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In recent years, the deployment of high-voltage direct current (HVDC) tie-lines
in power grids has become a prevalent solution in some countries to transmit
renewable energy from remote locations to load centers. However, the variability
and uncertainty associated with renewable energy generation pose challenges
to effectively utilizing this technology. This work proposes a novel multistage
planning-operation model, aiming to unlock the potential flexibility in the HVDC
transmission system and increase the renewable penetration. By incorporating
flexibility, which is essential for accommodating the uncertainty in renewable
generation, our model optimally shares the inter-regional flexibility between the
sending- and receiving-end grids. One of the key features of our proposedmodel
is its robustness and non-anticipativity, meaning it can account for different
levels of uncertainty and make decisions that are suitable for multiple scenarios.
This work develops two solution approaches to solve this challenging multistage
model with variable uncertainty sets.We validate the proposed approach through
a case study conducted on a real-world inter-regional grid. The numerical results
demonstrate that our approach effectively unlocks more inter-regional flexibility
and assists in increasing the renewable hosting capacity.

KEYWORDS

HVDC transmission, renewable energy, uncertainty, surrogate affine approximation,
implicit decision method

1 Introduction

The global adoption of high-voltage direct current (HVDC) systems has been rapidly
increasing in regions such as Europe, North and South America, and China.This widespread
installation of HVDC systems is driving a significant revolution in the strategy for
accommodating renewable energy. With the characteristics of wind and solar energy,
large-capacity wind and PV farms are often located far away from major load centers.
This geographical separation creates a need for long-distance transmission solutions, and
HVDC has emerged as one of the favorable options. HVDC offers advantages in terms of
capital cost for long-distance transmission and has a transmission capability that remains
relatively constant, regardless of the distance traveled (Li et al., 2021). In addition to the
cost and distance advantages, HVDC also provides power flow controllability, which
helps in effectively managing and avoiding loop flows in the transmission system. This
controllability feature further enhances the suitability of long-distance HVDC transmission
for accommodating renewable energy. A prime example of the importance of long-distance
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HVDC transmission for renewable energy accommodation can be
seen in China. The vast renewable resources in western China are
efficiently delivered to the load-centralized eastern regions through
HVDC transmission (Lin et al., 2020).

The traditional approach to HVDC tie-line scheduling assumes
that the transmission system operator (TSO) or independent
system operator (ISO) has accurate load forecasts and the ability
to schedule generation accordingly (Guo et al., 2018). However, the
growing penetration of renewable energy sources has challenged
this fundamental assumption. Renewable generation, such as
wind and solar energy, is inherently variable and not fully
controllable. This variability introduces uncertainty into power
system operation, requiring TSOs/ISOs to consider and manage
this uncertainty effectively. As tie-lines connect inter-regional
power grids, it becomes crucial to collaboratively address the
uncertainty associated with the tie-line power flow. In response
to these challenges, there is a need to develop new HVDC tie-
line scheduling approaches that account for the uncertainty
stemming from renewable energy. By jointly managing the
uncertainty across regions, TSOs/ISOs can enhance the system’s
ability to accommodate renewable energy and maintain grid
stability.

In recent years, significant research has been conducted on
the topic of the scheduling and operation of HVDC systems with
large-scale renewable penetration. Zhong et al. (2015) developed
an operation model of HVDC tie-line for enhancing the capacity
of renewable energy integration. Zhao et al. (2022) proposed a
distributed multi-objective day-ahead generation and HVDC
transmission joint scheduling model. Zhou et al. (2018) presented
a distributed dispatch model aimed at facilitating the integration
of wind power within the bulk AC/DC hybrid system. Guo et al.
(2018) presented a robust optimization framework for efficient
tie-line scheduling. Zeng et al. (2017) proposed a sequential
simulation method considering HVDC tie-line operation and
unit aggregation to analyze the wind accommodation in the
1-year horizon. Li et al. (2016) proposed a two-stage adaptive
robust optimization model that takes into account uncertainties
related to wind energy in tie-line scheduling problems. Wang et al.
(2019a) proposed a stochastic optimization model to address cross-
regional system scheduling, with a primary focus on minimizing
renewable energy curtailment. In the aforementioned works,
detailed unit and networkmodels are often employed in the problem
formulations (Li et al., 2016; Guo et al., 2018; Zhou et al., 2018;
Zhao et al., 2022). However, the model size is often large in the real-
world power systems, and these models may be computationally
expensive. Thus, some research studies simplify the transmission
system topology (Zhong et al., 2015; Zeng et al., 2017; Wang et al.,
2019a) and aggregate units within each area (Zhong et al.,
2015; Zeng et al., 2017) to reduce the complexity. Recently,
distributed optimization techniques, such as the synchronous
alternating directionmethod of multipliers (SADMMs) (Zhao et al.,
2022) and analytical target cascading (ATC) (Zhou et al.,
2018), have also been employed to speed up solving. These
interesting works show promising performance in computational
efficiency.

Renewable energy resources have led to the wide utilization of
energy storage (ES) devices to alleviate potential congestion and

minimize curtailment of renewable sources. Extensive research
has been conducted on both transmission expansion planning
(Yifan et al., 2015; Yin and Wang, 2022) and ES planning (Wogrin
and Gayme, 2015). More recently, there has been a growing
interest in developing collaborative planning models that address
the challenges of high renewable penetration in the transmission
system. Moradi-Sepahvand and Amraee (2021) proposed a multi-
year planning model of a hybrid AC/DC transmission system to
optimize the operation and investment cost of ES. Wang et al.
(2019b) proposed a robust formulation for ES and transmission
line co-planning. Qiu et al. (2017) proposed a co-planning
model of transmission expansion and ES under high renewable
penetration.

Nonetheless, it is difficult to find an optimal robust scheduling
strategy and recourse action for ES when considering non-
anticipativity constraints. This complexity primarily arises due
to ES’s state of charging (SOC). It has been proven that many
approaches, such as the two-stage robust model, scenario-based
model, and chance-constrained models, fall short in ensuring
feasibility when accommodating uncertainty (Lorca et al., 2016;
Lorca and Sun, 2017; Zhai et al., 2017; Zhou et al., 2021). On the
other hand, the recently proposed multistage optimization method
in Zhou et al. (2021); Lorca and Sun (2017) Lorca et al. (2016); G.
Cobos et al. (2018); and Hreinsson et al. (2019) proves to be an
effective approach for ES-accommodating uncertainties. Decisions
derived from the multistage model are guaranteed in terms of non-
anticipativity and robustness. In other words, the operators’ actions
are restricted to only depend on an uncertainty realized up to
the current decision period, which is defined as non-anticipativity
(Lorca and Sun, 2017). In addition, these actions have to be
feasible for any uncertainty realization within an uncertainty set,
which is denoted by robustness (Zhou et al., 2021). Nevertheless,
it is worth noting that the uncertainty set associated with
renewable generationwill vary as capacity increases, often rendering
the existing multistage optimization method computationally
challenging.

This paper aims to advance the integration of renewable energy
into the power system by unlocking cross-area flexibility with
HVDC tie-lines, taking into account the renewable uncertainty.
To achieve this, the authors propose a novel multistage HVDC
tie-line planning-operation model that specifically addresses the
challenges associated with high levels of renewable penetration.The
model developed in this paper considers several important factors,
including the scheduling of HVDC tie-line power, thermal plant
operations, demand response, planning of energy storage, and the
uncertainty associated with renewable energy generation. Drawing
inspiration from the surrogate affine approximation (SAA) approach
(Ye, 2018) and implicit decision method (IDM) (Zhai et al., 2017;
Zhou et al., 2021), the authors propose the two-solution method
for the model that accounts for the variable uncertainty set.
These approaches allow for effective decision-making in the
face of uncertainty, ensuring a robust and efficient operation of
the HVDC tie-line system. The contributions of this paper are
threefold:

• We propose a novel HVDC tie-line planning-operation model
that takes into account the variable uncertainty set associated
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with renewable generation. One of the key decision variables in
the model is the renewable installation capacity, which directly
impacts the uncertainty range.Themodel optimally determines
how much renewable and uncertainty that the inter-regional
flexibility can accommodate. In addition to the renewable
installation capacity, themodel also determines storage capacity
and HVDC tie-line power, considering thermal plant dispatch
and demand response. It is noted that this work focuses on the
flexibility and thus employs the simplified planningmodel used
in practice.
• This work proposes two solution approaches to the model with
the variable uncertainty set. Unlike most multistage models
that assume a constant uncertainty set, we recognize the need
to model a variable uncertainty set that is determined by the
renewable installation capacity. This introduces challenges in
solving the model as the uncertainty set is no longer fixed. To
address this, we employ a surrogate affine policy-based solution
method and implicit decision-based solution method. Both
methods allow us to effectively handle the variable uncertainty
set and make informed decisions regarding the renewable
installation capacity. As a result of the two solution approaches,
we obtain closed-form re-dispatch strategies and safe ranges
of re-dispatch strategies, respectively. These strategies provide
valuable insights into how to respond to uncertain renewable
generation, ensuring a reliable and efficient operation of the
HVDC tie-line system.
• We conduct comprehensive studies with a real-world case,
offering an in-depth analysis and discussion of an inter-
regional power system within China. It shows potential to
offer valuable insights into inter-regional renewable energy
accommodation.

The rest of this paper is organized as follows: Section
II introduces the multistage HVDC model. Section III
presents the proposed solution approach. Case studies
are provided in Section IV. Section V concludes this
paper.

2 Problem formulation

In this section, we first present the deterministic HVDC-
connected two-area system planning-operation model. To place
emphasis on the HVDC tie-line, we streamline the models for
both the sending and receiving ends. The sending-end grid
comprises thermal power plants, wind and PV farms, and storage.
Meanwhile, the receiving end incorporates storage, loads, and
demand response. Planning and operation decisions are determined
in the model simultaneously. The planning decision includes the
renewable installation capacity, storage capacity, and medium-
term HVDC tie-line power contract. The operation decision
involves HVDC tie-line power scheduling, thermal unit dispatch,
renewable energy output, storage SOC, and load shedding. Then,
we present the multistage optimization model to guarantee
the solution non-anticipativity and robustness. Recourse actions
are modeled in the multistage model to accommodate the
uncertainty.

2.1 Deterministic HVDC-connected
two-area system planning-operation
model

In the proposedHVDCplanning-operationmodel, the objective
is to maximize the installation capacity of renewable energy and
minimize investment and operation costs. Let ω denote the weight
factor that could be any value between 0 and 1. Then, the objective
function is formulated as

min (1−ω){Fc (Cpv,Cw,Csto) + ∑
t∈T
[Fgt (p

g
t)

+Fnt (p
n
t ) + F

l
t (p

ls
t )]}−ω(C

pv +Cw) . (1)

It is subject to

− κhvdct Rhvdc ≤ phvdct − p
hvdc
t−1 ≤ κtR

hvdc,

κhvdct ∈ {0,1} ,∀t ∈ T , (2)

phvdc ≤ phvdct ≤ p̄
hvdc,∀t ∈ T , (3)

t+Thvdc

∑
t

κhvdct ≤ 1,∀t ∈ T , (4)

∑
t∈T

κhvdct ≤ X
hvdc, (5)

∑
t∈T

phvdct Δt = Qhvdc, (6)

βgCg ≤ pgt ≤ C
g,∀t ∈ T , (7)

−RgΔt ≤ pgt − p
g
t−1 ≤ R

gΔt,∀t ∈ T , (8)

p f ,pvt + p
f ,w
t + p

s,dis
t − p

s,ch
t + p

g
t = p

hvdc
t ,∀t ∈ T , (9)

Est+1 = E
s
t + (μ

s,chps,cht − p
s,dis
t /μ

s,dis)Δt,∀t ∈ T , (10)

(1− αs,sto)Cs,sto ≤ Est ≤ C
s,sto,∀t ∈ T , (11)

0 ≤ ps,cht ≤ η
s,chCs,sto,∀t ∈ T , (12)

0 ≤ ps,dist ≤ η
s,disCs,sto,∀t ∈ T , (13)

Es0 = E
s
T, (14)

p f ,pvt = k
f ,pv
t Cpv,∀t ∈ T , (15)

p f ,wt = k
f ,w
t Cw,∀t ∈ T , (16)

pr,dist − p
r,ch
t + p

hvdc
t + p

n
t = p

l
t − p

ls
t ,∀t ∈ T , (17)

pn
t
≤ pnt ≤ p̄

n
t ,∀t ∈ T , (18)

−RnΔt ≤ pnt − p
n
t−1 ≤ R

nΔt,∀t ∈ T , (19)
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FIGURE 1
Illustrative intersection of sending- and receiving-end supply curves in
an inter-regional grid without network congestion. The intersection is
the energy price–quantity pair without considering other constraints.

Ert+1 = E
r
t + (μ

r,chpr,cht − p
r,dis
t /μ

r,dis)Δt,∀t ∈ T , (20)

0 ≤ pr,cht ≤ η
r,chCr,sto,∀t ∈ T , (21)

0 ≤ pr,dist ≤ η
r,disCr,sto,∀t ∈ T , (22)

(1− αr,sto)Cr,sto ≤ Ert ≤ C
r,sto,∀t ∈ T , (23)

Er0 = E
r
T, (24)

0 ≤ plst ≤ γ
lsplt,∀t ∈ T . (25)

Eqs 2–6 are operation constraints of the HVDC tie-line.
Specifically, Eq. 2 represents the ramping limits of HVDC tie-
line power. Eq. 3 denotes the lower and upper limits of HVDC
tie-line power. The minimum duration time for HVDC tie-line
power is modeled in Eq. 4. Eq. 5 represents the maximal adjustment
constraint of HVDC tie-line power each day. Eq. 6 shows that the
total energy transferred by the HVDC tie-line is determined by the
cross-border trading contract. It is worthmentioning that the energy
transferred by HVDC is formulated in this model, following the
planning practice.The transferred energy between regions is affected
by many factors. Among them is the energy cost difference. Figure 1
illustratively depicts an intersection of two supply curves in an
inter-regional grid. Without considering the renewable installation
capacity and other constraints, the intersection is the optimal point,
which yields the resulting energy quantity to be inter-regional
transferred.

Eqs 7–16 denote sending-end constraints. Specifically, Eq. 7
stands for the lower and upper bounds of the aggregated thermal
unit output. Eq. 8 represents the ramp-up/ramp-down limit of
the aggregated thermal unit. Eq. 9 represents the power balance
equation. Eqs 10 and 11 denote the SOC change and lower/upper
limit of the SOC level of the storage, respectively. Charging and
discharging power of storage are modeled in Eqs 12 and 13,
respectively. Eq. 14 shows that SOC at the last time period equals
to its initial level. Eqs 15 and 16 define the scheduled outputs of PV
and wind farm, respectively.

Eqs 17–25 denote receiving-end constraints. Specifically, Eq. 17
represents the power balance equation. Eq. 18 stands for the lower
and upper bounds of the simplified unit. Eq. 19 shows the ramp-
up/ramp-down limit of the simplified unit. Eqs 20–24 denote storage
constraints, which are similar to those in the sending end. Eq. 25
represents the upper bound of load shedding.

2.2 Multistage optimization model with the
variable uncertainty set

2.2.1 Uncertainty modeling
In this study, the deviations from renewable forecast output are

considered an uncertainty.Without loss of generality, an uncertainty
is assumed to follow Gaussian distribution with a mean value of 0
and variance of σ. Then, the materialized renewable generation is
defined as

p̂vt = p
f ,v
t + ϵ

v
t , ϵ

v
t ∼ N(0,σ

v2),∀t ∈ T ,∀v ∈ {pv,w}. (26)

Generally, the renewable output is proportional to its
capacity. Hence, the confidence interval of ϵvt can be denoted as
[−klow,vt Cv,kup,vt Cv], given a certain confidence level. Traditionally,
the uncertainty is usuallymodeled as a box set with a fixed boundary
in the multistage model (Lorca and Sun, 2017; Zhai et al., 2017;
Zhou et al., 2021). However, the installation capacity of renewables
is to be determined in this study, resulting in a non-constant
uncertainty set. Thus, we formulate the variable uncertainty set
(Cartesian product):

U(u) = U1(u1) ×U2(u2) ×…×UT(uT), (27)

whereUt(ut) is a polyhedral convex set of uncertainty at time t.Ut(ut)
can be formulated as a box set with the variable boundary,

Ut (ut) ≜ {(ϵ
pv
t , ϵ

w
t )

T:− ulow,vt ≤ ϵ
v
t ≤ u

up,v
t ;v ∈ {pv,w}} , (28)

which denotes the range of uncertainty that the inter-regional
flexibility is capable of accommodating. Ut(ut) can also be called
an optimal uncertainty range (OUR). It is related to renewable
installation capacity, and we formulate constraints as follows:

uup,vt ≥ k
up,v
t Cv,∀t ∈ T ,∀v ∈ {pv,w} , (29)

ulow,vt ≥ k
low,v
t Cv,∀t ∈ T ,∀v ∈ {pv,w} , (30)

which guarantee that uncertainty in the confidence interval can
always be accommodated inOUR. Figure 2 shows the comparison of
the uncertainty confidence interval, OUR, and installation capacity
of renewable generation.

2.2.2 Uncertainty accommodation
The recourse actions of flexible resources can be formulated as

[p̂gt , p̂
A,ch
t , p̂

A,dis
t , p̂

hvdc
t , p̂

ls
t ]

T

= [pgt ,p
A,ch
t ,p

A,dis
t ,p

hvdc
t ,p

ls
t ]

T + yt (ϵ[t]) ,∀t ∈ T ,∀ϵt ∈ Ut (ut) ,

∀A ∈ {s, r} , (31)

which respect constraints (2–25). ϵ[t] represents the uncertainty
vector and ϵ[t] = {ϵ1, ϵ2, …, ϵt}. yt (ϵ[t]) is the recourse function that
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FIGURE 2
Comparison of the uncertainty confidence interval, optimal
uncertainty range (OUR), and installation capacity of renewable
generation. OUR is the uncertainty range that the inter-regional
flexibility can accommodate, and the confidence interval of
generation uncertainty always falls within OUR. The harnessed
renewable energy, such as wind, may reach the maximal level,
regardless of installation capacity.

maps uncertainty to re-dispatch decisions. Unlike the two-stage
robust-based and scenario-based method, the proposed recourse
actions (31) can guarantee the non-anticipativity and robustness of
the solution simultaneously.

2.2.3 Multistage optimization model
With aforementioned equations, the multistage optimization

model can be formulated as

(P)min (1−ω){Fc (Cpv,Cw,Csto)

+ ∑
t∈T
[Fgt (p

g
t) + F

n
t (p

n
t ) + F

l
t (p

ls
t )]}−ω(C

pv +Cw)

s.t. (4) − (5) , (18) − (19) , (26) , (29) − (31) ,

− κhvdct Rhvdc ≤ p̂hvdct − p̂
hvdc
t−1 ≤ κ

hvdc
t Rhvdc,∀t ∈ T ,

(32)

phvdc ≤ p̂hvdct ≤ p̄
hvdc,∀t ∈ T , (33)

∑
t∈T

p̂hvdct Δt = Qhvdc, (34)

p̂pvt + p̂
w
t + p̂

s,dis
t − p̂

s,ch
t + p̂

g
t = p̂

hvdc
t ,∀t ∈ T , (35)

(1− αA,sto)CA,sto ≤
t

∑
τ=1
(μA,chp̂A,chτ − p̂

A,dis
τ /μ

A,dis)

+EA0 ≤ C
A,sto,∀t ∈ T ,∀A ∈ {s, r} , (36)

0 ≤ p̂A,cht ≤ η
A,chCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (37)

0 ≤ p̂A,dist ≤ η
A,disCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (38)

∑
t∈T
(μA,chp̂A,cht − p̂

A,dis
t /μ

A,dis)Δt = 0,∀A ∈ {s, r} , (39)

βgCg ≤ p̂gt ≤ C
g,∀t ∈ T , (40)

−RgΔt ≤ p̂gt − p̂
g
t−1 ≤ R

gΔt,∀t ∈ T , (41)

p̂r,dist − p̂
r,ch
t + p̂

hvdc
t + p

n
t = p

l
t − p̂

ls
t ,∀t ∈ T , (42)

0 ≤ p̂lst ≤ γ
lsplt,∀t ∈ T . (43)

The problem (P) is a highly non-convex optimization problem.
First, the model has plenty of infinite constraints due to uncertainty.
Second, the recourse actions are non-linear and non-convex.
Moreover, the model has a variable uncertainty set that is
relevant to the renewable installation capacity. To address these
difficulties, we propose two tractable methods in the following
section.

3 Solution approach

3.1 Surrogate affine approximation

In this section, affine policies are adopted to implement the
recourse actions. Re-dispatch decisions of the aggregated unit,
HVDC, load shedding, and storages are functions of renewable
realizations. We define the recourse actions as

yt (ϵ[t]) = Gtϵ[t],∀t ∈ T ,∀ϵt ∈ Ut(ut), (44)

where Gt is the matrix of affine policy. Following (31) and (44), the
problem (P) can be rewritten into a compact form as follows:

(AP−P) min
x,u,G

cTx, (45)

s.t. Ax +Eu ≤ b, (46)

Kx + Lϵ +MGϵ ≤ d,∀ϵ ∈ U(u), (47)

Fx +Hϵ + JGϵ = h,∀ϵ ∈ U(u), (48)

where x represents scheduled variables including tie-line power
and adjustment of HVDC, output of the aggregated unit, capacity
and output of renewables and storages, purchased power, and load
shedding. The variable u denotes the OUR bound of renewables.
G represents the affine policy matrix. Eq. 45 denotes the objective
function (1). Eq. 46 denotes constraints (4)–(5), (18)–(19), and
(29)–(30). Eq. 47 denotes inequality inter-regional grid constraints
with ϵ. Equality inter-regional grid constraints with ϵ are represented
by (48).

Although the affine policy reduces the model complexity, (AP-
P) is still computationally intractable due to the variable bound
of uncertainty set in Eqs 47 and 48. To deal with this difficulty,
we employ SAA (Ye, 2018) by introducing a set of surrogate
variables

0 ≤ δLB ≤ 1, 0 ≤ δUB ≤ 1, (49)
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and surrogate affine policy

Ĝ = G [−ULB,UUB] ,∀t, (50)

where ULB = diag(ulow) and UUB = diag(uup). Following strong
duality, Eq. 47 is recast as

Kx +π ⋅ 1 ≤ d, (51)

MĜ + L[−ULB,UUB] ≤ π, (52)

π ≥ 0, (53)

where π is a matrix of non-negative multipliers. The recourse action
in Eq. 44 can be rewritten as

Gϵ=G[−ULB,UUB][[

[

δLB

δUB
]]

]

=Ĝ[[

[

δLB

δUB
]]

]

. (54)

Following the recourse action (54), Eq. 48 is equivalent to the
following equations:

Fx = h, (55)

H[−ULB,UUB] + JĜ = 0. (56)

With aforementioned constraints, the SAA model is formulated
as

(SAA−P) min
x,u,Ĝ,π

cTx, (57)

s.t. (46), (51) − (53), (55) − (56). (58)

(SAA-P) is an MILP problem and can be solved using the off-
the-shelf solvers.

3.2 Implicit decision method

IDM uses carefully selected scenarios and predefined (i.e., non-
anticipative) constraints to reformulate the multistage model, while
guaranteeing solution non-anticipativity and robustness. Based on
Zhai et al. (2017), the selected scenarios include three categories:
base scenario (BS), selective vertex scenarios (SVS), and extreme
ramping scenarios (ERS). BS represents the forecast scenario of
the renewable. SVS denotes vertex scenarios of the uncertainty set.
ERS comprises two scenarios that capture extreme fluctuations in
renewable generation.

Non-anticipativity and robustness of thermal output, storage
charging/discharging power and HVDC tie-line power shall be
guaranteed. For thermal units, we use pg,min

t and pg,max
t to formulate

non-anticipativity constraints (NCs) as in Eqs 59–61. For storage,
EA,min
t and EA,max

t are introduced to formulate the NCs, as shown
in Eqs 62–64. Furthermore, we develop phvdc,max

t and phvdc,min
t to

constitute the NCs of HVDC tie-line power, as shown in Eqs 65–67.

βCg ≤ pg,min
t ≤ p

g
t,i ≤ p

g,max
t ≤ C

g,∀t ∈ T ,∀i ∈ I , (59)

−RgΔt ≤ pg,max
t − p

g,min
t−1 ≤ R

gΔt,∀t ∈ T , (60)

−RgΔt ≤ pg,min
t − p

g,max
t−1 ≤ R

gΔt,∀t ∈ T , (61)

(1− αA)CA,sto ≤ EA,min
t ≤ E

A
t,i ≤ E

A,max
t ≤ CA,sto,∀t ∈ T ,

∀i ∈ I ,∀A ∈ {s, r} , (62)

− ηA,disCA,sto/μA,dis ≤ (EA,max
t −EA,min

t−1 )/

Δt ≤ ηA,chμA,chCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (63)

− ηA,disCA,sto/μA,dis ≤ (EA,min
t −E

A,max
t−1 )/

Δt ≤ ηA,chμA,chCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (64)

phvdc ≤ phvdc,min
t ≤ phvdct,i ≤ p

hvdc,max
t ≤ p̄hvdc,∀t ∈ T ,∀i ∈ I , (65)

− κhvdct Rhvdc − (1− κhvdct ) p̄
hvdc ≤ phvdc,min

t

− phvdc,max
t−1 ≤ κhvdct Rhvdc + (1− vt) p̄hvdc,∀t ∈ T , (66)

− κhvdct Rhvdc − (1− κhvdct ) p̄
hvdc ≤ phvdc,max

t

− phvdc,min
t−1 ≤ κhvdct Rdc + (1− κhvdct ) .p̄

hvdc,∀t ∈ T . (67)

Based on BS, SVS, ERS, and the proposed NCs, the multistage
model of HVDC with IDM is established as

min−ω(Cpv +Cw) + (1−ω)∑
i∈I

pi{F
c (Cw,Cpv,Csto)

+ ∑
t∈T
[Fgt (p

g
t,i) + F

n
t (p

n
t ) + F

l
t (p

ls
t,i)]}, (68)

s.t. (4) − (5), (18) − (19), (59) − (67),

∑
t∈T

phvdct,i Δt = Qhvdc,∀i ∈ I , (69)

ppvt,i + p
w
t,i + p

s,dis
t,i − p

s,ch
t,i + p

g
t,i = p

hvdc
t,i ,∀t ∈ T ,∀i ∈ I , (70)

pr,dist,i − p
r,ch
t,i + p

hvdc
t,i + p

n
t = p

l
t − p

ls
t,i,∀t ∈ T ,∀i ∈ I , (71)

EAt+1,i = E
A
t,i + (μ

A,chpA,cht,i

−pA,dist,i /μ
A,dis)Δt,∀t ∈ T ,∀i ∈ I ,∀A ∈ {s, r}, (72)

EA0,i = E
A
T,i,∀i ∈ I ,∀A ∈ {s, r}, (73)

0 ≤ plst,i ≤ γ
lsplt,∀t ∈ T ,∀i ∈ I . (74)

4 Case study

We perform the case studies based on a real-world two-area
interconnected system in China. Load and renewable forecast
profiles are obtained from real historical data on two provinces. The
existing daily trading electricity of HVDC tie-line is 112.8 GWh,
150.6 GWh, 112.8 GWh, and 126.6 GWh from spring to winter.
Figure 3 shows the existing scheduled profile of the HVDC tie-line
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FIGURE 3
Existing scheduled HVDC tie-line profiles for each season.

TABLE 1 Major techno-economical parameters.

Parameter Value Parameter Value Parameter Value Parameter Value

phvdc 0 GW Cg 6 GW ηA,ch 100% Fc(Cpv) $534/kW

p̄hvdc 8 GW βg 20% ηA,dis 100% Fc(Cw) $877/kW

Rhvdc 4 GW/h Rg 2 GW/h αA,sto 90% Fgt (p
g
t ) $0.04/kWh

Xhvdc 4 μA,ch 25%/h γls 5% Fnt (p
n
t ) $0.06/kWh

Thvdc 3 h μA,dis 25%/h Fc(Csto) $385/kWh Flt(p
ls
t ) $0.10/kWh

in various seasons. The planning horizon is considered 10 years.
We use four seasonal typical days for the planning, and the time
resolution is set as 2 h.Themajor techno-economical parameters are
presented in Table 1. The simulations are executed using MATLAB
2021b and Gurobi 9.5 in a server with Intel Xeon Gold 6140
(2.30 GHz).

4.1 Effectiveness of the proposed model

4.1.1 Inter-regional flexibility
The following HVDC operation modes are compared to

demonstrate the effectiveness of the proposed model for unlocking
inter-regional flexibility:

• Mode 1: HVDC tie-line power is fixed based on the current
practice in the industry.
• Mode 2: HVDC tie-line power is optimized without a recourse
action.
• Mode 3: HVDC tie-line power is optimized with a recourse
action.

For a fair comparison, all three modes utilize an identical amount
of energy transferred by HVDC. IDM is used to solve the
proposed model in this case. The second column of Table 2

TABLE 2 Maximum installation capacity of renewable generation and
minimum 10-year cost obtained by the proposedmodel under different
operationmodes of the HVDC tie-line.

ω = 1 ω = 0

Renewable capacity (GW) Cost (×109$)

Mode 1 7.04 634.034

Mode 2 8.24 628.435

Mode 3 9.81 628.074

shows the maximum installation capacity of renewable generation
obtained by the proposed model with ω = 1. Mode 3 achieves
the highest renewable installation capacity, amounting to 9.81 GW.
This is primarily due to mode 3’s ability to unlock the inter-
regional flexibility. Recourse actions of HVDC tie-line can be taken
when uncertainty is materialized. Then, flexible resources in the
receiving end are adjusted to accommodate power fluctuations
transmitted by the HVDC tie-line. This utilization of inter-regional
flexibility effectively mitigates the impact of uncertainty; thus,
more renewable resources can be accommodated. In mode 2, the
renewable installation capacity stands at 8.24 GW, representing a
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TABLE 3 Resulting 10-year transferred energy quantity and cost under different cross-border contracts.

Cost (×109$) Q (TWh)

Sending-end grid Receiving-end grid Total

Current industry practice 17.445 610.715 628.160 458.80

Proposed approach 19.971 606.240 626.211 532.88

TABLE 4 Planning results with different methods.

Method ω = 0 ω = 1

Cost (×109$) Renewable curtailed (%) Renewable capacity (GW) Renewable curtailed (%)

IDM 626.173 0 10.51 0

SAA 626.211 0 10.37 0

SM 623.579 9.2 12.82 6.2

TABLE 5 Cases for sensitivity analysis with different parameters.

Case 1 Case 2 Case 3 Case 4 Case 5

η 100%/h 50%/h 33%/h 25%/h 20%/h

Rg 100%/h 50%/h 33%/h 25%/h 20%/h

Rdc 100%/h 50%/h 33%/h 25%/h 20%/h

decrease of 1.57 GW in comparison to mode 3 (1.57 = 9.81–8.24).
This reduction can be attributed to mode 2’s inability to leverage
inter-regional flexibility without a recourse action. However, it is
worth noting that mode 2 outperforms mode 1, primarily due
to its optimized HVDC tie-line power. These results demonstrate
that the proposed model can unlock inter-regional flexibility, thus
enhancing the penetration of renewable energy. The third column
of Table 2 shows the minimum 10-year cost obtained by the
proposed model with ω = 0. Mode 3 has the lowest 10-year cost,
amounting to $628.074 billion, while mode 1 has the highest 10-
year cost, reaching $634.034 billion. This observation highlights
the cost-saving potential achieved through unlocking inter-regional
flexibility.

4.1.2 Optimizing the contracted energy
To demonstrate the benefit of optimizing contracted energy

transferred by HVDC, the results under different cross-border
contracts are compared. SAA is employed to solve the proposed
model. We set ω = 0. Table 3 shows the resulting 10-year cost
and transferred energy quantity. Column “Q” presents the
energy transferred by HVDC. It is observed that 458.8 TWh
energy is transferred, according to current industry practice.
In contrast, the proposed approach has 532.88 TWh energy
transferred by HVDC. The column “Total” presents the total cost
in two approaches. The proposed approach saves $1.949 billion

(i.e. 1.949 = 628.16–626.211), 10-year cost, compared with the
current practice. The data indicate that the proposed approach
improves HVDC utilization and also performs better in economic
efficiency.

4.1.3 All-scenario-feasible verification
In this section, we compare IDM, the SAA model, and

scenario-based model (SM) (Wang et al., 2019a). Both IDM and
SAA can guarantee solution non-anticipativity and robustness
simultaneously, while SM does not. Furthermore, SM is performed
based on 100 scenarios generated by Monte Carlo sampling.

Table 4 shows the testing results. In this case, we use 500 out-
of-sample scenarios to verify the solution feasibility. “Renewable
curtailed” denotes the percentage of scenarios where curtailment
of renewable energy occurs. When ω = 0, SM has the lowest
cost of $624 billion. However, the renewable curtailment occurs
in 9.2% scenarios for SM. In contrast, SAA does not have any
curtailment scenario. This suggests that SM tends to be over-
optimistic. Consequently, the planning outcome might become
infeasible when restrictions on renewable curtailment are in place,
resulting in substantial economic losses during actual operations.
Meanwhile, IDM-based results have the similar cost to those based
on SAA and also have zero renewable curtailment. Similar trends
can be found in the results with ω = 1.

4.2 Comparison of solution approaches

In this paper, we find that the flexibility parameters are the
dominant factors affecting the feasible region of SAA and IDM. NCs
in the IDM shrink the safe region to guarantee solution robustness
and non-anticipativity. SAA has no pre-specified constraints or
bounds for re-dispatch. However, the surrogate affine policy is used
as recourse actions in SAA, which may somewhat compromise the
optimality of re-dispatch. Therefore, it is difficult to judge the two
approaches directly.Thus,we performa sensitivity study of flexibility

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1323919
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wei et al. 10.3389/fenrg.2023.1323919

FIGURE 4
Maximal renewable installation capacity with various flexibilities. The
renewable installation capacity decreases with the reducing flexibility.
SAA surpasses IDM after case 3 in terms of capacity.

FIGURE 5
Minimum 10-year cost solved by IDM and SAA under different cases.
(A) Cost of two methods. (B) Cost of SAA minus the cost of IDM.

parameters to compare the solution approaches. The parameters
used are shown in Table 5, where η = ηA,c = ηA,d. From case 1
to case 5, we decrease the charging/discharging capacity, ramping
capability of unit, and HVDC. Figure 4 presents the results attained
by SAA and IDM with ω = 1. Both curves show that the maximum
installation capacity decreases with the reducing ramping limits or
efficiency. When the flexibility parameters are all equal to 100%/h
(i.e., Case 1), the installation capacities attained by SAA and IDM
are 10.4 GW and 10.67 GW, respectively. When they decrease to
20%/h, the result solved by SAA and IDM reduced by 14% and
24%, respectively. It indicates that IDM ismore sensitive to flexibility
parameters than SAA. This is mainly because the reduction in
flexibility shrinks the safe region more in IDM and leads to more
conservative results. Figure 5 shows the results obtained by the
proposed methods with ω = 0 in mode 3. Similarly, IDM obtains a
better result than SAA at the initial stage, and SAA surpasses IDM
when the flexibility parameters are less than 33%/h.

The solution time of SAA is approximately 9,000 s, while the
solution time of IDM is less than 1 s. Thus, IDM has better
computation performers. However, it is worth mentioning that
an explicit re-dispatch policy can be provided by SAA, while the

IDM has to solve an extra economic dispatch (ED) problem in
the re-dispatch progress. The re-dispatch policy is an analogy to
the participation coefficient in AGC, except that it is optimally
determined. Flexible resources can be re-dispatched based on a
closed-form solution when the uncertainty is materialized.

5 Conclusion

This paper introduces a novel multistage HVDC tie-line
planning-operation model that incorporates a variable uncertainty
set. The model considers the uncertain nature of renewable
generation and incorporates a multistage re-dispatch strategy to
ensure solution feasibility in practice. To solve the multistage
model, we propose a surrogate affine-based method and implicit
decision-based method, which effectively handle the variable
uncertainty set. To validate the effectiveness of the proposed
approaches, we conducted simulation cases using a real-world two-
area system. Numerical tests show that the proposed approaches
can unlock inter-regional flexibility and help increase renewable
accommodation. In addition, we also find that the flexibility
parameters are the dominant factors affecting the feasible region of
the solution approaches. SAA outperforms IDM in a system with
low flexibility, while IDM shows better performance in a systemwith
high flexibility. IDM has better computation efficiency than SAA,
while SAA can provide an extra closed-form re-dispatch policy.
The closed-form re-dispatch policy allows for fast calculations and
decision-making, ensuring that adjustments to the HVDC tie-line
system can bemade promptly and effectively. Planners and operators
can easily determine the appropriate actions to take in real time
based on the uncertainty of renewable generation. Utility can choose
the proposed methods under different realistic conditions.

In future studies, we plan to extend the current model to include
more HVDC tie-lines, enabling a more comprehensive analysis
of the system. Additionally, we aim to improve the computation
efficiency of the proposed approaches to make them more practical
and scalable for larger-scale power systems.
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Nomenclature

Sets and indices

T , t Set/index of time periods

I, i Set/index of scenarios

M,m Set/index of units

U(u) Set of uncertainty, a function of flexibility u

Variables

phvdct Scheduled HVDC tie-line power at time t

κhvdct Binary variable of HVDC tie-line power, equaling 1 if adjusted
at time t, otherwise 0

pgt Scheduled output of the aggregated thermal unit at time t

pf ,pvt ,p
f ,w
t Forecast output of PV/wind farm at time t

ps,cht ,p
s,dis
t Scheduled charging/discharging power of storage in the

sending-end grid at time t

pr,cht ,p
r,dis
t Scheduled charging/discharging power of storage in the

receiving-end grid at time t

Es
t ,E

r
t Scheduled energy level of storage in the sending/receiving-end

grid at time t

Cs,sto, Cr,sto Capacity of storage in the sending/receiving-end grid

Cpv, Cw Capacity of PV/wind farm

pnt Power from other sources in the receiving-end grid at time t

plst Scheduled load shedding at time t

uup,vt ,u
low,v
t Upper/lower OUR bound of renewable generation v at time t

p̂gt Re-dispatch of the aggregated unit at time t

p̂A,cht , P̂
A,dis
t Re-dispatch of storage charging/discharging power of area A at

time t

p̂hvdct Re-dispatch of HVDC tie-line power at time t

p̂lst Re-dispatch of load shedding at time t

pgt,i Aggregated unit output in scenario i at time t

EA
t,i Storage energy level of area A in scenario i at time t

pA,cht,i ,p
A,dis
t,i Storage charging/discharging power of area A in scenario i at

time t

phvdct,i HVDC tie-line power in scenario i at time t

ppvt,i ,p
w
t,i PV/wind farm output in scenario i at time t

plst,i Load shedding in scenario i at time t

phvdc,min
t ,phvdc,max

t Safe range of HVDC tie-line power at time t

EA,min
t ,E

A,max
t Safe range of the storage energy level of area A at time t

pg ,min,
t pg ,max

t Safe range of the aggregated unit at time

Qhvdc Scheduled energy quantity of HVDC tie-line t

π Non-negative multiplier

Ĝ Surrogate affine policy

Parameters

phvdc, p̄hvdc Lower/upper bound of HVDC tie-line power

Xhvdc Maximal number of HVDC tie-line adjustment

Thvdc Minimum duration time of HVDC tie-line

Rhvdc Ramping limit of HVDC tie-line power

Cg Capacity of the aggregated thermal unit

βg Minimum output level of the aggregated unit

Rg Ramping limit of the aggregated unit

Rn Ramping limit of the simplified unit in the receiving end

plt Load demand in the receiving-end grid at time t

μA,ch, μA,dis Storage charging/discharging efficiency of area A

ηA,ch, ηA,dis Coefficient of storage charging/discharging bound of area A

αA,sto Storage depth of discharge of area A

kf ,pv,t kf ,wt Forecast expectation coefficient of PV/wind farm

klow,pvt ,k
up,pv
t Lower/upper bound for the confidence interval of the PV farm

at time t

klow,wt ,k
up,w
t Lower/upper bound for the confidence interval of the wind farm

at time t

γls Load shedding bound

pn, p̄n Lower/upper bound of the simplified unit in the receiving end

pi Weighting factor of scenario i

ω Weighting factor of objective function

Fc(⋅) Investment cost function

Fg
t (⋅),F

n
t (⋅),F

l
t(⋅) Cost function of fuel/purchased power/load shedding at time t
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