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Energy conservation, emission reduction and vigorous development of new
energy are inevitable trends in the development of the power industry, but
factors such as energy storage loss, solar energy loss and line loss in real
power situations have led the problem to a complex direction. To address
these intricacies, we use a more precise modeling approach of power loss and
propose a collaborative optimization method integrating the Deep-Q-Network
(DQN) algorithm with the multi-head attention mechanism. This algorithm
calculates weighted features of the system’s states to compute the Q-values
and priorities for determining the next operational directives of the energy system.
Through extensive simulations that replicate real world microgrid (MG) scenarios,
our investigation substantiates that the optimization methodology presented here
effectively governs the distribution of energy resources. It accomplishes this while
accommodating uncertainty-induced losses, ultimately achieving the economic
optimization of MG. This research provides a new approach to deal with problems
such as energy loss, which is expected to improve economic efficiency and
sustainability in areas such as microgrids.
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1 Introduction

1.1 Background and related works

With the exacerbating energy crisis and environmental pollution, solar and wind energy
have played an increasingly vital role as distributed energy resources due to their abundant
and pollution-free nature. However, solar and wind energy are random and intermittent,
posing difficulties for grid integration and dispatch. Microgrids have emerged as an effective
solution to facilitate the comprehensive utilization of renewable energy (Zhang and Kang,
2022). Microgrids show enormous potential in resolving renewable energy integration
thanks to their flexible operation and ease of control. Their efficient and cost-effective
operation is a prerequisite for sustainable development. Nevertheless, the multi-source
characteristic of renewable energy sources introduces complexity to the control problem in
microgrid systems. Based on recent surveys, it has been observed that as much as 13% of the
total generated power is dissipated as losses at the distribution level (Wu et al., 2010; Patel
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and Patel, 2016) applied ant colony optimization (ACO) to the
reconfiguration of microgrids with distributed generation (DG) in
order to minimize power losses (Kumari et al., 2017). introduced a
particle swarm optimization (PSO) approach aimed at reducing DG
costs and enhancing the voltage profile while addressing power loss
concerns. Both of the aforementionedmethods ascertain the optimal
placement of DG using optimization algorithms. However, they do
not account for the distinction between linear and nonlinear loads in
their calculations. On the basis of this problem, this paper proposes a
more accurate model of the actual line loss.

Energy system scheduling for microgrids has been
investigated in a number of previous studies. Numerous
studies utilize model-based control paradigms, including
model predictive control (MPC) (Gan et al., 2020), mixed-
integer linear programming (MILP) (Paterakis et al., 2015),
dynamic and stochastic programming (Farzaneh et al., 2019),
and alternating direction method of multiplier (ADMM) (Ma
et al., 2018). However, once a large number of DERs connected to
the MG in a disorderly way, the operation of the power grid will
be largely influenced by its randomness and uncertainty. This
makes it difficult to obtain the accurate system model. To solve
these challenges, a model-free technique using reinforcement
learning (RL) has been proven beneficial for energy system
scheduling since the model of the environment is not
necessary in this method. It is now emerging as the pre-
eminent tool for unknown environmental decision-making
issues. The authors of (Kim et al., 2016) present an RL
algorithm that enables service providers and customers to
acquire pricing and energy consumption strategies without
any prior knowledge, thus reducing system costs (Fang et al.,
2020). explored a dynamic RL-based pricing scheme to attain
optimal prices when dealing with fast-charging electric vehicles
connected to the grid. To reduce the electricity bills of residential
consumers, a model for load scheduling using RL was developed in
the literature (Lee and Choi, 2022), where the residential load

includes dispatches-available load, non-dispatches-available load,
and local PV generation. In recent research findings, to address the
dynamically changing operational conditions of appliances, a
federated DQN approach has been proposed for managing
energy in multiple homes (Remani et al., 2019). This research
showcased exceptional performance of the DQN method in ad-
dressing continuous state space energy management challenges.
Nevertheless, inMG scenarios, the performance of the DQNmodel
in energy scheduling is significantly compromised by the inherent
uncertainty of renewable energy sources. Furthermore, there is
currently no well-defined strategy in place to address the complex
issue of multivariate losses.

1.2 Contributions

To overcome the aforementioned challenges, this paper
proposes an optimization method for grid-connected MG
energy storage scheduling based on the DQN cooperative
algorithm, aiming at minimizing the cost of electricity
expenses, which is named AP DQN. Specifically, the proposed
algorithm combines the multi-headed attention mechanism with
the PER mechanism in DQN to improve its performance. In this
configuration, the DQN interacts with the environment to obtain
Q values and form rewards, and uses prioritized experience
replay to stabilize learning. In addition, the algorithm
computes the weighted features of the state using the multi-
headed attention mechanism, and uses the weighted features to
compute the Q-value and priority, which can make the state-
action pair information of the terminal closer to the merit-
seeking target, thus improving the overall convergence speed
of the DQN. The case study verifies the effectiveness of the
proposed algorithm for grid-connected MG energy storage
scheduling with real-world data. The MPCLP algorithm is
subsequently benchmarked against the optimal global solution.

FIGURE 1
MG system structure diagram.
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The primary contributions of this paper can be summarized
as follows:

1. A precise mathematical model encompassing both linear and
nonlinear power losses is developed to address the issue of
multivariate loss factors in MGs.

2. A game combination optimization scheme based on deep
reinforcement learning algorithm DQN is constructed based
on the problem of difficult to handle multivariate
uncertainties in MGs.

3. The AP DQN algorithm incorporating the multi-head attention
mechanism is proposed for the problem of lossy features.
Experimental results show that the method greatly improves
the exploration efficiency. From the perspective of cost objective,
our model outperforms the standard DQN by 33.5% and
outperforms the MPCLP-based mechanism by up to 17.74%.

2 Microgrid’s DRL model

2.1 Environment model

The environment model serves as the MG system environment
that interacts with the agent. In this project, we considered a MG

with internal user loads, a photovoltaic field and an energy storage
system (ESS), which is connected to the main grid through only one
distribution line. Figure 1 illustrates the conceptual MG model that
is envisioned in this study. The MG is managed by an energy
management system (EMS), which fully controls all operations of
the MG, including the processes of charging and discharging the
ESS, as well as the power trading activities between the MG and the
main grid. To enhance the stability and ensure the uninterrupted
operation of mission-critical activities, it is necessary to monitor the
state of the microgrid’s emergency load reserve during main grid
outages, called the state of charge (SOC) in the following article. We
divide theMG system into 24 time slots and each time slot is denoted
as t. To enable analytical calculations, the microgrid’s power is
assumed to be balanced, and a quasistatic time-varying energy
model is employed.

Reinforcement learning can be characterized as a Markov
Decision Process (MDP) comprising a state space S, an action
space A, a utility or payoff function r (utility and payoff
functions are used in the report), a state transfer probability
matrix P and a discount factor γ (Moradi et al., 2018). The
learning process is the process of making action decisions after
obtaining the next state and reward return through the interaction
between the agent and the environment, and then continuously
optimizing. The discount factor γ modulates the agent’s
consideration of the long-term consequences of their decisions
on future states: (1) small values of γ force agents to focus more
on the immediate payoffs of the next few steps and significantly
reduce the payoffs of future steps; (2) large values of γ force actors to
think more strongly about future payoffs and thus become more
farsighted.

FIGURE 2
Algorithm operation process diagram.

TABLE 1 Hyper-parameters.

εstr εstp d err α β

1.1 0.01 0.0001 0.01 0.8 0.6
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2.1.1 ESS model
In this system, ESS mainly performs charging and discharging

operations with an action space range of −1 to 1. A positive value
represents charging, while a negative value indicates discharging.
We define At ∈ −1,−0.8, ..., 0.8, 1{ } as the discrete action set. In each
time slot t, the ESS is limited to performing either a charging action
or a discharging action, but not both simultaneously. The state of the
SOC is updated as follows (Chen and Su, 2018):

SOCt+1 �
SOCt + At × Pr × ηc ×Δt

Er × ηd
,At ≥ 0

SOCt + At × Pr ×Δt
Er × ηd

, else

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

where parameters ηc , ηd ,Pr , Er represent the charging efficiency of
the ESS, discharging efficiency of the ESS, rated power of the ESS,
and energy storage capacity of the ESS, respectively. The energy
trading mechanism incorporates the consideration of wear and tear
costs. The ESS wear cost coefficient, denoted as k, is defined
as follows:

k � Ci

ηd × Er × δ × Nc

where parameters Ci, δ,Nc represent the initial investment cost of
the ESS, the depth-of-discharge and the number of life cycles at a
rated of the depth-of-discharge, respectively.

FIGURE 3
Mean episode reward with AP DQN (smoothing 0.8).

FIGURE 4
24-h average MG scheduling partial result with AP DQN.
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2.1.2 PV model
The DC power generated by the PVmodule undergoes filtering

in the DC circuit to eliminate current fluctuations and
electromagnetic interference. It is then converted into AC
power in the inverter circuit. The resulting AC power is
rectified to obtain sinusoidal AC power. Subsequently, the
output-side filter circuit is employed to mitigate high-frequency
interference signals generated during the inverting process. This
enables integration into the grid or direct supply to the load. The
losses incurred during these transformations can be
mathematically expressed as follows:

Ppv
loss � PDC

loss + PAC
loss( )/PC

where parameters Ppv
loss,P

DC
loss,P

AC
loss,PC represent the photovoltaic

inverter losses, the DC/AC loss and the installed capacity,
respectively.

2.2 Real power loss of loads

Given the diverse characteristics of loads and their varying
operational conditions, we adopt distinct methods for evaluating
power losses. In the case of linear loads, we calculate losses by
subtracting the output power from the input power to achieve
greater accuracy. For nonlinear loads, we consider power factor
adjustments to account for the influence of factors such as
harmonics and phase differences. The expression for real power
loss in the load is as follows:

PL � ∑N
i�1

Plin
i − Plout

i( ) + δp �Pnin
i − �Pnout

i )]([
where parameters PL,Plin

i ,Plout
i represent the real power loss of

loads, the linear loads power input, the linear loads power output.
The parameters δp, �P

nin
i , �Pnout

i represent the power factor, the
average nonlinear loads power input, the average nonlinear
loads power output (Sima et al., 2023). The N act as the
number of loads.

2.3 Objective function and
constrains designs

To keep the energy trading decisions of the MG within a
reasonable range, we specify that the ESS must reserve enough
energy for the critical tasks, named the target SOC, to minimize the
MG operation cost under this constraint. The constraint functions
are as follows:

At ×
Pr

Er
≤ 1 − SOCt ,At ∈ (0, 1]

At × −Pr

Er
( )≤ SOCt − SOCtarget ,At ∈ −1, 0[ ]

With such a constraint, the system is able to reserve enough
emergency power for the MG in the case of an accident scenario. In
addition, the objective function of the optimization is described as follows:

FIGURE 5
Results of ablation experiments.

FIGURE 6
Results of comparison experiments.
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Objt � min∑24
t�1

Prt + k( ) × At × Pr ×
Lt

Lt − PL + PV ′
t

[ ]
in whichPVt ′ � PVt − Ppv

loss

where Prt denotes the electric price at time t, Lt denotes the
consumer load power at time t, and PVt ′ represents the actual
PV power in the MG.

3 Materials and methods

First, this paper designs a more accurate mathematical model of
multivariate loss factors for microgrids with respect to loss
uncertainty as well as ambiguity. Then, based on the problem of
loss feature diversity, an optimization scheme of deep reinforcement
learning algorithm DQN combined with multi-attention
mechanism is proposed, which utilizes the principle of attention
to process loss data of different sizes more efficiently, and ultimately
derives the optimal scheduling actions of the energy management
system for microgrids according to the objective of economic
optimization.

3.1 Heading baseline-DQN

The issue examined in this paper pertains to a high-
dimensional uncertainty problem that is not amenable to
traditional algorithmic solutions. Reinforcement learning is a
frontier area of machine learning and is a hot topic in the field of
intelligent systems research. Reinforcement learning
distinguishes itself from supervised learning in terms of the
availability of training labels or targets. In supervised learning,
the correct labels are provided to train the model. In contrast,
reinforcement learning operates without explicit targets and
adopts a trial-and-error approach. The model learns from its
past mistakes to iteratively enhance its decision-making abilities
for future actions (Mnih et al., 2013).

In the traditional approach to solving the reinforcement
learning problem, a Q-table is constructed to store the
Q-values, which represent the expected rewards of taking
specific actions in particular states. The Q-table is updated
utilizing an iterative updating rule that takes into account the
recursive relationship between the Q-values. Nevertheless, when
a continuous state space is encountered, it becomes impractical to
create a state-action table to record every possible combination of

states and actions. To overcome the limitation, a neural network
known as the DQN is employed. The DQN takes the states as
inputs and generates the Q-values for each possible action as
outputs, which is trained through the trial-and-error process
(Mnih et al., 2013). The Q-values are subsequently updated using
the Bellman equation as follows:

Q St ,At( ) � rt + γ ×maxAt+1 Q St+1,At+1( )( )
where Q(St ,At) is the Q-value at time t, and maxAt+1(Q(St+1,At+1))
denotes the maximum Q-value taking optimal action at the
subsequent step. Under the policy, the value of taking action At

at St must equivalent to the expected reward of transitioning to the
next state St+1 plus the discounted expected Q-value of taking the
best decision At+1 at St+1 (Mnih et al., 2013). The interdependence
among the Q-values at consecutive steps ensures that the iterative
update rule enables the discovery of an optimal policy, leading to the
convergence of Q-values towards their optimal values. This
recursive relationship facilitates the convergence of the Q-value
iteration process, allowing for the determination of an
optimal policy.

3.2 AP DQN method

In this section, we design the AP DQNmethod. There are two
main modules in this algorithm, one of them is a learning
network model based on PER DQN, and the other is a
relational network model that includes the multi-head
attention mechanism. The multi-head attention mechanism in
our work is applied to focus on relevant samples in the experience
replay process as well as the Q-value handling process. The
innovations of this algorithm are mainly represented in the
following: the multi-head attention mechanism is adopted to
enable the network to process the input sequences in parallel, and
the model is able to realize the information fusion and sharing so
as to enhance the learning ability; the network structure is
improved comprehensively, and the addition of the relational
model layer to weight the Q-value provides stronger adaptive
learning flexibility for the network weights. The algorithm
operation process diagram is shown in Figure 2. In this
certain case, we put the mathematical models of ESS and PV
and constraints of devices in the environment module.

WhereQ indicatesQ(St ,At), Q1 indicatesmaxAt+1(Q(St+1,At+1)),
and Q2 indicates argmaxAt+1(Q(St+1,At+1)). p indicates the stored
experience tuple (s, a, r, s′).

TABLE 2 Comparison and ablation results of different model.

Technique p (%) Avg revenue ($) Avg convergence episodes

MPCLP + LSTM 0.00 64.84 —

MPCLP + Seq2Seq 0.00 69.52 —

DQN 2.18 57.18 9000

DQN + PER 24.54 79.28 12000

DQN + MHA 0.34 71.58 4000

Our Model 0.16 76.34 2000

The bold values represents the method we proposed.
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We use a multi-headed attention mechanism in experience replay
memories. This allows for the selection of experience replay samples by
using the multi-headed attention mechanism to focus on all past
samples in the memory pool and select those that are most
important and relevant for the current learning. At the same time,
the multi-headed attention mechanism is used in the calculation of Q
values. When calculatingQ(St ,At) values for each action At under the
state St , the different features of s can be weighted using multi-headed
attention, so that the Q value calculation focuses more on those state
features that aremost important at themoment. This can producemore
accurate Q-value estimates.

3.2.1 Algorithmic framework
In this section we design the algorithm framework, the operation

process is as follows:

1. First, we initialize the playback memory unit, the priority weights
array P, and the Q network and target network parameters.

2. We capture the experience tuple (s, a, r, s′) in the environment
and store it in the memory unit.

3. For each experience tuple (s, a, r, s′) stored, the attention-
weighted feature x′ of s is computed using the multi-headed
attention mechanism:

(a). Calculate attention headers with number of K:

attn headk � Sof tmax WkXs + bk( ), k � 1, 2, ...,K

whereWk indicates the attention parameter matrix, Xs is the matrix
corresponding to the state, and bk is decided by the attention value.

(b). Fuse the attention header to obtain the final attention
value attn.
(c). Calculate the weighted characteristics:

x′ � ∑N
i�1
attn i[ ]*Xs i[ ]

4. Calculate the priority p of each tuple, Qtarget is calculated using
the target network parameters, and θtarget is the target
network parameter:

p � r| | + γ*maxa′ Qtarget x′, a′; θtarget( )( )( )α

5. Select the experience tuple with the number of batch size for
learning by priority.

(a). Calculate the Q value for each experience using the Q
network and the weighted state x′.
(b). Calculate the loss of each experience using the Q target:

L � Qtarget − Q x′, a′; θ( )( )2

(c). Gradient descent updates the Q-network parameters θ.
6. Update the priority arrayP and the target network parameter θtarget
7. Repeat steps 2-6 for training.

3.2.2 Reward function design
A segmented reward function is designed to guide the trading

strategy provided that all conditions are satisfied, where the reward
value depends on:

1. The state difference from the target SOC.
2. The final cost obtained from the MG operation.

Below the target SOC, it is imperative to prioritize charging the
ESS promptly, irrespective of the price. Similarly, the price must be
high enough to discharge the ESS below the target SOC. Therefore,
the charging and discharging criteria for the ESS differ depending on
whether the SOC is below or above the target level. To optimize the
utilization of the remaining storage capacity, the charging price for
the ESS should decrease as the state of charge (SOC) approaches full
SOC. This incentivizes efficient charging when there is ample
capacity available. Conversely, the price for discharging the ESS
should be higher when the SOC is closer to the target SOC. This
approach encourages the effective utilization of the remaining
available energy and ensures that the SOC is maintained at the
desired level. In addition to this setting, two penalty factors are
introduced to have further control of the ESS operational behavior.
The first penalty term PntESSt is applied when the action chosen by
the agent violates a constraint within the system. The second penalty
term PntPVt is assigned when the ESS with available energy capacity
fails to store excess solar energy. The first penalty term is introduced
to account for the constraint of the ESS, aiming to extend the
operational lifetime of the unit, while the second penalty term
serves the purpose of maximizing the storage of solar
energy within capacity limit of the ESS. The reward function R is
as follows:

R Prt ,Pr
avg
t , SOCt

∣∣∣∣At( ) � Pravgt − Pr + k( )( ) × SOCt+1 − SOCt( ) × Er

− PntESSt − PntPVt

Pravgt � ∑24
t�0Prt
24

PntESSt � 0, else
10, if SOCt + At > 1 or SOCt − At < − 1

{
PntPVt � 0, if PVt ≤ Lt + At × Pr( )

exp 2.5 × 1 − SOCt+1( ))1−SOCt+1( ))2.5 × −1, if PVt > Lt + At × Pr( ){

where Pravgt represents the average price observed throughout the
24 time slots preceding time t.

3.2.3 Relational model
The main idea of the relational model is the weighted encoding

of states using a multi-headed attention mechanism. The attention
mechanism can be understood as a process of addressing
information, where the attention value is computed by
calculating the attention distribution based on the key and
associating it with the value. This computation is performed with
respect to a task-specific query vector Q, allowing the attention
mechanism to focus on relevant information and selectively
combine it with the query. By dividing each query, key, and
value into multiple branches, multiple different attention
calculations are performed on Q, K, and V to obtain multiple
different outputs, and then these different outputs are stitched
together to obtain the final output. Indeed, this process
represents the essence of attention, which helps mitigate the
complexity of neural networks. Instead of feeding all N inputs
into the network for computation, attention selectively chooses
task-relevant information to be inputted. This approach is similar
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to the concept of gating mechanisms in Recurrent Neural Networks
(RNNs), where the network learns to focus on relevant information
and effectively allocate computational resources (Azam and
Younis, 2021).

Due to the priority sampling strategy, PER introduces a bias
towards selecting higher priority samples during training (Schaul
et al., 2015). This bias has the potential to lead to overfitting of the
results obtained by the DQN algorithm. Therefore, to correct for
bias, we introduce the relational model to adjust the sampling
weights. The built-in attention mechanism allows direct
monitoring of the training process by highlighting the areas that
agents focus on whenmaking decisions. It naturally incorporates the
policy gradient algorithm in reinforcement learning, where each
time-step attention mechanism samples from L � m*m to a position
requiring attention based on a random attention policy πg . This
policy is represented using a neural network whose output is
composed of the probabilities of location selection. Among them,
the formula for calculating and updating the policy gradient
algorithm is as follows:

∇J θ( ) � ∑
s

μπ s( )∑
a

qπ s, a( )∇θπ a|s, θ( )

� Eπ γt ∑
a

qπ St , a( )∇θπ a|St , θ( )⎡⎣ ⎤⎦

� Eπ γt ∑
a

qπ St , a( )π a|St , θ( )∇θπ a|Sθ , θ( )
π a|Sθ, θ( )⎡⎣ ⎤⎦

� Eπ γtqπ St ,At( )∇θπ At |St , θ( )
π At |St , θ( )[ ]

� Eπ γtGt
∇θπ At |St , θ( )
π At |St , θ( )[ ]

θt+1 � θt + αγtGt
∇θπ At |St , θ( )
π At |St , θ( )

where ∇J(θ) indicates the strategy gradient and Gt indicates the
cumulative rewards. α indicates the step length and γ indicates the
discount factor.

4 Experiments and results

In this section, we present simulation results to demonstrate the
effectiveness of the proposed algorithm. These results serve as
empirical evidence supporting the performance and efficacy of
the algorithm. Specifically, the DQN architecture employed in
this study consists of one input layer with four neurons, three
fully connected hidden layers with 40 and 80 neurons, and one
output layer with 14 neurons. This configuration allows for effective
learning and decision-making within the energy management
algorithm. ε greedy strategy and hyperparameters of PER are
listed in Table 1. The mean episode reward with AP DQN is
shown in Figure 3. The customer load, solar power and dynamic
tariff are obtained from the self-built datasets. The Pr and Er of the
lithium-ion battery ESS used in the experiment are 1,000 kW and
5,000 kWh respectively.

Due to the large range of resultant data, we chose the average
MG scheduling results over a time horizon of 24 h as a
demonstration of the scheduling strategy, and the result with AP

DQN is shown in Figure 4. Due to the large time horizon involved in
the dataset, the obtained ESS scheduling strategy is measured in
terms of the final economic cost and the percentage of the system
working within the constraints. We used a model predictive control
linear programming (MPCLP) based algorithm (Matute et al., 2018)
for comparison and performed ablation experiments. MPCLP is a
linear programming optimization method, which commonly
employs an optimization software to work out the problem. It
provides good optimization accuracy while satisfying the
assumptions of a linear dynamic system. Among them, MPCLP
uses two prediction models, LSTM and Seq2Seq, respectively. The
results of the ablation experiments are shown in Figure 5. The results
of the comparison experiments are shown in Figure 6.

As seen in Figure 4, Positive values of action in the figure
indicate charging, negative values indicate discharging, and SOC
ranges from 0 to 1. It can be concluded that the EMS will combine
the state of the SOC at the moment with the floating tariff to give the
best possible action within the constrains.

As seen in Figure 5, the base DQN has poor performance in the
ablation experiment, but the average gain rises significantly with the
addition of PER, however, this is a result of large-scale constraint
violations. With the addition of the multi-head attention
mechanism, the algorithm is able to obtain an average return
close to the PER DQN while maintaining a certain range of
constraints. After adding the multi-headed attention mechanism
to DNQ together with PER, the result of maximizing the average
gain and minimizing the probability of constraint violation can
be obtained.

As seen in Figure 6, AP DQN has the highest average profit in
the comparison experiment, but there is a default rate of 0.16%,
although this is an acceptable range. The reason for this is that the
traditional linear programming approach has a strict adherence to
the constraints and therefore a p-value of 0. In contrast, the
proposed AP DQN algorithm can violate the constraints driven
by the reward values to a minor degree, thus achieving the goal of
maximizing the average profit.

The results obtained from the comparative experiments and
ablation studies using different models are summarized in Table 2.
Comparison and Ablation Results of Different Model. As can be
seen from the table that our model outperforms the standard DQN
by 33.5%, the MPCLP based mechanism by 17.74% at most.
Compared with PER DQN, our model is a better choice in terms
of algorithmic efficiency and conditional constraints.

5 Conclusion

In this paper, we propose an AP DQN algorithm. The algorithm
not only maximizes monetary benefits but also maintains the reliability
of the MG at the same time, being able to maintain sufficient energy
reserves for critical operations. The algorithm presented uses a multi-
headed attention mechanism as well as a prioritized experience replay
mechanism to use current information for optimizing energy trading
decisions. The algorithm we propose is a model-free reinforcement
learning method, which usually has strong generalization ability. This
method learns a wide range of strategies from a large amount of
empirical data so that it can make reasonable decisions in uncovered
states and can adapt better to various situations and conditions. In
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comparison with the MPCLP approach, it can be concluded that the
reinforcement learning based approach has a higher average monetary
benefit in the presence of higher system reliability. It is worth noting
that the reward function in RL can be further adjusted and optimized to
improve the overall results. Fine-tuning the reward function has a
significant impact on the performance of the RL algorithm.
Additionally, it is important to consider that value-based RL
methods generate discrete trading decisions, whereas MPCLP
decisions are continuous in nature. This distinction can affect the
comparison of results obtained from the two approaches. In future
work, policy-based reinforcement learning is an appropriate direction to
be investigated to obtain continuous decisions.
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