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As a clean fossil energy source, natural gas plays a crucial role in the global energy
transition. Forecasting natural gas prices is an important area of research. This
paper aims at developing a novel hybrid model that contributes to the prediction
of natural gas prices. We develop a novel hybrid model that combines the
“Decomposition Algorithm” (CEEMDAN), “Ensemble Algorithm” (Bagging),
“Optimization Algorithm” (HHO), and “Forecasting model” (SVR). The hybrid
model is used for monthly Henry Hub natural gas forecasting. To avoid the
problem of data leakage caused by decomposing the whole time series, we
propose a rolling decomposition algorithm. In addition, we analyzed the factors
affecting Henry Hub natural gas prices for multivariate forecasting. Experimental
results indicate that the proposed model is more effective than the traditional
model at predicting natural gas prices.
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1 Introduction

The use of energy is a crucial part of production and consumption processes in all
industries. A reliable, affordable, and stable energy supply is essential for industrial
production, transportation, home heating, and commercial production. With the growth
of the global population and the acceleration of industrialization, energy demand continues
to increase, which results in a more complex and competitive energy market (Wang et al.,
2021). In the area of data analysis and forecasting, energy price forecasting has received a lot
of attention. Accurate energy price forecasts are of great benefit to researchers and
policymakers.

As the demand for energy grows, environmental issues resulting from high emissions
and pollution from fossil fuels are becoming more serious. The transition to renewable
energy has become an urgent issue. Clean energy development and utilization are gradually
attracting worldwide attention (Dong et al., 2022). As a low-carbon and clean energy source
among fossil fuels, natural gas plays a crucial interim role in the transition to a sustainable
energy economy (Rabbi et al., 2022).

To formulate rational energy policies, it is essential to make accurate predictions of
natural gas price trends. They also optimize market operations, sustainable economic
development, and global energy transition promotion.

Currently, the North American market, the UK market, and the Japanese and Korean
markets are dominating the international natural gas market. The price trends of Henry Hub
in the North American market, NBP at the Intercontinental Exchange (ICE) in the European
market, and Platts Japan LNG import prices in the Asian market have become essential
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reference indicators for assessing international natural gas price
levels (Geng et al., 2016). Among them, the Henry Hubmarket is the
most liquid, volatile, and unpredictable natural gas market. Research
on natural gas price forecasting in the Henry Hub is important due
to its importance in natural gas trading, power production planning,
and regulatory decisions.

In this paper, the major research purpose is to propose a novel
hybrid model to predict natural gas prices more accurately. We
constructed a model combining Harris hawks optimization (HHO),
Bagging integrated learning, support vector regression (SVR), and
complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN). There are many studies about “Decomposition
Algorithm” + “Forecasting Model” and “Ensemble Algorithm” +
“Forecasting Model.” However, few studies combine the
“Decomposition Algorithm,” “Ensemble Algorithm,”
“Optimization Algorithm,” and “Forecasting Model.” We
conducted this experiment and verified its feasibility.

First, the SVR model is optimized using the HHO algorithm to
reduce subjectivity of the parameter settings and improve prediction
accuracy, then the Bagging integration strategy is applied to the
HHO–SVR model to further enhance model performance, and the
Bagging–HHO–SVRmodel is constructed. A CEEMDAN algorithm
was used to decompose natural gas price monthly time series into
multiple modal components. The
CEEMDAN–Bagging–HHO–SVR prediction model reduces the
subjectivity and complex parameter setting of the SVR model.
While reducing the variance of the model, it also optimizes the
impact of noise on time series data, allowing it to extract the inherent
features of the data. When applying CEEMDAN to decompose data,
we adopted a rolling decomposition method to avoid the potential
problem of data leakage caused by previous methods. The final
experimental results indicate that the constructed model has a high
level of prediction accuracy and relatively stable performance.

In summary, this paper makes several major contributions:

(1) To better predict the Henry Hub natural gas price, we integrated
“Decomposition Algorithm” + “Ensemble Algorithm” +
“Optimization Algorithm” + “Forecasting Model” based on
machine learning technology and proposed a novel hybrid
prediction model.

(2) We improved the way CEEMDANworks on datasets in the past
and adopted a rolling decomposition approach. This method
can avoid data leakage.

(3) We took into account the external influencing factors of Henry
Hub natural gas prices in the input variables, which further
improves the prediction accuracy and stability of the model.

(4) In order to understand the model and which features have the
greatest impact on the prediction results of the model, we
conducted a feature importance analysis. In addition, we
identified significant factors that affect Henry Hub natural
gas prices.

The structure of the rest of this paper is as follows: Section 2 is a
literature review. Section 3 describes algorithms and models. Section
4 describes the data preparation work, prediction process, and
variable screening experiments. Section 5 discusses the data
description and experimental results. Section 6 summarizes some
conclusions and proposes some suggestions.

2 Literature review

Energy forecasting typically spans different prediction horizons,
including short term (hours and days), medium term (weeks), and
long term (months and years). As a result of the different prediction
ranges, the sample size varies as well. The sample size of daily
predictions is usually larger than that of monthly predictions
(Arvanitidis et al., 2022), and natural gas price forecasting
focuses on daily, weekly, and monthly forecasts. This paper
focuses on the monthly price forecast, which is a small sample
size for long-term price forecasting. Therefore, this paper chooses
the SVR model, which is excellent for small-sample quantity
prediction, and compares it to the other benchmarking models.

Additionally, energy price predictions can be classified into
univariate and multivariate predictions according to the variables
involved (Hou et al., 2022). Most previous studies on natural gas
prices have used univariate forecasts. In univariate forecasting, only
historical natural gas price data are introduced as input variables
into the forecasting model. This forecasting method assumes that
external factors are stable, which saves time and effort collecting
relevant influencing factors. However, the drawback is that some
critical factors are often overlooked, and the forecasting model is not
comprehensive enough. This usually results in relatively limited
forecasting accuracy. Multivariate forecasting incorporates a variety
of other factors that affect changes in natural gas prices. This method
can make input variables more comprehensive, although it takes
more time and effort to collect and process data. In this paper, we
consider and use grey relation analysis (GRA) to examine multiple
factors that influence natural gas price changes. In order to improve
the quality of input variables, retained factors will be used in
conjunction with historical natural gas prices as input variables.

The available literature indicates that energy forecasting models
can broadly be categorized into traditional economic models and
machine learning models based on artificial intelligence (Lu et al.,
2021). Particularly in recent years, as artificial intelligence has seen
rapid advancements, more studies have employed machine learning
models. Econometric models, which are based on economic
principles and statistical methods, build mathematical models to
make predictions. Common econometric models include time series
models (e.g., autoregressive moving average (ARMA), generalized
autoregressive conditional heteroskedasticity (GARCH), and
autoregressive integrated moving average (ARIMA)) (Ma and
Wang, 2019; Son et al., 2020; Zhang et al., 2021; Sun et al., 2023)
and regression models (e.g., multiple linear regression (MLR) and
vector autoregression (VAR)) (Youssef et al., 2021; Egbueri J and
Agbasi J., 2022; Pannakkong et al., 2022). Although these models can
capture trends, seasonality, and periodicity in price series, they are
less capable of addressing nonlinear problems and large-scale
datasets. Moreover, energy forecasting is usually based on
irregular and nonlinear data in real life. Yu and Yang (2022)
used China’s electricity demand dataset spanning from 2004 to
2019. They combined the dataset with the ARMA model, to analyze
the future electricity situation in China and accurately predict
China’s electricity demand in 2020. Alam et al. (2023) used the
ARIMA model to predict coal, oil, and natural gas prices in India
before and after COVID-19. The empirical results suggest that the
ARIMA model is appropriate for forecasting coal, crude oil, and
natural gas prices in India. Hou and Nguyen (2018) applied a
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Markov switching vector autoregressive model (MS-VAR) to
examine the institutional response patterns of the natural gas
market to underlying fundamental shocks. Their study identified
the presence of four separate regimes within the American natural
gas market. Nguyen and Nabney. (2010) first proposed an adaptive
multilayer perceptron (MLP)/GARCH model combined with
wavelet transform (WT) to predict electricity demand and
natural gas prices in the UK, achieving high prediction accuracy.

Comparatively, machine learning models make predictions
by learning patterns and regularities from historical data. Over
the past few years, significant progress has been made in energy
forecasting to address the shortcomings of traditional
econometric models. Typical machine learning models
encompass SVR models (Jianwei et al., 2019), neural network
models (Wang et al., 2020), and decision tree models (Yahşi et al.,
2019; Bentéjac et al., 2020). These models have strong nonlinear
modeling capabilities, can handle large-scale datasets, and can
automatically extract features from the data to better capture
complex relationships in energy prediction. Since machine
learning models often have many parameters to be set, these
parameters significantly impact the predictive performance of the
model. Moreover, manual parameter setting involves subjectivity
and costs a lot of time. Intelligent optimization algorithms can
automatically search the large-scale parameter space and find the
best solution. Ma et al. (2019) used grey wolf optimization
combined with a novel fractional time-delayed grey model to
predict natural gas and coal consumption in Chongqing, China.
The results suggest that the optimized model of grey wolf
optimization outperforms the rest of the comparative models.
Zhu et al. (2023) optimized the model constructed in the paper
with the marine predator algorithm and enhanced forecasting
performance. Essa et al. (2020) improved the prediction accuracy
of conventional artificial neural networks by optimizing their
parameters using Harris hawks optimization.

Machine learning models are categorized into single and
hybrid models. Single models use only one machine learning
algorithm or model for natural gas price forecasting. These
models generally focus on a specific algorithm or model
structure and are trained on data to obtain predictions.
Čeperić et al. (2017) used an SVR model and a feature
selection method to forecast Henry Hub natural gas spot
prices. Salehnia et al. (2013) used a calibrated ANN model to
predict the Henry Hub natural gas price with the help of the
gamma test. Zhang and Hamori (2020) integrated the dynamic
moving window method with the XGBoost model to forecast the
U.S. natural gas crisis.

A single model cannot achieve continuous satisfactory
prediction performance when dealing with various data and is
prone to ignoring the internal characteristics of the data or
overfitting, which means most of them have limitations (Yu
et al., 2021; Zhang et al., 2022). The hybrid model refers to the
combination of multiple machine learning algorithms or models to
achieve better performance and generalization ability. According to
previous literature, the prediction performance of the hybrid model
is always better than that of the economic model and the single
model (Jiang et al., 2022a).

Jung et al. (2020) constructed a hybrid model by combining
“bagging” algorithms with “multilayer perceptron.” The final result

analysis shows superior performance. Meira et al. (2022) proposed a
novel generalization algorithm by combining the Bagging
integration method with a modified regularization technique. The
study constructed a novel hybrid model and empirically analyzed
monthly natural gas consumption in 18 European countries. Li et al.
(2021) constructed a VMD–PSO–DBN model using the VMD
algorithm combined with the PSO-optimized DBN model to
empirically analyze monthly natural gas prices in Henry Hub.
The results suggested that the newly constructed model predicted
better than traditional models. Fang et al. (2023) combined EMD
with ISBM–FNN and developed an EMD–ISBM–FNN model to
decompose and predict crude oil prices. To verify the model’s
prediction results, a comparison scheme was designed to
compare the results. Results indicate that the model had the
highest prediction results and outperformed previous research.
Zhan et al. (2022) proposed a technique combining LSTM and
quadratic decomposition to construct an improved natural gas
forecasting hybrid model VMD–EEMD–Res.–LSTM and then
selected the monthly natural gas spot price of Henry Hub for
empirical analysis. Wang et al. (2022) combined the
decomposition algorithm with the multi-objective grasshopper
optimization algorithm, and used nine models to predict the
decomposed components. Then, they conducted short-term
power load forecasting, ultimately achieving satisfactory results in
point and interval prediction.

3 Methodology

3.1 Support vector regression

Support vector machine (SVM) was proposed by Cortes and
Vapnik for classification tasks (Cherkassky, 1997). Later, SVR was
developed based on the SVM. SVR relies on the principle of
structural risk minimization, which makes it ideal for solving
high-dimensional, small-sample nonlinear problems. Its primary
purpose is to convert a nonlinear regression problem with a low
dimension into a linear regression problem with a high dimension
(Zheng et al., 2023). Based on dataset
K � (x1,y1),(x2,y2), . . . . . . (xi,yi){ }, where xi ∈ Rn is the input
feature, yi ∈ R is the label, and n denotes the number of training
samples. The basic mapping relation of SVR can be expressed as
follows:

f x( ) � Wφ x i( ) + b, (1)
where W and b denote the weight coefficient and bias term (Cai
et al., 2023). φ(x i) is the mapping function, mapping xi to the
higher-dimensional space using φ(x i) in Eq. 1. For the
determination of W and b, the structural risk minimization
principle of Eq. 2 can be implemented.

Minimize:
1
2
W‖ ‖2 + C∑n

i�1ξi + ξ*i . (2)

The constraints are

yi − Wφ xi( ) + bi( )≤ ε + ξi
Wφ xi( ) + bi( ) − yi ≤ ε + ξ*i
ξi, ξ

*
i ≥ 0 i � 1, 2 . . . , n

⎧⎪⎨⎪⎩ , (3)
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where C is the penalty function and ε> 0 is the insensitivity factor
and ξi and ξ*i is the slack variable.

Subsequently, the Lagrange multipliers are introduced αi and
α*i , at which point the function in Eq. 1 is transformed into f(x):

f x( ) � ∑n

i�1 αi − α*
i( )k xi, xj( ) + b, (4)

where k(xi, xj) is the kernel function. Linear kernel, polynomial
kernel, and radial basis function are some of the most commonly
used kernel functions. Radial basis function kernel deals well with
nonlinear data. It calculates the similarity between the data
points in the high-dimensional feature space by inner product
and greatly reduces calculation complexity (Açkkar and Altunkol
et al., 2023). Therefore, in this paper, we used the RBF as the
kernel function, and its mathematical expression is

k xi, xj( ) � exp − xi − xj
���� ����2

2σ2
⎛⎝ ⎞⎠, σ > 0, (5)

where σ is the parameter of the kernel function. Usually, it is
necessary to choose appropriate values for the kernel function’s
C and σ to improve the prediction accuracy. C is the penalty
function, which represents the model’s tolerance to error. The
higher C indicates that the model is less tolerant to error and
easy to overfit. In contrast, it is easy to underfit. σ is a crucial
parameter of the radial basis function kernel, which controls the
bandwidth of the radial basis function (Li et al., 2022). The
selection of σ directly impacts the model’s complexity and
generalization capability. The choice of these two parameters
is crucial for controlling the prediction accuracy of the model.
We used three optimization functions to optimize these two
SVR parameters and compared the results in this paper.

3.2 Grey wolf optimization algorithm

The grey wolf optimizer (GWO) is a swarm intelligence
optimization algorithm proposed in 2014 by Mirjalili et al.
(2014), who are scholars from Griffith University, Australia. The
algorithm has a simple structure, high convergence, and no excessive
parameter settings. The GWO algorithm simulates the leadership
hierarchy and hunting mechanisms of grey wolves in nature based
on their predatory behavior. It classifies grey wolves into four types.
The algorithm consists of three main parts: surrounding the prey,
approaching the prey, and attacking the prey.

In the GWO algorithm, four wolves are established with varying
social ranks, including α, β, δ, and ω. Among them, α simulates the
head wolf (level 1 wolf), which leads the entire grey wolf pack and is
responsible for leading the whole pack to hunt for prey. α represents
the optimal solution to the problem. β is the level 2 wolf, which is
responsible for assisting α. δ is the level 3 wolf, which obeys the
commands and decisions of α and β, and is responsible for scouting
and standing guard. ω is the level 4 wolf, which is located at the
bottom of the entire hierarchy. It obeys the commands from the
former level 3 wolf to carry out the position around α, β, or δ update
(Liu Z et al., 2023).

(1) Surrounding the prey

The GWO algorithm uses the following formula to encircle its
prey before hunting:

�D � �C · �Xp t( ) − �X t( )∣∣∣∣ ∣∣∣∣, (6)
�X t + 1( ) � �Xp t( ) − �A · �D, (7)

where �D is the distance between the wolf and its prey. �X(t+1) is the
position update formula of the grey wolves, and t is the number of
iterations. �Xp(t) represents the position vector of the prey. �X(t)
represents the position vector of grey wolves, and �A and �C are the
coefficient vectors.

(2) Approaching the prey

The formulas of �A and �C are Eq. 8 and Eq. 9.

�A � 2 �a · �r1 − a,→ (8)
�C � 2 · �r2, (9)

�a � 2 − 2
t

t max
, (10)

where �r1 and �r2 are the random vectors between [0,1]. �a is the
convergence factor, a critical parameter in the GWO that balances
the exploration and exploitation capabilities. Its value linearly
decreases from 2 to 0 as the number of iterations increases. t max

is the maximum number of iterations. Therefore, A takes values in
the range [-a, a]. To enable the grey wolves to search for prey better,
|A| >1 or |A|< 1 are used to compel the grey wolves to move away
from the prey to continue searching or to approach the prey to
prepare for hunting.

(3) Attacking the prey

Grey wolves are expected to begin hunting behavior after
identifying the approaching prey. The hunting behavior is
generally led by the α-wolf, assisted by the β-wolf and δ-wolf,
and ω-wolf update based on their position. The mathematical
formula for hunting is as follows:

�Dα � �C1 · �Xα − �X
∣∣∣∣ ∣∣∣∣, (11)

�Dβ � �C2 · �Xβ − �X
∣∣∣∣ ∣∣∣∣, (12)

�Dδ � �C3 · �Xδ − �X
∣∣∣∣ ∣∣∣∣, (13)

where �Dα, �Dβ, and �Dδ denote the distance between the ω-wolf
individual and the three former wolves, respectively. �X represents
the current position of the individual ω-wolf.

�X1 � �Xα − �A1 · �Dα

∣∣∣∣ ∣∣∣∣, (14)
�X2 � �Xβ − �A2 · �Dβ

∣∣∣∣ ∣∣∣∣, (15)
�X3 � �Xδ − �A3 · �Dδ

∣∣∣∣ ∣∣∣∣, (16)
where �Xα, �Xβ, �Xδ represent the current positions of the α-, β-, and δ-
wolf, respectively. �C1, �C2, �C3 are three random numbers. �X1, �X2, and
�X3 denote the position of the ω-wolf affected by the position of the α-
wolf, β-wolf, and δ-wolf, respectively. Here, the average value is taken.

�X t + 1( ) � �X1 + �X2 + �X3

3
. (17)
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3.3 Marine predator optimization algorithm

Faramarzi et al. (2020) proposed the marine predators algorithm
(MPA) in 2020. The algorithm is primarily inspired by foraging
behavior in marine predators. Essentially, this involves the Lévy and
Brownian movements of marine predators and the optimization of
the encounter rate strategy between the predators and prey. It is
based on the theory of survival of the fittest in the ocean. The MPA
has high optimization search performance. Among them, the
Brownian motion search step is large enough to track and
explore neighboring regions to achieve global optimization. In
contrast, the Lévy motion search step is small enough to
effectively explore local regions in depth to achieve local
optimization. There are three main phases to the algorithm: the
pre-search phase, the mid-search phase, and the post-search phase.

(1) Pre-search phase

During the phase of pre-search, we assume that the prey will
move faster than the predator, at which point the predator should
remain stationary.

When Iter < 1
3 Max _ Iter,

stepsize
��������→

i � �RB ⊗ Elite
����→

i − �RB ⊗ Prey
����→

i( ), (18)

Prey
����→

i � Prey
����→

i + P· �R ⊗ stepsize
��������→

i, (19)
i� 1, . . . n,

where stepsize
��������→

i represents the move step size. �RB represents a
random vector following a normal distribution. Elite

����→
i represents

the elite matrix consisted of the top predators. Prey
����→

i is the prey
matrix, which has the same dimension as the elite matrix. �R is a
random vector between [0,1]. P is a 0.5 constant. ⊗ is the term-by-
term multiplication operator. n is the population size. Iter is the
current iteration number, and Max _ Iter is the maximum iteration
number.

(2) Mid-search phase

In the mid-search stage, we assume that both the predator and
the prey are moving at the same speed. During this phase, the
predator simulates the hunt for the prey, while the prey, as a
potential predator, searches for a prey of a lower rank than itself.
At this point, the prey exploits in accordance with a Lévy wandering
strategy, while the predator explores in accordance with a Brownian
wandering strategy and gradually transitions from an exploration
strategy to an exploitation strategy.

When 1
3 Max _ Iter < Iter < 2

3 Max _ Iter,

stepsize
��������→

i � �RL ⊗ Elite
����→

i − �RL ⊗ Prey
����→

i( ), (20)

Prey
����→

i � Prey
����→

i + P· �R⊗ stepsize
��������→

i, (21)
i� 1, . . .

n

2
,

where �RL is the random vector presenting Lévy.
When 1

3 Max _ Iter < Iter < 2
3 Max _ Iter,

stepsize
��������→

i � �RB ⊗ �RB ⊗ Elite
����→

i − Prey
����→

i( ), (22)

Prey
����→

i � Elite
����→

i + P · CF ⊗stepsize
��������→

i, (23)
i � n

2
, . . . n,

where CF = (1 − Iter
Max Iter)(2

Iter
Max Iter) represents the adaptive

parameter that governs the step size of predator movement.

(3) Post-search phase

At this stage, we assume that the predator has a higher speed
compared to the prey, at which point the predator’s best strategy is
Lévy movement.

When Iter > 2
3 Max _ Iter,

stepsize
��������→

i � �RL ⊗ �RL ⊗ Elite
����→

i − Prey
����→

i( ), (24)

Prey
����→

i � Elite
����→

i + P · CF ⊗stepsize
��������→

i, (25)
i� 1, . . . n.

(4) Addressing vortex effects and FAD effects

Moreover, the algorithm takes into account environmental
factors affecting marine predators’ behavior to avoid the
algorithm converging prematurely, for example, eddy current
effects and fish aggregating device (FAD) effects. The
mathematical formulation is as follows:

Prey
����→

i �
⎧⎪⎨⎪⎩ Prey

����→
i
+ CF �X min + �R⊗ �X max − �X min( )[ ] ⊗ �U , if r ≤ FADs

Prey
����→

i + FADs 1 − r( )+r[ ] Prey
����→

r1 − Prey
����→

r2( ), if r > FADs , (26)

where FADs = 0.2 is a fixed value indicating the probability that a
predator is affected by FADs. �U is a binary vector, and r is a random
value between [0,1]. �X min and �X max are vectors containing the
lower and upper bounds of the dimensionality. The subscripts
r1 and r2 of Prey

����→
r1 and Prey

����→
r2 are the random indexes of the

prey matrix.

(5) Marine memory

The purpose of this step is to update the elite matrix which is the
optimal fitness value. After updating the prey matrix, the fitness
value of each prey in the matrix is calculated. If it is better than the
fitness value of the corresponding position in the elite matrix, it is
replaced. Then, the optimal individual fitness value for the elite
matrix is calculated.

3.4 Harris hawks optimization algorithm

Heidari et al. (2019) first proposed the HHO algorithm in 2019.
The algorithm has strong global search capability and converges
quickly with fewer parameters to tune. The algorithm is inspired by
the Harris hawk’s prey capture process. This process can
dynamically adjust its prey capture strategy by considering the
dynamic nature of the environment and the prey’s escape
patterns. The algorithm consists of three main phases: search,
conversion between search and exploitation, and exploitation.
Figure 1 shows the flowchart of the Harris hawks algorithm.
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(1) Search phase

The Harris hawk searches and follows its prey with keen eyes.
Considering that the prey is not easy to detect, the authors
designed two strategies to simulate the Harris hawk’s prey
capture.

X t + 1( ) � Xrand t( ) − r1 Xrand t( ) − 2r2X t( )| |, q≥ 0.5
Xrabbit t( ) − Xm t( )[ ] − r3 lb + r4 ub − lb( )[ ], q< 0.5{ ,

(27)
whereX(t+1) andX(t) are the position of the t+1 iteration and the t
iteration of the Harris hawk, respectively. t is the number of iterations.
Xrabbit(t) is the position of the prey rabbit and also the individual

FIGURE 1
Flowchart of the Harris hawks algorithm.
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position of the hawk with the optimal fitness value. Xrand(t)
represents the position of a randomly selected individual within
the hawk population. r1, r2, r3, r4, and q are all random values of
[0,1], where q is used to determine which strategy to choose.Xm(t) is
the average position of an individual and the mathematical formula is

Xm t( ) � ∑M

k�1
Xk t( )
M

, (28)

where M denotes the population size. Xk(t) denotes the position of
the kth Harris hawk individual.

(2) Conversion phase of search and exploitation

In the HHO algorithm, it is assumed that prey escape consumes
escape energy. Harris hawk can shift between different exploitation
behaviors according to the prey’s escape energy. Escape energy is
defined as

E � 2E0 1 − t
t max

( ), (29)

whereE is the escape energy of the prey.E0 is the initial energy value of the
prey, a random number between [0,1]. t is the current iteration number,
and t max is the maximum number of iterations.When |E|≥ 1, the search
phase is continued; when |E| <1, we enter the exploitation phase.

(3) Exploitation phase

After entering the exploitation phase, hawks will
dynamically adopt a capture strategy based on the real-time
state of their prey. To choose a strategy, a random number r
between [0,1] is defined.

(1) Soft besiege strategy

When |E|≥ 0.5 and r ≥ 0.5, the hawks choose a soft besiege
strategy to capture the prey, and the position update equation is as
follows:

X t + 1( ) � ΔX t( )−E JXrabbit t( ) − X t( )| |, (30)
ΔX t( ) � Xrabbit t( ) − X t( ), (31)

where ΔX(t) denotes the distance between the prey’s position (the
optimal individual) and the individual’s current position. J is a
random number between [0,2], which denotes the intensity of the
prey’s random jumps during the escape process, which simulates the
rabbit’s movement.

(2) Hard besiege strategy

When |E|< 0.5 and r ≥ 0.5, the hard besiege strategy is selected
and the position update formula is as follows:

X t + 1( ) � Xrabbit t( ) − E ΔX t( )| |. (32)

(3) Soft besiege strategy with progressive fast dives

When r < 0.5 and |E|≥ 0.5, at this point, the prey possesses
sufficient energy to evade pursuit and the Harris hawk needs to

softly besiege and quickly dive for an attack. The formula for
updating positions is as follows:

X t + 1( ) � Y , f Y( )< f X t( )( )
Z, f Z( )< f X t( )( ){ , (33)

Y � Xrabbit t( ) − E JXrabbit t( ) − X t( )| |, (34)
Z � Y + S · LF D( ), (35)

where f ( ) is the fitness function and f(X(t)) is the current fitness
value, D is the problem dimension, and S is a random vector of
problem dimensions. LF () is the Levy function. The mathematical
expression is

LF x( ) � 0.01 · μ · σ
v| | 1β

, (36)

σ � Γ 1 + β( ) · sin πβ
2( )

Γ 1+β
2( )·β·2 β−1

2( )⎛⎝ ⎞⎠ 1
β

, (37)

where Γ is the gamma function, u and v are D-dimensional random
vectors in [0,1], and β is a default value set to 1.5.

(4) Hard besiege strategy with progressive fast dives

When r < 0.5 and |E|< 0.5, prey escape energy is not enough, but
there is still a chance to escape. At this point, the Harris hawk needs
to hard besiege and fast dive for surprise attack. The position update
formula is as follows:

X t + 1( ) � Y , f Y( )< f X t( )( )
Z, f Z( )< f X t( )( ){ , (38)

Y � Xrabbit t( ) − E JXrabbit t( ) − Xm t( )| |, (39)
Z � Y + S · LF D( ), (40)

where Y and Z are updated and are obtained from Eq. 39 and Eq. 40,
respectively.

3.5 Bagging integration algorithm

Ensemble learning is a method that can improve generalization
performance significantly than a single learner by combining
multiple learners. There are many integration algorithms
including Boosting, Stacking, and Bagging. In this paper, the
Bagging integration learning algorithm is used. The Bagging
algorithm (Boostrap aggregation) is a widely used machine
learning technique (Breiman, 1996). The idea is to improve the
entire learner’s generalization ability by combining multiple
homogeneous learners’ results. The Bagging algorithm has the
capability to enhance accuracy and stability and prevent
overfitting when combined with multiple models.

Bagging is suitable for small-sample problems. It is possible to
significantly reduce the variance in the model training process by
using a subset of the dataset and averaging the results, as well as
mitigate the problem of overfitting. Boosting is appropriate for weak
learners as it reduces bias. Its training process is serial, which
requires training the base classifiers and updating the weights
one by one, which can make overfitting a possibility for some
problems. Stacking’s training process is relatively complex,

Frontiers in Energy Research frontiersin.org07

Duan et al. 10.3389/fenrg.2023.1323073

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1323073


requiring the training of multiple models and the fusion of
predictions, which increases training time and computational
cost. It may also lead to overfitting when the training data are
small or the model complexity is high. As the HHO–SVR model is
better suited for reducing variance than bias and our dataset is a
small sample, Bagging algorithms are more appropriate for this
study (Zounemat-Kermani et al., 2021; Mienye and Sun et al.,
2022).

By using random sampling with dropouts from the original dataset,
multiple subsets of the original dataset that have the same size are
extracted from the original dataset. Base learners are trained
independently using each subset. Finally, when performing
regression predictions, the Bagging algorithm sums up all
predictions and averages them in order to arrive at the final prediction.

3.6 Complete ensemble empirical mode
decomposition with adaptive noise

EEMD and CEEMD aim to alleviate mode aliasing associated
with EMD decomposition due tomode aliasing. They achieve this by
introducing pairwise Gaussian white noise with opposite phases to
the original signal. Nevertheless, despite these efforts, both
algorithms may still retain some residual white noise after signal
decomposition, which can impact the accuracy of subsequent
decomposition processes. Torres et al. (2011) proposed a novel
signal decomposition algorithm CEEMDAN. As part of EEMD (Wu
and Huang, 2009), the algorithm averages the components
immediately after adding fixed white noise to the original signal
and performing the EMD decomposition. CEEMDAN adds
adaptive white noise to the residual terms after each order of
components and averages the components. Therefore,
CEEMDAN has better decomposition performance and denoising
ability compared to EEMD. The following are the decomposition
steps:

(1) The Kth Gaussian white noise is added to the original signal to
be decomposed, and a new signal is constructed.

xi t( ) � x t( ) + εδi t( ), i � 1, 2, 3. . .K , (41)
where x(t) is the original signal to be decomposed, xi(t) is the new
signal, and ε is the Gaussian white noise adaptive coefficient. δi(t)
denotes the i times added Gaussian white noise.

(2) On each new signal obtained, EMD decomposition is performed
to obtain K components. Then, the K components are summed
and averaged to obtain the first-order modal components from
the CEEMDAN decomposition.

IMF1 t( ) � 1
K
∑K

i�1IMFi
1 t( ), (42)

R1 t( ) � x t( ) − IMF1 t( ), (43)
where IMF1(t) denotes the first-order modal component obtained
from the CEEMDAN decomposition. IMFi

1(t) denotes the
component obtained by the EMD decomposition of the ith signal
in the first decomposition. R1(t) denotes the first-order residual
term.

(3) We continue to add the Gaussian white noise to the above
residual term δi(t), thus obtaining the new signal again:

yi t( ) � R1 t( ) + E1 εjδi t( )( ). (44)

The EMD decomposition is performed again on the new signal
to obtain K components, which we sum and average to produce the
second-order modal components obtained from the CEEMDAN
decomposition:

IMF2 t( ) � 1
K
∑K

i�1IMFi
2 t( ), (45)

R2 t( ) � R1 t( ) − IMF1 t( ), (46)
where yi(t) is the newly obtained signal by adding the Gaussian white
noise to the first-order residual term. Ej(·) denotes the jth-order modal
component obtained by the EMDdecomposition, IMF1(t) denotes the
first-order modal component obtained by CEEMDAN decomposition,
and IMFi

2(t) denotes the modal component obtained by EMD
decomposition in the second decomposition of the ith new signal.
R2(t) denotes the second-order residual term.

(4) These steps are repeated until the residual term becomes a
monotonic function that cannot be further decomposed. Finally,
the original signal is decomposed into jmodal components and one
residual term with the following mathematical formula:

y t( ) � ∑j

i�1IMFi t( ) + Rj−1 t( ). (47)

After obtaining the components and residual terms derived from
the CEEMDAN decomposition, appropriate prediction models can
be used to forecast each component. Finally, the forecasting results
are linearly summated to obtain the final results. In this paper, the
optimal model in the comparison was used to predict components.

4 Henry Hub natural gas price
prediction process and variable
screening

4.1 Data preprocessing

(1) Data difference

The drastic volatility of the raw data will have an impact on the
model’s prediction. A data difference can eliminate some of the
fluctuations and improve the smoothness of the data. The
mathematical principle is relatively simple, subtracting the previous
value from the next value to get a difference value. The formula is as
follows:

y′ t( ) � y t( ) − y t−1( ), (48)
where y(t) is the raw data at moment t and y(t−1) is the raw data at
moment t-1. y′(t) is the data after the first-order difference.

(2) Data normalization

Data normalization is often used in machine learning
preprocessing. When features in the dataset exhibit varying value

Frontiers in Energy Research frontiersin.org08

Duan et al. 10.3389/fenrg.2023.1323073

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1323073


ranges, data normalization becomes crucial. Data normalization
aims to standardize features on the same metric scale, to
facilitate prediction and improve prediction accuracy. Therefore,
the min–max normalization method is used to normalize the dataset
so that all data sizes are between [0,1]. Its mathematical formula is as
follows:

x* � x − x min

x max − x min
, (49)

where x* is the data value after normalization, x is the input data
before processing, and xmin and xmax are the minimum and
maximum values in the input data, respectively.

4.2 Parameter setting

In this paper, we selected a variety of models for multi-level
comparisons. Among the single models, we selected persistence,
ARIMA, back-propagation neural network (BPNN), extreme
learning machine (ELM), XGBoost, and SVR models. Among
the optimization algorithms, we chose GWO, MPA, and HHO
optimal algorithms. For the ensemble algorithm, we selected the
Bagging algorithm. For the decomposition algorithm, we chose
EEMD, VMD, and CEEMDAN algorithms. In the following, we
explained some of the algorithms that require parameter setting.

The ARIMA model is the most commonly used econometric
model. The main parameters of this model are (p, d, q), where d is
determined by the ADF test, and p and q are determined by the
AIC and BIC values (Kaur et al., 2023), respectively. We
determined (p, d, q) = (2,0,1) by using the ADF test and BIC
values. One of the most widely used neural network models is the
BPNN, which consists of three layers: the input layer, the hidden
layer, and the output layer. The number of neurons in its hidden
layer is very important, usually depending on the size and
dimension of the dataset, and there is no fixed selection
method (Wang et al., 2020). We chose a hidden layer
consisting of 32 neurons in this paper. The ELM is a single
hidden layer feed-forward neural network that does not require
iteration. Similar to other neural networks, the number of
neurons in the hidden layer has a significant effect
(Chaudhuri and Alkan B., 2021; Jiang et al., 2022b). We set
up a single hidden layer with 12 neurons based on the data in this

paper and randomly initialized hidden weights and biases.
XGBoost has been a popular gradient boosting model in
recent years. Because it is used as a benchmark experiment in
this paper, its parameters are the defaults. To facilitate
comparisons, the SVR model uses default parameters from the
benchmark model. The forecasting performance of SVR is mainly
affected by C and gamma (Ngo N et al., 2022), so we used
optimization algorithms to optimize these two parameters.
Based on previous literature and the performance of the three
optimization algorithms in this paper, for fairness, we have the
same settings for all three algorithms (Lu et al., 2022; Mohammed
S et al., 2022; Sharma and Shekhawat et al., 2022; Su X et al.,
2022): iterations: 30; population: 20; and lower and upper bound
[0.1,1]. In the Bagging algorithm, the main factors that affect its
performance include base learners and data samples
(Mohammed and Kora et al., 2023). Data samples and the
type of base learners were determined in this paper. Therefore,
the parameters that need to be manually set in the Bagging
algorithm are mainly the number of base learners. Based on
the test results of the experiment, we set the number of base
learners to 15. The VMD algorithm is mainly influenced by the
decomposition modes K and the central frequency bandwidth α
impact. The residual increases as α increases, and the larger the K
value, the more the components generated by decomposition, which
may lead to overdecomposition (Pei Y et al., 2022). We set k = 5, α =
200. We list more detailed parameter settings in Table 1.

4.3 Henry Hub natural gas price prediction
process

In this paper, we used CEEMDAN to decompose Henry Hub
natural gas prices. The HHO algorithm was selected for SVR model
parameter optimization, and the Bagging algorithm was used for
ensemble learning of the HHO–SVR model. The final prediction
model CEEMDAN–Bagging–HHO–SVR hybrid prediction model
was constructed. Due to the fact that multi-steps ahead prediction
can better mine the unique information contained in historical data,
based on the experience of previous literature, we used a three-step
ahead prediction method, which selects data from days t-1, t-2, and
t-3 as input variables to predict data from day t (Zhang et al., 2021;
Wang et al., 2023).

TABLE 1 Model parameter settings.

Model Parameter setting

ARIMA (p, d, q) = (2,0,1)

BPNN Hidden layer neurons = 32; epochs = 50; batch_size = 256; activation = "relu”; loss = "mse”; optimizer = "adam"

ELM Hidden layer neurons = 12; batch_size = 256; activation = "sigmoid"

GWO Iterations: 30; population: 20; [0.1,1]

MPA Iterations: 30; population: 20; [0.1,1]

HHO Iterations: 30; population: 20; [0.1,1]

Bagging Estimators = 15

VMD k = 5, α = 200
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Specifically, the CEEMDAN decomposition method in previous
literature usually directly decomposes the entire time series, including
the training set and test set. After obtaining the components, each one is
predicted separately, and finally, they are summed in order to obtain the
predicted value. Due to the fact that the test set belongs to future data,
data leakage will occur when all test sets are unknown and training sets
are decomposed simultaneously (Qian Z et al., 2019; Gao R et al., 2021).
Wemade improvements to this problemby gradually decomposing and
predicting time series using a rolling approach. The process is as follows.

First, the CEEMDAN decomposition is performed on the entire
training set and then one step backward is predicted to obtain the
first predicted value.

Next, the training set is extended backward by one data point,
CEEMDAN decomposition is performed on the new training set, and
another backward prediction step is made to obtain the second
predicted value.

. . .. . ..
These steps are repeated until all predicted values are obtained.
For the convenience of comparison, we retained the previous

decomposition method for EEMD and VMD and only used the
rolling decomposition method for CEEMDAN.

In the following, we provide a detailed introduction to the process of
combining rolling decomposition with the Bagging algorithm, HHO
algorithm, and SVR. This is the entire prediction process.

(1) The eight screened influencing factors together with the
historical natural gas price data were used as input variables
to compose the input dataset.

(2) Data preprocessing work such as data difference and normalization
was performed on the input dataset. This can unify data standards
and improve data quality and prediction accuracy.

(3) The processed dataset was divided into training and testing sets,
with a ratio of 8:2 between the training and testing sets.

(4) CEEMDAN decomposition was performed on the current
training set to obtain six modal components. Each
component was randomly sampled into n subsets as an input
dataset for the Bagging algorithm.

(5) n subsets were input into the HHO algorithm for parameter
optimization to obtain the optimal parameters. The optimized
parameters were input into the corresponding SVR model for
each subset separately.

(6) n subsets were independently predicted using n SVR models,
predicting only one step backward at a time. The arithmetic
average of n prediction results was calculated to obtain the
predicted value of one component. Finally, the prediction values
of the six components were summed to obtain the final single
predicted value.

(7) The training set was extended one step backward to obtain a
new training set. Steps 4–6 were repeated to obtain other
predicted values.

In the above steps, steps 4–6 include the combination process of
the Bagging algorithm, HHO algorithm, and SVR. Figure 2 more
intuitively shows the combination process of Bagging, HHO, and
SVR. Rolling decomposition prediction is mainly carried out in step
7, and Figure 3 shows this process more intuitively.

FIGURE 2
Flowchart of Bagging–HHO–SVR.
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4.4 Variable screening

4.4.1 Initial variable selection
Natural gas price prediction is affected by numerous complex

external factors besides historical natural gas price data. Li et al.
(2017) analyzed 20 variables affecting Henry Hub’s natural gas
prices using factor analysis and found that natural gas demand
and economic conditions were more prominent. Stajic et al. (2021)
employed multiple linear regression to analyze the critical drivers of

global natural gas price volatility. According to their analysis, natural
gas prices are robustly correlated with factors such as crude oil prices
and natural gas production. Li et al. (2019) investigated the
correlation between Henry Hub natural gas prices and WTI
crude oil prices through a multi-scale perspective. Zheng et al.
(2023) used the feature select algorithm to screen 20 variables
affecting natural gas prices. It found that natural gas drilling
activities and natural gas import and export prices had the most
impact. Azadeh et al. (2012) validated their hybrid model for
enhanced natural gas price forecasting in the industrial sector,
utilizing input variables such as natural gas consumption, CPI,
and GDP. Su et al. (2019) used machine learning on Henry Hub
natural gas prices by considering factors such as temperature and
heating oil prices as input variables and finally obtained better
prediction results.

The choice of input variables significantly influences the
forecasting performance of the constructed model. We used the
literature analysis method to select 14 external influence factors on
natural gas prices from four aspects initially in this paper. These
factors included economic indicators, natural gas market, and
climatic factors. Table 2 shows the 14 influence factors with the
historical natural gas price. Table 3 shows descriptive statistics for all
variables we initially selected.

(1) Economic indicators

Concurrently, overall economic performance and inflation
levels also directly or indirectly affect natural gas supply and
demand dynamics, subsequently influencing its price. GDP and
CPI are primary indicators reflecting a country’s economic
status and need to be considered comprehensively among the
factors affecting natural gas prices. Energy prices and
economic indicators are significantly correlated. Natural gas,
as a cleaner energy source, is directly influenced by factors such
as coal prices, crude oil prices, and heating oil prices, and when

FIGURE 3
Flowchart of rolling decomposition.

TABLE 2 Variables selected initially.

Aspect Influence factor Symbol

Economic indicators Historical natural gas price X_0

Coal price X_1

Crude oil price X_2

Heating oil price X_3

GDP X_4

CPI X_5

Natural gas market Natural gas supply X_6

Natural gas demand X_7

Natural gas drilling activities X_8

Natural gas imports X_9

Natural gas storage X_10

Climatic factors Maximum temperature X_11

Minimum temperature X_12

Heating degree days X_13

Cold degree days X_14
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prices of other energy sources rise, businesses and consumers
may seek to use natural gas as an alternative energy source,
thereby increasing its demand and driving up its price.
Therefore, when analyzing the fluctuations and trends in
natural gas prices, these economic indicators and related
energy price factors must be taken into account.
Preliminarily, we selected GDP, CPI, coal prices, heating oil
prices, and crude oil prices as factors in economic indicators in
this paper.

(2) Natural gas market

Supply and demand are the major factors determining
commodity prices. Therefore, the balance of supply and
demand is critical to maintaining stable natural gas prices.
Natural gas drilling and production activities directly influence
the supply of natural gas, which plays a significant role in
determining the price of natural gas. In addition, natural gas
import and storage have a direct or indirect impact on natural
gas supply and demand. Preliminarily, we selected natural gas
supply and demand, natural gas drilling activities, natural gas
imports, and natural gas storage as factors in the natural gas
market in this paper.

(3) Climatic factor

Due to the seasonal nature of natural gas, temperature and
climate changes will have a direct impact on the seasonal demand for
natural gas, the stability of the supply chain, and the storage
requirements, which will in turn impact the price of natural gas.
Preliminarily, we selected the maximum temperature and the
minimum temperature and heating degree days (HHDs) and cold
degree days (CCDs) as factors in this paper.

4.4.2 Grey relation analysis
As a result of the preliminary selection of variables, it is

necessary to further screen them to determine which variables
have a higher correlation with Henry Hub natural gas prices to
reduce the subjectivity of the input variables and improve prediction
accuracy. Using the 14 variables selected initially in this paper, we
conducted a GRA on natural gas prices and ultimately identified
eight external influencing factors as input variables to the model
along with historical natural gas prices. GRA is a method for
conducting system analysis and determining the importance of
factors that affect the development of the system (Arce et al.,
2015). The basic idea is to establish a reference sequence that
changes over time according to certain rules. Then, we need to
treat each influence factor as an analysis sequence and compute the
correlation between each analysis sequence and the reference
sequence. A higher correlation indicates a stronger relationship
between the reference sequence and the analysis sequence. The
specific flow of the algorithm is as follows:

(1) Determination of analysis and reference sequences

The natural gas price data are taken as the reference sequence
Y � Y(k), k � 1, 2, . . . n; the input variables are taken as the analysis
sequences Xi�Xi (k), k � 1, 2, . . . n, i � 1, 2, . . .m, where n is the
number of data contained in each variable and m is the number of
variables contained in the analysis sequence.

(2) Programmability

Since the individual factor columns in the analysis series may be
inconvenient to compare due to different magnitudes, this paper
adopts the min–max method to perform dimensionless operations
on the above series.

TABLE 3 Descriptive statistics of variables.

Variable Count Mean Std. Min. 25% 50% 75% Max.

X_0 252.000 4.434 2.179 1.630 2.850 3.835 5.635 13.420

X_1 252.000 62.260 18.039 31.530 50.673 62.800 69.885 122.680

X_2 252.000 62.480 25.237 16.550 44.275 59.275 81.270 133.880

X_3 252.000 1.834 0.761 0.524 1.310 1.812 2.250 3.801

X_4 252.000 2.119 5.718 −34.870 1.068 2.390 3.400 39.140

X_5 252.000 222.134 26.8758 175.100 201.075 225.822 241.372 278.802

X_6 252.000 2,119,370.000 465,425.000 1,368,370.000 1,742,510.000 2,068,740.000 2,417,590.000 3,424,300.000

X_7 252.000 2,119,370.000 465,425.000 1,368,370.000 1,742,510.000 2,068,740.000 2,417,590.000 3,424,300.000

X_8 252.000 1,246.050 493.095 250.000 881.750 1,168.000 1749.250 2017.000

X_9 252.000 288,645.000 58,466.200 174,225.000 238,316.000 282,064.000 334,002.000 426,534.000

X_10 252.000 6,911,110.000 804,148.000 5,041,970.000 6,289,200.000 7,007,010.000 7,548,360.000 8,384,090.000

X_11 252.000 65.415 16.008 38.980 50.680 65.705 80.658 89.960

X_12 252.000 41.706 14.185 18.680 28.620 41.055 55.745 63.550

X_13 252.000 349.821 308.601 3.000 39.000 282.500 627.500 968.000

X_14 252.000 116.869 125.040 2.000 14.000 51.500 220.000 407.000
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(3) Grey relation calculation

The correlation coefficient is calculated between each analysis
sequence and reference sequence separately. The mathematical formula is

ξi k( ) �
min
i

min
k

Y k( ) − Xi k( )| | + ρ
max
i

max
k

Y k( ) − Xi k( )| |

Y k( ) − Xi k( )| | + ρ
max
i

max
k

Y k( ) − Xi k( )| |
,

(50)
where ρ is the resolution coefficient, the value interval is (0, 1), which
is usually taken as 0.5, and in this paper, it is taken as 0.5.

(4) Average correlation coefficient

The correlation coefficient is the level of correlation between the
analysis sequence and the reference sequence at different time
points. It is necessary to concentrate them into a final value
(average them) to facilitate holistic comparisons. The
mathematical formula is as follows:

ri � ∑n

k�1ξi k( ), (51)

where ri is the grey correlation between the analysis sequence and
each reference sequence, and the closer its value is to 1, the
greater is the correlation of the analysis sequence to the reference
sequence.

Table 4 shows the grey correlation between natural gas price
and the remaining 14 variables in this paper. A grey correlation
less than 0.7 indicates a low correlation between the series. So,
this paper eliminates the grey correlations less than 0.7 and
filters out the final eight variables that will be used together with
the Henry Hub historical natural gas price as input variables.

5 Empirical analysis and discussion

5.1 Data description

Historical Henry Hub natural gas price data, coal price data,
crude oil price data, heating oil price data, natural gas demand
data, natural gas drilling activities data, and natural gas import
data were acquired from the U.S. Energy Information
Administration website (https://www.eia.gov). The GDP data
were acquired from the U.S. Bureau of Economic Analysis
website (https://www.bea.gov). The CDD data were acquired
from the National Oceanic and Atmospheric Administration
website (https://www.ncdc.noaa.gov). Table 5 describes
variables in detail. All of the above data are monthly data
from January 2001 to December 2021, totaling 252 data.
Figure 4 shows the strong volatility and nonlinear
characteristics of the natural gas price data.

In energy price forecasting, the raw data are mostly divided
into training and test sets, and there is no uniformity in the
division ratio (Lu H et al., 2021). In particular, we use a total of
202 (top 80%) monthly data from January 2001 to October
2017 as the training set and a total of 50 (bottom 20%)
monthly data from November 2017 to December 2021 as the
test set. The reason for selecting this time interval in this paper is
that the natural gas price during this period has experienced two
peak periods and three trough periods, with great volatility. Due
to the forecasting process, there are always invariably unforeseen
and uncontrollable “black swan” events that may occur. Due to
this, we selected a period of time that avoids the uncontrollable
factor of the Russian Ukrainian war during 2022. Since the
collected coal price data are annual data and GDP data are
quarterly data, this paper uses the EViews software to convert
their frequencies to monthly data. Model training and testing are
conducted with Spyder 5.4.3 (Python 3.9) software. The code in
this study is implemented in Python. The experimental
environment includes Windows 10 (64-bit), a Core (TM) i5-
8250U CPU @1.80 GHz and 12.0 GB of RAM. For the plotting
part, we used Origin 2022 and Visio software.

5.2 Evaluation criteria

In past research, multiple evaluation indicators were usually
used to compare the developed model and other models for
forecasting capacity. However, there is no specific standard that
exists for model evaluation (Dong Y et al., 2020).

To better compare the prediction effect of models, we used five
evaluation metrics to evaluate the prediction performance of models.
They are the mean square error (MSE), mean absolute error (MAE),
coefficient of determination (R2), root mean square error (RMSE), and
mean absolute percentage error (MAPE). Among them, the lower
values of MSE, MAE, RMSE, and MAPE signify the higher prediction
accuracy of the model. Contrary to this, a greater R2 value indicates a
more accurate fitting of the model. The mathematical formulas for each
evaluation criteria are shown as follows:

MSE � 1
N
∑N

i�1 yi − ŷi( )2, (52)

TABLE 4 Grey correlation ranking of variables.

Variable Grey correlation

X_4 0.8

X_9 0.8

X_1 0.78

X_8 0.78

X_2 0.74

X_3 0.72

X_7 0.72

X_14 0.72

X_13 0.69

X_10 0.68

X_11 0.68

X_12 0.68

X_6 0.66

X_5 0.64

The meaning of the bold values is the first eight variables filtered in the grey correlation

analysis.
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MAE � 1
N
∑N

i�1 yi − ŷi
∣∣∣∣ ∣∣∣∣, (53)

R2 � [∑N
i�1 yi − �yi( )(ŷi − ̂̂yi)]2∑N

i�1 yi − �yi( )2[ ] ∑N
i�1 ŷi − ̂̂yi)]2,([ (54)

RMSE �
��������������
1
N
∑N

i�1 yi − ŷi( )2,√
(55)

MAPE � 1
N
∑N

i�1
yi − ŷi
∣∣∣∣ ∣∣∣∣

yi
* 100, (56)

where yi is the actual value and ŷi is the model’s forecasting value. N
is the total number of samples. �yi is the mean of the real values, and̂̂yi is the mean of the forecasting values.

5.3 Experimental results

5.3.1 Comparative analysis of forecast accuracy
To compare the performance of the different models clearly, a

multi-level comparative analysis is performed in this paper. Figure 5
shows the fitting curves of different models. Figure 6 shows the
histograms of the comparison of each model on five evaluation
indicators. Table 6 demonstrates the detailed prediction accuracy of
each model across the five evaluation indicators.

The five evaluation indicators of the model are comprehensively
compared. In the single model comparison, the values of MSE,
RMSE, and R2 gradually decreased from the persistence model to the
SVR model. However, the values of MAE improved from the

TABLE 5 Details of input variables.

Variable Data description Unit Source

Historical natural gas price Historical Henry Hub natural gas spot price Dollars/million Btu EIA

Coal price Central Appalachia spot prices Dollars/ton EIA

Crude oil price Cushing, OK WTI spot price FOB Dollars/barrel EIA

Heating oil price New York Harbor No. 2 heating oil spot price FOB Dollars/gallon EIA

Natural gas demand US total natural gas consumption Million cubic feet EIA

GDP Real gross domestic product: percent change from quarter one year ago Percentage BEA

Natural gas drilling activity U.S. crude oil and natural gas rotary rigs in operation Count EIA

Natural gas import U.S. total natural gas imports Million cubic feet EIA

Cooling degree days Contiguous U.S. cooling degree days °DF NOAA

FIGURE 4
Henry Hub natural gas price time series.
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persistence model to the BPNN model, and the values of MAPE
increased from the persistence model to the ELM model. Generally,
forecasting performance tends to improve. The economic model
ARIMA performed only slightly better than the most basic
persistence model in time series forecasting.

This may be because traditional economic models usually
cannot fully capture the nonlinear characteristics of data and
have certain limitations when facing long-term predictions and
complex data. Moreover, ARIMA requires tedious parameter
settings, which is a significant drawback compared to machine
models. BPNN and ELM are both neural network models in
machine learning. BPNN usually requires multiple iterations to
adjust the weights and reduce the loss value. ELM can
automatically adjust the hidden layer weights and bias, which
trained only once without iterations. In this paper, ELM has
better performance compared to BPNN. XGBoost has also been
widely used in recent years in major research fields. It is suitable for
medium and large sample data, and its performance in this study
prediction is moderate. The regularization term added to it
reduces the overfitting performance of the model. R2 is
improved to 0.8241, but the rest of the evaluation metrics are
general. This indicates that XGBoost may not be suitable for the
dataset in this paper. The SVR model, a longstanding prediction
model that has maintained stability with small-sample data over
the decades, exhibits the same reliability in this paper. Compared
with other single machine learning models, SVR showed high
prediction accuracy. Therefore, the SVR model is selected for the
subsequent study.

In the optimization model, three different optimization
algorithms are combined with the SVR model for parameter

finding. Compared to the single SVR model, the forecasting
performance of all three optimization models has been improved.
However, the performance of all three algorithms is almost the same.
Therefore, we performed ensemble learning on all three algorithms.

In the ensemble model, the three optimizationmodels GWO–SVR,
MPA–SVR, and HHO–SVR are integrated and learned. In the
comparison between the three ensemble models and the
optimization model, all five evaluation indicators have improved.
This is mainly a benefit by the Bagging algorithm reducing the
variance of the model. The Bagging–HHO–SVR model performs
most accurately among them, with better prediction accuracy for all
five evaluation indicators compared to the others. This indicates that
HHO combined with Bagging algorithm has better performance than
the other two optimization algorithms. Therefore, we choose the
Bagging–HHO–SVR model as the decomposed prediction model.

In the decomposition algorithms, we first used both EEMD and
VMD decomposition methods for comparison. In order to compare
with the new rolling decomposition method, we applied the old
method to the EEMD and VMD decomposition which decomposes
the whole time series. There is no significant difference in
performance between the two algorithms, and both are stronger
than the ensemble model, with EEMD performing slightly better
than VMD. However, due to the problem of data leakage that this
method may cause, we used the new rolling forecasting approach in
the CEEMDAN decomposition algorithm. In this way, the dataset is
decomposed many times and a large amount of future data is not
included in the decomposition process. The prediction performance
of this method is the best among all the algorithms. The
CEEMDAN–Bagging–HHO–SVR model improves nearly 92% on
MSE compared to the Bagging–HHO–SVR model.

FIGURE 5
Comparison of predicted results of different models.
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Moreover, we conducted predictions and comparisons using
different features before and after GRA screening as input
variables for the CEEMDAN–Bagging–HHO–SVR model to
demonstrate the effect of GRA on model performance. Table 7

shows the predicted results. From the table, we can see that in the
prediction using GRA, the five evaluation indicators have
significantly improved. Specifically, MSE values decreased
from 0.0027 to 0.0005, MSE values decreased from 0.0468 to

FIGURE 6
Comparison of predicted results of evaluation metrics. (A) Comparison of MSE, (B) comparison of MAE, (C) comparison of RMSE, (D) comparison of
MAPE, and (E) comparison of R2.
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0.0174, RMSE values decreased from 0.0528 to 0.0233, MAPE
values decreased from 0.0159 to 0.0062, and R2 values increased
from 0.9966 to 0.9993. This is mainly because we removed
variables with low correlation through GRA, reduced the input
dimension of the model, and thus improved prediction
performance. As we can see, this method is indeed very
effective, and this proves that the input variables we selected
are reasonable and effective for the model.

The proposed hybrid model demonstrated excellent prediction
results in Henry Hub’s empirical study of monthly natural gas
prices. Furthermore, we also predicted NBP natural gas prices
and Japan LNG prices to verify whether the model has the same
excellent performance in other regions. Table 8 shows the prediction
accuracy of different regions. The results show that the proposed
model performed well in forecasting different regions. Therefore, the

proposed model is not only applicable to Henry Hub natural gas
prices but also has reference value for natural gas price research in
other regions.

5.3.2 Characteristic importance analysis
Many current machine learning models can make accurate

predictions, but they do not explain how they make them because
complex problems often have black-box properties, although
they can give high-accuracy results. It is difficult to explain
the inner principles and which features have the most
significant impact on prediction results. Therefore, we use the
permutation importance method to analyze the feature
importance of the Bagging–HHO–SVR model to assess how
much each feature affects Henry Hub natural gas price
prediction. The basic idea of the permutation importance

TABLE 6 Prediction accuracy comparison of different models.

Model MSE MAE R2 RMSE MAPE Rank

Persistence (Model_1) 0.8447 0.6487 0.9725 0.9191 0.0967 15

ARIMA (Model_2) 0.6429 0.6011 0.9791 0.8018 0.0881 14

BPNN (Model_3) 0.5368 0.6016 0.5953 0.7327 1.0359 13

ELM (Model_4) 0.2730 0.3405 0.7762 0.5224 0.2090 12

XGBoost (Model_5) 0.1948 0.3389 0.8241 0.4414 0.1420 11

SVR (Model_6) 0.1055 0.2592 0.8835 0.3248 0.0956 10

GWO–SVR (Model_7) 0.0134 0.0660 0.9840 0.1160 0.0243 9

MPA–SVR (Model_8) 0.0133 0.0632 0.9842 0.1155 0.0230 8

HHO–SVR (Model_9) 0.0134 0.0660 0.9841 0.1159 0.0243 7

Bagging–GWO–SVR (Model_10) 0.0083 0.0584 0.9900 0.0915 0.0220 6

Bagging–MPA–SVR (Model_11) 0.0070 0.0524 0.9917 0.0837 0.0188 5

Bagging–HHO–SVR (Model_12) 0.0060 0.0506 0.9928 0.0778 0.0190 4

VMD–Bagging–HHO–SVR (Model_13) 0.0012 0.0335 0.9984 0.0359 0.0123 3

EEMD–Bagging–HHO–SVR (Model_14) 0.0010 0.0313 0.9988 0.0317 0.0119 2

CEEMDAN–Bagging–HHO–SVR (Model_15) 0.0005 0.0174 0.9993 0.0233 0.0062 1

The meaning of the bold values is the best model in the comparison of the different types of models.

TABLE 7 Comparison of prediction results before and after input variable screening.

Model MSE MAE R2 RMSE MAPE

CEEMDAN–Bagging–HHO–SVR (NO-GRA) 0.0027 0.0468 0.9966 0.0528 0.0159

CEEMDAN–Bagging–HHO–SVR (GRA) 0.0005 0.0174 0.9993 0.0233 0.0062

TABLE 8 Prediction results of the proposed model for different regions.

Region Model MSE MAE R2 RMSE MAPE

Henry Hub CEEMDAN–Bagging–HHO–SVR 0.0005 0.0174 0.9993 0.0233 0.0062

UK NBP CEEMDAN–Bagging–HHO–SVR 0.0309 0.1669 0.9989 0.1758 0.0338

Japan LNG CEEMDAN–Bagging–HHO–SVR 0.0078 0.0797 0.9943 0.0883 0.0084
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method is to sequentially shuffle the sample order of each feature.
Then, it evaluates the error size of the disordered feature
compared to the normal prediction results. The larger the
error, the more significant the effect of the feature on the
prediction result. Figure 7 shows the result of permutation
importance, which demonstrates the extent to which each
feature influences Henry Hub natural gas prices.

According to the analysis results, historical natural gas prices,
natural gas imports, and natural gas demand are among the top
three factors. These factors are significant factors affecting Henry
Hub’s natural gas price prediction. Among them, historical
natural gas prices have the highest score. In univariate
forecasts, historical natural gas prices are usually used as the
only input variable. In multivariate forecasts, although many
external influences are added as input variables, historical
natural gas prices are still critical factors. It implies potential
features such as long-term trends and seasonal fluctuations in
natural gas prices, which are not present in external factors.
Natural gas demand ranks second, with demand being a major
component of the market’s supply and demand balance. When the
demand for natural gas increases, the supply of natural gas is
delayed and the market supply of natural gas may fall short of
demand. Then, natural gas prices will increase. Conversely, when
demand decreases, supply may exceed demand and the natural gas
prices will decrease. Natural gas imports rank third. When there is
a sudden increase in natural gas demand and the country cannot
meet supply from its domestic natural gas production, it needs to
import natural gas from abroad to bridge the demand
gap. Consequently, natural gas imports alter natural gas prices
by impacting supply and demand equilibrium, then influencing
natural gas prices.

6 Conclusion and recommendations

Focusing on the nonlinearity and nonstationarity of natural gas
prices caused by multiple influence factors and the limitations of
single models, we proposed a CEEMDAN–Bagging–HHO–SVR
hybrid model that considered various natural gas price influence
factors and empirically analyzed the monthly natural gas price in
Henry Hub in this paper. From the results of the empirical analysis
over a 20-year period from January 2001 to December 2021, we can
draw some conclusions:

(1) The CEEMDAN–Bagging–HHO–SVR model combines four
algorithms: “decomposition algorithm,” “ensemble
algorithm,” “optimization algorithm,” and “prediction
model.” The addition of each algorithm further improves the
forecasting performance of the model. The constructed model
has extremely high prediction accuracy in forecasting natural
gas prices in Henry Hub and also performs well in other regions.
This indicates that the constructed model has universal
applicability.

(2) In multivariate prediction, the choice of input variables is
extremely important. We used GRA in this experiment to
analyze the influence factors, which significantly improved
the prediction accuracy of the model while reducing the
subjectivity of input variable selection. Consequently, the
input variables selected in this paper are very suitable for the
forecasting of Henry Hub natural gas.

(3) Using a characteristic importance analysis, we conclude that
historical natural gas prices, natural gas demand, and natural
gas imports influence natural gas prices at Henry Hub greatly.
This can provide some reference for relevant personnel.

FIGURE 7
Histogram of feature importance.
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Natural gas is emerging as a valuable, clean energy source,
playing a vital economic and environmental role on a global
scale as global natural gas trade expands. Energy market
participants and policymakers require accurate natural gas price
predictions. Energy companies can increase their competitiveness by
formulating procurement strategies and pricing policies based on
natural gas price predictions. For consumers, accurate natural gas
price predictions can help them rationalize energy expenditures and
reduce energy costs. Government agencies can also use natural gas
price forecasts to optimize their energy policies and promote clean
energy and sustainable development. As the most influential natural
gas trading center in North America, the Henry Hub natural gas
price fluctuations have a wide impact on the global energy market.
The Henry Hub natural gas price is a major wind vane for
international natural gas prices. Energy traders, investors, and
energy users need to accurately forecast Henry Hub natural gas
prices. Therefore, the proposed hybrid model is a potential analytical
tool for investors interested in developing a strategic approach.
Moreover, we put forward some recommendations based on the
experimental results of this paper:

(1) For countries, the constantly changing international situation has a
significant impact on the import and export of natural gas. The
leaders of countries should always pay attention to the dynamics of
major natural gas import and export countries. They should
strengthen connections with these countries or sign strategic
agreements to ensure the stability of their own natural gas
import and export.

(2) For governments, it is necessary to strengthen its regulatory
strategy on the natural gas market and strive to ensure the
rationality of natural gas prices and the stability of the industrial
chain. It is also important for the government to formulate energy
diversification development strategies in the future in order to
reduce its dependence on fossil fuels, for example, increasing policy
incentives for the development of renewable energy sources such as
solar and wind energy and developing various alternative energy
sources to ensure the stability of the energy supply.

(3) For investors, they should adhere to long-term investment strategies
and study the long-term development trends of historical prices.
Investors should closely monitor government policy adjustments
and international relations between countries to adjust their
investment plans on time. In addition, investors can consider an
investment portfolio that includes different types of energy to reduce
the risk of natural gas price fluctuations on the investment.

There are still limitations to the experiment, even though the
constructed model has extremely high accuracy in forecasting Henry
Hub natural gas prices. There is inevitable subjectivity in the setting
of some parameters due to the complexity of the experiment, such as
the selection of multi-steps ahead and the selection of parameters for
certain algorithms. To address this issue, more objective selection
methods should be explored in future research.

Geopolitical risks are usually unforeseeable and have
contingency. However, it cannot be denied that they have an
unignored impact on natural gas price prediction, such as
regional conflicts or policy changes in natural gas-producing
countries that can lead to significant price fluctuations.

In addition, with the development of renewable energy
technology and increased policy support, the competitiveness
of renewable energy will affect the demand and price of natural
gas. Although this paper considers some long-term factors
affecting natural gas price changes, it cannot avoid the impact
of policy factors and black swan events on prediction results.
Thus, we did not consider some unexpected events such as
geopolitical factors in this paper. Moreover, natural gas
influence factors may change over time. Therefore, future
research could try considering geopolitical factors and other
influential factors with increasing importance to improve the
applicability of models.
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