A) 5 m/s. (B) 8 m/s. (C) 11.4 m/s. (D) 12 m/s. The oscillation of the generator torque is reduced with the RMPC optimization method
compared to the RMPC controller. This will reduce internal losses in the system, extend the life of the turbine and gain more economic benefits.
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FIGURE 7
Power. (A) 5 m/s. (B) 8 m/s. (C) 11.4 m/s. (D) 12 m/s. The Bayesian optimized RMPC algorithm’s output power curve is closest to the rated power curve
at different wind speeds, with a small fluctuating trend. Compared to the RMPC control results, the proposed method is significantly more stable.

TABLE 1 Comparison of RMPC and Bayesian optimized RMPC results at 11.4 m/s.

Parameters RMPC Bayesian optimized RMPC

Average generator output power (MW) 4.8 4.9

Average pitch angle (°) 67.2 66.1

Average rotor torque (kN ⋅m) 42.4 42.1

to be 0.05 s and the predicted time domain is N = 10. The
simulation experiment uses a 5 MW horizontal axis wind turbine
(Jason et al., 2009). In this paper, three parameters, namely, pitch
angle, generator torque and output power, are selected to study the
control performance of the proposed approach on WPGS under
different wind conditions. In the objective function, the weighting
parameters are set to r1 = 7, r2 = 1× 10−8 and r3 = 1× 10−12. The low
wind speed region enables the wind turbine to achieve maximum
wind energy capture by varying the tip speed ratio of the wind
turbine and fixing the pitch angle for maximum aerodynamic
efficiency. The blade pitch angle is adjusted in the high wind speed
region to ensure that both the output power and generator speed are
stabilized at the rated value. In order to verify the effectiveness of
the control method proposed in this paper, we simulated different
values of wind speed to validate the performance of the controller.
The cut-in wind speed of wind turbines is generally 3–5 m/s, so a
wind speed of 5 m/s is chosen as a low wind speed. Through the
wind speed data of wind farms in northwestern China, the wind

speed of 8 m/s occurs more frequently, so the wind speed of 8 m/s is
simulated as another lowwind speed.The ratedwind speed of 5 MW
wind turbine is 11.4 m/s. In order to evaluate whether the proposed
method can control the turbine to reach the rated output power
under the rated wind speed, the wind speed of 11.4 m/s is simulated.
After the wind speed research statistics show that the frequency of
12 m/s wind speed is high, so the simulation of 12 m/s wind speed
as a high wind speed representative wind speed. In conclusion, these
four wind speeds are chosen for this paper.

4.2 Uniform wind control results

Figure 5 shows the comparison curves of pitch angle simulation
for two control strategies using RMPC and Bayesian optimized
RMPC. From Figures 5A,D, it can be seen that for the disturbance
caused by inaccurate wind speed measurement, the proposed
method can make the generator torque vary with wind speed with
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FIGURE 8
5% turbulence intensity. (A) Wind speed. (B) Pitch angle. (C) Generator torque. (D) Power. At low turbulent wind speeds, the results of the proposed
method are superior to RMPC. The output power is increased by an average of 2.6%, reducing output power fluctuations and improving the quality of
power generation with the proposed control strategy.

high robustness, which can achieve maximum wind energy capture
and the power generated is proportional to the wind speed variation.
As shown in Figures 5B,C, both controllers have the same control
effect for bounded wind speed disturbances. However, when the
measured wind speed changes, the maximum change in pitch angle
is reduced under the parameter self-optimizing RMPC controller.

Figure 6 shows a comparison of the generator torque simulation
curves using both RMPC and Bayesian optimized RMPC. As can
be seen from Figure 6, both control strategies are able to control
the generator torque stabilization rating and stay within the set
constraints. Pitch angle fluctuations are less under the Bayesian
optimized RMPC than under RMPC control. According to Figure 6
it can be concluded that the oscillation of the generator torque
is reduced with the RMPC optimization method compared to the
RMPC controller. This will reduce internal losses in the system,
extend the life of the turbine and gain more economic benefits.
Therefore, the proposed control strategy allows the generator power
to be stabilized at the rated value with reduced mechanical fatigue
losses and improved economic performance.

From Figure 6C, it can be seen that the generator torque is in an
extremely unstable state during 0–5 s when the wind power system
is first started. As can be seen from Figure 6, the Bayesian optimized
RMPC strategy responds quickly, allowing the generator torque to
stabilize quickly around its nominal value. Also from Figure 6D,
it can be seen that the generator torque under the RMPC control
strategy oscillates greatly during 15–17 s when the wind power
system is subject to uncertainty disturbance. With the proposed

method the torque fluctuations are greatly reduced and the variation
values are much smoother.

Figure 7 shows the comparative generator output power curves
for the RMPC and Bayesian optimized RMPC control strategies. As
can be seen in Figure 7, the Bayesian optimized RMPC algorithm’s
output power curve is closest to the rated power curve at different
wind speeds, with a small fluctuating trend. Compared to the
RMPC control results, the proposed method is significantly more
stable. Within 0–5 s in Figure 7C, 0–7 S in Figure 7D, the output
power fluctuates up and down considerably with the RMPC
control strategy, while RMPC significantly reduces the output power
fluctuation. As shown in Figure 7C, when the measured wind speed
reaches the rated wind speed, the pitch angle is adjusted downwards
to increase the capture of wind energy, so that the generator speed
and power are stabilized at the rated value and constant power
control is achieved. Taking the rated wind speed of 11.4 m/s as an
example, this paper calculates the average parameter values under
two different control results as shown in Table 1.

In summary, at uniform wind speeds of 5 m/s, 8 m/s, 11.4 m/s
and 12 m/s, the Bayesian optimized RMPC is capable of controlling
the turbine to maximize power. It can be seen intuitively that the
proposedmethod outperforms the RMPC at different uniformwind
speeds. The proposed method exhibits small fluctuations in the
active power of the generator, the torsion angle of the drive system
and the pitch angle, effectively reducing the fluctuations at the stable
operating point.The Bayesian optimized RMPC strategy is therefore
superior for wind power system control, with significantly improved
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FIGURE 9
10% turbulence intensity. (A) Wind speed. (B) Pitch angle. (C) Generator torque. (D) Power. At 10% turbulent wind speeds, the results of the proposed
method are superior to RMPC. The output of the turbine increased by 1.3%. The robust model predictive controller with self-optimizing parameters
proposed in this paper can achieve maximum wind energy capture and reduce the fatigue of wind turbine components.

FIGURE 10
15% turbulence intensity. (A) Wind speed. (B) Pitch angle. (C) Generator torque. (D) Power. At high turbulent wind speeds, the results of the proposed
method are superior to RMPC. The output of the turbine increased by 1.5%. The Bayesian optimized RMPC control strategy not only enables adaptive
adjustment of controller parameters, but also achieves the control goal of stable operation of wind power systems.
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TABLE 2 Installed capacity of wind farms.

Wind farms Installed capacity/MW Number of wind turbines

WF1 201 134

WF2 50 25

WF3 94 66

WF4 99 55

WF5 96 32

WF6 98.8 91

FIGURE 11
Industrial field applications. The total installed capacity is 638.8 MW. It contains 6 wind farms of different capacities. Moreover, all equipped with a wind
power prediction control system.

oscillations and high robustness. At the same time, the rationality
and accuracy of the proposed approach is confirmed.

4.3 Results of turbulent wind control

The turbulent winds simulated in this paper are based on the
most frequent wind conditions of varying turbulence intensity at
a high altitude in the northwest. In order to verify the control
performance of the designed robust model predictive controller
under real turbulent wind conditions, the simulations are conducted
through the use of the FAST software developed by NREL. Figure 8

shows the control results for each parameter at 5% turbulence
intensity.

It is clear from Figure 8 that the generator torque and output
power fluctuate widely and become more unstable with time. When
the turbine is in low turbulence intensity wind conditions, the
RMPC control effect to improve the stable operation of the wind
power system is not obvious enough, indicating that the RMPC
control strategy needs to be improved. As can be seen in Figure 8C,
the average generator torque is reduced by 1 kN ⋅m, so that the
proposed method drives the wind turbine with less force and
achieves maximum wind power at low wind speeds. As can be seen
fromFigure 8D, the output power is increased by an average of 2.6%,
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reducing output power fluctuations and improving the quality of
power generation with the proposed control strategy.

Figure 9 shows the control results for each parameter at 10%
turbulence intensity. With turbulent wind speeds, the Bayesian
optimized RMPC makes the wind turbine output power work
around the rated value, effectively reducing the wind speed
fluctuations on the WPGS. The generator speed is very close to the
optimum speed at each moment, so that the proposed method can
significantly suppress the effect of external wind speed disturbances
on the system’s ability to capture wind energy. The results in
Figures 9C,D show that the wind power system satisfies the input-
output constraints, for both generator torque and output power.
The output of the turbine increased by 1.3%. From the simulation
results, the robust model predictive controller with self-optimizing
parameters proposed in this paper can achieve maximum wind
energy capture and reduce the fatigue of wind turbine components.

Figure 10 shows a comparison of the control results at high
turbulence intensities. The oscillations in the pitch angle and
generator torque are much smaller with the Bayesian optimized
RMPC controller compared to the RMPC controller. It can be
concluded that Bayesian optimized RMPC allows a better trade-
off between maximum generation rate and minimum fatigue losses.
This is because the Bayesian optimized RMPC strategies introduce
system dynamic processes into the decision-making hierarchy and
aim to maximize economic efficiency, particularly in dynamic
processes. As a result, it is possible to reduce fatigue losses in wind
turbine components while producing generator power comparable
to that of general RMPC. From Figure 10D, it can be seen that
the output of the turbine increased by 1.5%. RMPC with Bayesian
optimization can significantly enhance the capability ofwind turbine
in terms of increased generation efficiency, reduced mechanical
losses and longer equipment life. The Bayesian optimized RMPC
control strategy not only enables adaptive adjustment of controller
parameters, but also achieves the control goal of stable operation of
wind power systems.

4.4 Industrial field verification

The proposed approach with adaptive optimization of
parameters is validated using a wind power cluster at a wind power
plant in north-western China. The wind power cluster is located in
the high-altitude region of northwest China, which is rich in wind
resources, and the construction of wind farms belongs to inland
mountain wind farms. It has successfully realized grid-connected
operation with obvious economic, social and environmental
benefits. This wind power cluster is selected for the field validation,
which can get the effectiveness of the proposed method more
intuitively. The total installed capacity is 638.8 MW. This wind
power plant contains 6 wind farms of different capacities. Moreover,
all equipped with a wind power prediction control system. The
installed capacity of each wind farm is shown in Table 2. The field
situation is shown in Figure 11.

Figure 12 gives a typical wind farm power fluctuation response
time, where the response time is defined as the time difference
between the wind cluster active power fluctuation control device
receiving the active power control command from the simulator
and issuing the wind farm control command. As can be seen from

FIGURE 12
Optimal steady-state targets for different operating regions. The
lowest response time for WF1 is 0.5 s, the highest response time for
wind farm WF6 is 0.84 s, while the response times for the remaining
wind farms are all within the value of 1s.

Figure 12, the lowest response time for WF1 is 0.5 s, the highest
response time for wind farm WF6 is 0.84 s, while the response times
for the remaining wind farms are all within the value of 1 s. The
analysis shows that the response times for power fluctuations vary
fromonewind farm to another, and all respondwithin a short period
of time, further indicating that the proposed method can effectively
suppress power fluctuations.

5 Conclusion

To enhance the control performance of wind power systems,
an experimental study was conducted using Bayesian algorithms
to optimize the parameters of the RMPC controller. This paper
compares and analyses the RMPC and the Bayesian optimized
RMPC algorithms using the classical 5 MW wind turbine model
developed by NREL. A MATLAB/Simulink-based simulation
platform is applied to simulate. The specific conclusions from the
simulation analysis are as follows.

1)Thefield simulation experiments show that this paper uses the
Bayesian optimization approach for parameter self-optimization of
the cost function weight coefficients. The minimum response time
for wind farms is 0.5 s, and the response time for each wind farm is
within 1s, which improves the tracking performance and robustness
of the RMPC controller.

2) The Bayesian optimized RMPC control strategy enables the
control objectives of the turbine to be achieved at different wind
speeds. The average power obtained by wind turbines at low wind
speeds is 1.2 MW, an improvement of 1.9%. At high wind speeds,
the output power is stable at 5 MW on average. This significantly
achieves a stable transition of the turbine’s control objectives at
different wind speeds. Moreover, fluctuations in output power are
reduced and the quality of power generation is improved.

3) The proposed scheme can significantly increase the capability
of wind power systems, including improving power generation
efficiency, reducing mechanical losses and extending equipment
life. The proposed control technique is adaptive, responsive, simple
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to implement and robust to various operating conditions and
disturbance scenarios. The model has good robustness while
addressing power deviations in wind power systems. However, the
finer differential control of wind farms, the comprehensive wind
speed simulation and the coordinated and optimized cooperation
of conventional units under this framework need to be studied
in greater depth in the future. And there was no the integration
of microscale obstacle-resolving models.In future research issues
related to the integration of the microscale barrier solution model
will be addressed. Further optimization of wind turbine operating
parameters to reduce the impact on control effectiveness. In
addition, further research can be conducted to optimize the
performance of robust model prediction controllers to improve
control accuracy and system stability.
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