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Solar photovoltaic (PV) technology stands as a promising alternative to
conventional fossil fuel-based power generation, offering pollution-free and
low-maintenance energy production. To harness its potential effectively,
understanding the power generation process and accurately modeling solar
PV systems are essential. Unfortunately, manufacturers often do not provide
the necessary parameters for modeling solar cells, making it challenging for
researchers. This research employs the Archimedes Optimization Algorithm
(AOA), an optimization technique, to determine unknown parameters for the
PVM752 GaAs thin film solar cell and the RTC France solar cell. The modeling of
these solar cells utilizes both a Single Diode Model (SDM) and a Double Diode
Model (DDM). Performance evaluations are conducted using the sum of
individual absolute errors (SIAE) and a novel root mean square error (RMSE)
method. Comparing the effectiveness of the AOA with other optimization
methods, The RMSEs for the AOA applied to the SDM and DDM of RTC
France solar cell were 3.7415 × 10–3 and 1.0033 × 10–3. Similarly, for PVM752
GaAs thin film solar cell were 1.6564 × 10–3, and 0.00106365, respectively. The
SIAE values for both solar diode models of RTC France cells were 0.071845 and
0.021268, respectively. For the PVM752 GaAs thin film, the corresponding SIAE
values were 0.031488 and 0.040224. The results highlight the efficiency of the
AOA-based approach, showcasing consistent convergence and a high level of
accuracy in obtained solutions. The suggested approach produces superior
results with a lower RMSE compared to other algorithms, demonstrating its
efficacy in determining solar PV parameters for modeling purposes.
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1 Introduction

The usage of fossil fuels has rapidly increased in recent years due
to both population growth and the construction of infrastructure to
make life simpler. Fossil fuels, which are non-renewable resources
and contribute to global warming via pollution, are the main sources
of electricity production. Fossil fuels are scarce and might become
extinct 1 day. Getting fossil fuels has been a natural process that has
undertaken tens of thousands of years and is still going on today.
The primary fossil fuels are natural gas, coal, and oil. In the process
of producing power, they are burned. The world is currently shifting
towards the growth of renewable energy sources due to the depletion
of fossil fuels and concerns about global warming (Kataria and
Khan, 2021).

Solar photovoltaic (PV) is a popular renewable energy source
(along with geothermal, hydropower, solar, wind, and biomass
energy). After wind and hydropower, PV is the third most widely
used renewable energy technology. 1) As fossil fuel usage is rising
rapidly and may eventually run out, PVs are being encouraged
because their resources are plentiful and limitless. 2) While PVs
themselves do not contribute to air pollution, the fossil fuels used to
power conventional power plants do. 3) While PVs help to decrease
the issue of global warming, fossil-fuel units exacerbate it. 4) Low
operating and maintenance expenses; 5) Ability to produce
electricity on the demand side; 6) PV installation and operation
require less labor than conventional generating units. The greatest
power density between renewable energy sources is offered by PVs.
These causes caused a startling rise in research and investment in
renewable energy sources, primarily solar photovoltaic systems.
There is a lot of research being done to improve the thermal and
electrical efficiency of PV. Recent years have seen a surge in interest
in the study of how AI can be applied to the solar system.
Applications in residential use, transportation, street lighting, and
defect detection are all included in the investigation scope.

According to the Renewables 2022 Global Status Report (GSR
2022) from the Renewable Energy Policy Network (REN21) for the
21st Century, India’s renewable energy installations are third in the
world, behind only China and Russia. For new solar PV capacity,
India was the second-largest market throughout Asia and the third-
largest market overall (Holeczek, 2014). India is home to four of the
world’s seven largest solar power facilities, with Rajasthan Bhadla
Solar Park being among the largest with a total capacity of 2.2 GW.
These solar installations were completed as part of India’s National
Solar Mission (NSM). With a goal of 20 GW by 2022, the
Government of India established the National Solar Mission in
2010. The Government of India increased the goal to 100 GW in the
2015 Union Budget, with 40% of those projects being rooftop
installations and the other 60% being large- and medium-scale
grid-connected solar power plants (MNRE, 2019). India
generated more than 70.24 billion units (BU) of solar energy in
the first 9 months of 2022, a 36% increase when compared with
51.67 BU at the same time last year, according to the Mercom India
Research study (Mercom, 2022).

An accurate assessment and performance forecasts for quality
control and maximum power tracking are required before a PV
system can be deployed, as underestimating power means not
having enough to meet demands and overestimating power
means having too much and wasting it. One of the primary

issues with sun photovoltaic systems is the intricate, nonlinear,
and implicit relationship between photovoltaic current and voltage.
Temperature, dust accumulation, solar radiation, shading, soiling,
and cable losses are just some of the environmental elements that
have a major impact on the efficiency of photovoltaic systems. This
makes it harder to create an accurate mathematical model that can
capture the relationship between voltage and current in a
photovoltaic system as it actually operates. The single diode
model (SDM) and the double diode model (DDM) are the most
popular equivalent circuits for designing PV systems based on
electrical attributes, and they describe the non-linear features of
voltage and current. The I-V characteristics described by these
models are specific to residential applications. The three-diode
model (TDM), which is lately being used has a potential for
usage in the manufacturing sector (Oliva et al., 2019).

In many real-world scenarios, precise model parameter data is
crucial. For example, PV system simulation is used to estimate
energy yield and categorize power converter gear. 2) Used to manage
and track the PV system’s maximum power point (MPPT) (Hussain
et al., 2023a). 3) To maintain quality throughout the production
process. 4) used to examine the degradation of PV cells Since the
manufacturers’ data is measured under standard test settings (STC),
actual PV systems are operated under less than perfect
circumstances. Numerous approaches are suggested for figuring
out the unknown parameters, which may be roughly categorized
into numerical and analytical approaches. I-V curve data is used by
analytical methods to mathematically formulate model parameters.
It takes information from the I-V characteristic curve or data sheet
for a number of important points, including the open circuit voltage,
short-circuit current, voltage at maximum power, current at
maximum power, and slopes of the intersecting curves. However,
the analytical approach for predicting PV-cell characteristics has
several drawbacks. 1) Frequently, the controlling equation contains
difficult-to-solve exponential components. 2) In some cases, an
initial guess at a parameter value is necessary. 3) A few formulas
are dependent on information that the makers don’t provide. 4) A
number of assumptions have been made that lower the accuracy of
model parameters.

The numerical extraction approach gets around these
restrictions. The method of numerical extraction is, at heart, an
optimization technique. The primary objective is to improve the
accuracy of the calculated I-V curve relative to the experimental
dataset. Since the parameters are evaluated using an analytical
technique based on a relatively small sample size, the solutions
are more vulnerable to the effects of measurement error. From this
point on, it is acknowledged that the analytical technique is less
trustworthy than the numerical extraction approach (Chin and
Salam, 2019). The optimization method itself may be further
broken down into the two categories of stochastic and
deterministic. Newton’s method, iterative curve fitting,
Levenberg-Marquardt’s algorithm, and the conductivity method
are all examples of deterministic approaches that rely on
gradients. Its early solution was crucial to its success. The
deterministic approach brings with it a number of limitations,
such as the requirement that the goal function be differentiable,
convex, and continuous. The more parameters there are, the less
likely it is that you will get the right answer (Chin and Salam, 2019).
As a consequence, the outcomes are unpredictable. Stochastic
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approaches are used to get around these limitations. There are no
restrictions on how you formulate an issue, make it computationally
and conceptually simple, or be admirable in multimodal situations.
They are probability-based and draw their design cues from nature.
They are effective at resolving challenging engineering issues. They
are the following: the genetic algorithm (GA) (Holland, 1992), the
particle swarm optimization (PSO) (Ye et al., 2009), the whale
optimization algorithm (WA) (Mirjalili and Lewis, 2016), the
artificial bee colony (ABC) (Karaboga and Akay, 2009), the
simulated annealing (SA) (Kirkpatrick et al., 1983), the teaching-
learning-based optimization (TLBO) (Rao et al., 2011), the
differential evolution (DE) (Price and Storn, 1997), the harmony
search (HS) (Geem et al., 2001), the cuckoo search (CS) (Yang and
Deb, 2009), and the pattern search (PS) (Torczon, 1997).

Xiong et al., 2021 confirmed that a GSK-based technique can be
used to retrieve the unknown PV model parameters. The
programmed simulates the lifelong process of learning and
communicating knowledge. Single diode and double diode
variants of RTC France cells are used alongside three different
PV modules in this GSK procedure: the Pho-towatt-PWP201,
STM6-40/36, and STP6-120/36. The GSK algorithm’s strength
lies in its ability to perform well across a wide range of
population densities. (Ganesh Pardhu and Kota, 2021). validated
the Radial Movement Optimization (RMO) method for extracting
the unknown parameters using a dedicated Kyocera KC200GT
200W panel. RMO is a swarm-based stochastic optimization
approach in which every time a particle moves in three
dimensions with a changing velocity, its location is updated. In
comparison to other strategies, this one provides the fastest reaction.
Parameters for the STM_40_36, STP6_120_36, and PWP 201 PV
modules, among others, were extracted using the Supply Demand
Optimization (SDO) method by in (Ginidi et al., 2021). This
algorithm was conceived with economics in mind. In this
situation, the root mean square error was calculated to account
for the discrepancy between the optimized estimated data and the
experimental data. In order to determine the five unknown solar cell
parameters, (Abdulrazzaq et al., 2022), used a complex numerical
method. Amodified version of the Newton-Raphson method is used
to solve the system of equations resulting from the best curve fitting
using the least squares methodology. Parameters can be derived even
without a data sheet if the solar module’s I-V characteristic curves
are known. In this case, a highly sensitive first estimate value is
generated by an optimum method. Crystalline solar cells,
polycrystalline modules, and amorphous modules were all tested
with this method to ensure their reliability at varying temperatures
and amounts of sunlight. In (Khan et al., 2021), SA Khan et al. used
the Chaos Induced Coyote Algorithm (CICA) to determine
previously unknown parameters for the thin-film RTC France,
monocrystalline, and polycrystalline solar cell single-, double-,
and three-diode models. The introduction of disorder during
population expansion is a conceptual influence for this method.
The results in this study are organized in terms of the RMSE in
comparison to previous research. HFM (Mateo Romero et al., 2022)
investigate the application of AI to solar photovoltaic systems.
Applications of artificial intelligence are discussed in this article
for monitoring maximum power points, calculating energy output,
estimating unmeasured properties, and identifying issues with PV
panels. However, there are multiple published studies on obtaining

these parameters. Most of this literature, unfortunately, emphasizes
the superior performance of the algorithms employed. Algorithms
were ranked in the aforementioned literature using metrics like
average CPU time, final RMSE value, and RMSE boxplot
representation. It’s strange that most RMSE calculations in the
literature are off (Ćalasan et al., 2020). Moreover, recent work
proposed in (Abbassi et al., 2023) which introduces an enhanced
Mountain Gazelle Optimizer (MGO) designed for optimizing the
unknown parameters of PV generation units. Inspired by the social
structure and hierarchy observed in mountain gazelles in their
natural habitat, the MGO was evaluated against several
contemporary algorithms, including the Grey Wolf Optimizer
(GWO), Squirrel Search Algorithm (SSA), Differential Evolution
(DE) algorithm, Bat–Artificial Bee Colony Optimizer (BABCO), Bat
Algorithm (BA), Multiswarm Spiral Leader Particle Swarm
Optimization (M-SLPSO), Guaranteed Convergence Particle
Swarm Optimization algorithm (GCPSO), Triple-Phase
Teaching–Learning-Based Optimization (TPTLBO), Criss-Cross-
based Nelder–Mead simplex Gradient-Based Optimizer
(CCNMGBO), quasi-Opposition-Based Learning Whale
Optimization Algorithm (OBLWOA), and Fractional Chaotic
Ensemble Particle Swarm Optimizer (FC-EPSO). Through
comprehensive experimental findings and statistical analyses, it
was established that the MGO demonstrated superior
performance over the rival techniques when identifying
parameters for the SDM and the DDM of PV models, specifically
Photowatt-PWP201 (polycrystalline) and STM6-40/36
(monocrystalline). Furthermore, in the process of parameter
extraction for the SDM with five unknown parameters in solar
PV models another recent work proposed in (Premkumar et al.,
2023). In this work a common practice involves utilizing a non-
linear equation to describe the PV cell current has been used.
Subsequently, the RMSE is employed as the objective function to
quantify the error between the estimated and measured currents.
This study introduces an iterative method based on the Lambert-W
function for computing the PV cell current within the SDM.
Additionally, a Weighted Velocity-Guided Grey Wolf Optimizer
(WVGGWO) is incorporated as an optimization algorithm to
discern the unknown lumped parameters of both the cell and
module within the SDM. To assess the effectiveness of the
proposed algorithm and Lambert-W function, four case studies
are examined for validation. The performance of the introduced
approach is then benchmarked against seven established
optimization algorithms. The comparative analysis reveals that
the suggested method consistently yields superior results when
compared to various optimization techniques, establishing its
efficacy in accurately extracting parameters for the SDM in PV
models. Another recent work proposed in (Chandrasekaran et al.,
2023) aims to investigate traditional methods for solving equations
in PV models. Introducing an enhanced variant, Augmented
Mountain Gazelle Optimizer (AMGOIB3H), the study focuses on
improving the convergence of the MGO using an upgraded Berndt-
Hall-Hall-Hausman method. AMGOIB3H demonstrates
advancements in exploring and exploiting phases of MGO and
objective function design. Additionally, a hybrid method is
proposed for efficiently identifying unknown parameters in the
three-diode PV model, utilizing actual laboratory data.
Simulation results show that AMGOIB3H achieves zero errors
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under various statistical standards and environmental conditions,
outperforming state-of-the-art algorithms in terms of reliability,
accuracy, and convergence rate within a reasonable processing time.
Likewise, (Premkumar et al., 2022), presents an enhanced Gradient-
Based Optimizer (GBO), termed Criss-Cross Nelder–Mead GBO
(CCNMGBO), for estimating uncertain parameters in diverse PV
models. By combining the Criss-Cross algorithm and Nelder–Mead
simplex strategy with GBO, CCNMGBO demonstrates superior
performance. The algorithm is validated on benchmark
numerical optimization problems and applied to parameter
estimation in PV models with five, seven, and nine unknown
parameters. Comparative results against state-of-the-art
algorithms confirm CCNMGBO’s effectiveness in handling
numerical optimization and obtaining accurate parameters for
different PV models under varied operating conditions. Similarly,
the study in (Hussain et al., 2023b) evaluates the performance of
artificial neural network (ANN) algorithms for maximum power
point tracking (MPPT) in solar PV systems. This investigation
contributes valuable insights to the optimization landscape,
complementing the innovative approach proposed in the primary
study. The inclusion of the article enhances the comprehensive
understanding of optimization techniques and their applications in
photovoltaic research.

In this proposed study, the real RMSE is estimated using the
characteristics of 30 suggested methods that were collected from
existing literature for SDM, with a focus on RTC France solar cells.
The RTCFrance solar cell of SDMwas chosen since it is themost widely
used in the literature that has been published. Then, an AOA
optimization approach for obtaining unknown solar photovoltaic
parameters is suggested. This method is based on a physics concept
known as Archimedes’ Law of Buoyancy (Hashim et al., 2021). Its
performance was assessed by comparing it with other methods. In this
study, the real RMSE is estimated using the characteristics of
30 suggested methods that were collected from existing literature for
SDM, with a focus on RTC France solar cells. The RTC France solar cell
of SDMwas chosen since it is the most widely used in the literature that
has been published. Next, an AOA approach to extracting unknown
solar photovoltaic parameters is suggested. The AOA, one of the newest
algorithms derived from nature, is based on a physics concept known as
Archimedes’ Law of Buoyancy (Hashim et al., 2021). Its performance
was assessed by comparing it with other methods.

The remaining portions of the paper are organized as follows:
Solar photovoltaic models are discussed in Section 2, problem
formulation is discussed in Section 3, the AOA method is
explained in detail in Section 4, simulation and results are
discussed in Section 5, and a conclusion is presented in Section 6.

2 Modeling of solar PV module

Sunlight is converted into energy via solar PV cells, sometimes
referred to as photovoltaic cells. They include semiconductor materials,
usually silicon, which receive photons from the sun and emit electrons
as a result. Electrons generated through exposure to sunlight are
captured and directed through a circuit, establishing an electric
current. Photovoltaic (PV) cells, which exist in diverse shapes and
sizes, commonly employ the traditional silicon solar cell structure. In
this process, a silicon wafer is infused with impurities to form a p-n

junction. Sunlight triggers themovement of electrons from the p-side to
the n-side, inducing an electric current. PV cells are moderately
efficient, typically converting only 15%–20% of incident sunlight
into electricity. However, enhancing efficiency involves connecting
multiple PV cells into a PV array, arranged both in series and
parallel configurations. The most prevalent arrangement is the
“series-parallel” configuration, elevating voltage and overall current
output. Efficiency can further be heightened by deploying various
PV cell types. Multi-junction cells, characterized by multiple
semiconductor layers, widen the sunlight spectrum captured,
enhancing efficiency. Integrating PV cells with other technologies
amplifies their effectiveness. Concentrators focus sunlight onto PV
cells using lenses or mirrors, intensifying sunlight absorption.
Trackers move PV arrays to align with the sun’s trajectory,
optimizing sunlight capture and boosting efficiency. PV cells and
arrays are increasingly favored as renewable energy sources due to
their low maintenance, absence of emissions, and independence from
fuel for electricity generation. Furthermore, PV cells and arrays offer the
advantage of easy integration into buildings and structures, enabling on-
site electricity generation. However, there are notable limitations
associated with their use. One constraint is their reliance on
sunlight, rendering them ineffective during cloudy weather or at
night. Moreover, the initial installation cost of a PV array can be
substantial, although it has been decreasing in recent years. Another
challenge is their durability; materials like silicon, which compose PV
cells, are delicate and susceptible to damage from extreme weather
conditions such as hail or strong winds. Over time, these cells can also
degrade, leading to reduced efficiency and eventual replacement,
incurring significant ongoing expenses for large arrays. Considering
the environmental impact, the production process involves materials
and chemicals that can be harmful if not disposed of responsibly.
Additionally, the transportation and installation of PV arrays can
contribute to environmental strain. To address these concerns, it is
crucial to ensure that the production and disposal of PV cells and arrays
adhere to environmentally responsible practices. Furthermore, the cost
of installation and maintenance remains a significant factor limiting
widespread adoption. Despite these challenges, technological
advancements are rapidly driving down installation costs and
enhancing PV cell efficiency. Given the escalating demand for clean
and renewable energy sources, PV cells and arrays are expected to
continue playing a pivotal role in the energy landscape. Governments
and private organizations should persist in investing in research and
development to improve technology andmake it accessible to a broader
population. Encouraging policies that promote the use of PV cells and
arrays will further accelerate their adoption. Through these efforts, PV
cells and arrays can contribute significantly to creating a more
sustainable and resilient energy future for all.

2.1 Single diode model

The Single Diode Model (SDM) serves as a mathematical
representation of a solar PV cell’s behavior, enabling the prediction
of its performance under different conditions like temperature,
irradiance, and bias voltage. This model is grounded in the
fundamental principles of photovoltaics and considers factors such
as internal resistance, recombination losses, and the diode ideality
factor. Figure 1 illustrates the equivalent circuit diagram of the SDM.
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The SDM is defined by a series of equations that describe the
current-voltage (I-V) characteristics of a solar PV cell. The current
through the cell is determined by the Shockley diode equation,
encompassing recombination-induced current, saturation current,
and photocurrent. The cell’s voltage is calculated using Ohm’s law,
accounting for the internal resistance.

Crucially, the SDM allows the prediction of essential parameters
such as open-circuit voltage, short-circuit current, and maximum
output power of a solar PV cell. Additionally, it facilitates the

evaluation of the cell’s efficiency across diverse operating
conditions like temperature, irradiance, and bias voltage. Despite
its simplicity, the Single Diode Model proves to be a valuable tool,
providing reasonably accurate predictions of a solar PV cell’s
performance. However, it does not take into account some of the
complexities of a real solar PV cell, such as the non-uniformity of the
cell and the recombination losses at the contacts. More complex
models, such as the two-diode model, can be used to account for
these complexities and provide more accurate predictions of the
performance of a solar PV cell.

In the absence of irradiation from the sun, the PV-cell, which is
constructed by mixing p-type and other n-type material, performs
the same function as a normal P-N junction diode, the
characteristics of which are indicated by Shockley Eq. 1
(Shockley, 1949).

ID � IS e
VD
nVT − 1( ) (1)

The single diode model (SDM) incorporates both series
resistance (Rs) and shunt resistance (Rsh) to accommodate
non-idealities within photovoltaic cells. The single diode
captures the diffusion of charge carriers, while Rs represents
losses caused by the semiconductor material’s bulk resistance
and resistance from connecting wires and metals. Conversely, Rsh

addresses leakage current in the p-n junction, leading to power
losses primarily caused by manufacturing defects (Vankadara
et al., 2022).

The KCL notation for the Iph, ID, and Ish components of a PV
cell’s SDM output current, I, is as follows:

I � Iph − ID − Ish (2)

And applying KVL;

Ish � V + IRs

Rsh
(3)

The statement of the relationship between the output current
and output voltage of the SDM, by putting Eq. 1 and Eq. 3 in Eq. 2,
may be expressed as follows:

I � Iph − IS e
V+IRs
nVT − 1( ) − V + IRs

Rsh
(4)

It is possible to see from Eq. 4 that there are five unidentified
parameters (Iph, Is, n, Rs, and Rsh) that must be determined for the
current-voltage characteristics.

FIGURE 1
Equivalent circuit of SDM for a PV cell.

FIGURE 2
Equivalent circuit of DDM for a PV cell.

TABLE 1 Vector of solutions for models.

Model Parameter’s vector (xi)

SDM Rs, Rsh, Is, n, Iph

DDM Rs, Rsh, Is1, Is2, n1, n2, Iph

TDM Rs, Rsh, Is1, Is2, Is3, n1, n2, n3, Iph

FIGURE 3
Equivalent circuit of TDM for a PV cell.
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VT � kT
q

(5)

where, k = 1.380649 * 10–23 J/K is a Boltzmann constant (NIST,
2018) and q = 1.602176634 * 10–19°C is the charge of an electron. T is
the temperature in kelvin, Iph is the photogenerated current, ID is the
diode current,VD is the voltage across the diode, IS is the diode saturation
current, VT is the junction thermal voltage, Rs and Rsh are the series and
shunt resistance, respectively, and the ideality factor is represented by n.

2.2 Double diode model

The DDM is a more complex mathematical representation of the
behavior of a solar PV cell compared to the SDM and it requires more
parameters to be fitted. However, it pro-videsmore accurate predictions
of the performance of a solar PV cell, especially when the cell has non-

uniformities or recombination losses at the contacts, which can affect its
performance. The DDM is based on the basic ideas of photovoltaics and
is an augmentation of the SDM. The DDM is represented by a set of
equations that describe the I-V characteristics of a solar PV cell. The
equation for the current through the cell is given by two Shock-ley diode
equations, one for the front and one for the back of the cell. The voltage
across the cell is given by the Ohm’s law, which takes into account the
internal resistance of the cell. Estimating themaximumpower output of
a solar PV cell, as well as its open-circuit volt-age and short-circuit
current, may be done with the help of the DDM. It can also be used to
determine the efficiency of a solar PV cell under different operating
conditions. The equivalent circuit diagram of SDM is shown in Figure 2.

It’s worth noting that when it comes to the modelling of PV
systems, a more sophisticated model like the DDM can provide
more accurate results than the SDM. However, it also requires more
data and a more complex fitting procedure.

Using KCL, one can express the output current (I) of an ideal PV
cell as the following in terms of Iph, Ish, ID1, and ID2 as follows:

I � Iph − ID1 − ID2 − Ish (6)

The two diode currents (ID1 and ID2) may be represented as
follows using Shockley Eq. 1:

ID1 � IS1 e
V+IRs
n1VT − 1( ) (7)

ID2 � IS2 e
V+IRs
n2VT − 1( ) (8)

where Is1 and Is2 are the currents that reach saturation in the
opposite direction during the diffusion and recombination
processes, respectively. The ideality factors of recombination and
diffusion diodes, respectively, are denoted by the integers n1 and n2,
which are both whole numbers. By inserting Eq. 7 and Eq. 8 into Eq.
6, one can derive the following expression for the relationship
between the SDM’s output current and output voltage:

FIGURE 4
The volume of water moved when an object is immersed in the liquid.

FIGURE 5
Various items submerged in same liquid.
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I � Iph − IS1 e
V+IRs
n1VT − 1( ) − IS2 e

V+IRs
n2VT − 1( ) − V + IRs

Rsh
(9)

It is clear from Eq. 9 that there are 7 unknown parameters for the
current-voltage characteristics that need to be estimated: Iph, Is1, Is2,
n1, n2, Rs, and Rsh.

2.3 Three diode model

The TDM is an even more advanced mathematical representation
of the behaviour of a so-lar PV cell, compared to the SDM andDDM. It

provides themost accurate predictions of the performance of a solar PV
cell, especially when the cell has non-uniformities or re-combination
losses at the contacts and in the bulk of the cell. This model provides a
more detailed and accurate representation of the PV cell behaviour
under different operating circumstances.

The TDM is represented by a set of equations that describe the I-V
characteristics of a solar PV cell. The equation for the current through
the cell is given by three Shockley diode equations, one for the front and
one for the back of the cell and one for the bulk recombination. The
voltage across the cell is given by the Ohm’s law, which takes into
account the internal resistance of the cell. The TDM can be used to
determine the maximum power output of a solar PV cell, the short-
circuit current and the open-circuit voltage. This model is mostly used
in research and development of PV cells and module, and it’s less
common in real-world applications where the single or double diode
models are more commonly used (Khanna et al., 2015). The equivalent
circuit diagram of SDM is shown in Figure 3.

Using Kirchhoff’s Current Law, the output current (I) can be
determined as:

I � Iph − ID1 − ID2 − ID3 − Ish (10)

The relationship between the output current and voltage of the
SDM may be expressed as follows usingEqs 1, 7, 8:

I � Iph − Is1 exp
V + IRS

n1VT
( ) − 1[ ] − Is2 exp

V + IRS

n2VT
( ) − 1[ ]

− Is3 exp
V + IRS

n3VT
( ) − 1[ ] − V + IRsh

Rsh
(11)

where Is1, Is2, and Is3 are the reverse saturation currents, and the
ideality factors of the diodes D1, D2, and D3 are, respectively, n1, n2,
and n3. Using Eq. 11, the nine unknown parameters of the solar cell
model with three diodes are Rs, Rsh, Is1, Is2, Is3, n1, n2, and n3 and Iph
are supposed to be found in order to bring the characteristics of the
solar cell closer to those of the actual one.

3 Problem formulation

The objective of the parameter extraction problem in solar
photovoltaics is to identify unidentified model parameters that
precisely predict the system performance. This is accomplished
by converting the task into an optimization problem, where the
goal is to reduce the discrepancy between predicted and actual data.
The error functions for the SDM, DDM, and TDM are presented in
Eqs 12–14, and the goal is to minimize these error functions to a near
zero value.

J V , I, x( ) � Iph − IS e
V+IRs
nVT − 1( ) − V + IRs

Rsh
− I (12)

J V , I, x( ) � Iph − IS1 e
V+IRs
n1VT − 1( ) − IS2 e

V+IRs
n2VT − 1( ) − V + IRs

Rsh
− I

(13)
J V , I, x( ) � Iph − Is1 e

V+IRs
n1VT − 1[ ] − Is2 e

V+IRs
n2VT − 1[ ] − Is3 e

V+IRs
n3VT − 1[ ]

− V + IRsh

Rsh
− I

(14)

FIGURE 6
Flowchart of the proposed AOA for parameter extraction.
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TABLE 2 The results of traditional and correct RMSE and SIAE for the parameters reported for the RTC France solar cell in a variety of published sources.

References Authors,
year

Algorithm Iph(A) IS (μA) n Rs

(ohm)
Rsh(ohm) Reported

RMSE in
literature

Published
SIAE in
literature

Calculated
SIAE

RMSE
calculated
using Eq. 16

Novel RMSE
calculated
using Eq. 18

Kharchouf et al.
(2022)

Kharchouf et al.
(2022)

MSDE 0.7607 0.3209 1.4709 0.0363 54.1134 0.00077692 * 0.326697 0.0362498035 0.0209031831

Xu and Qiu (2022) Xu and Qiu
(2022)

MSFS 0.76077553 0.32302082 1.48118359 0.03637709 53.71852461 0.000986022 * 0.01769 0.0009860375 0.0007753930

Xiong et al. (2021) Xiong et al.
(2021)

GSK 0.7608 0.3231 1.4812 0.0364 53.7227 0.00098602 * 0.017577 0.0009871154 0.0007761971

Long et al. (2020) Long et al.
(2020)

GWOCS 0.760773 0.32192 1.4808 0.03639 53.632 0.00098607 * 0.017432 0.0009973650 0.0007799711

Xiong et al. (2020) Xiong et al.
(2020)

EOTLBO 0.76077553 0.32302083 1.48118359 0.03637709 53.71852514 0.00098602187 * 0.01769 0.0009860376 0.0007753930

Yu et al. (2019) Yu et al. (2019) PGJAYA 0.7608 0.323 1.4812 0.0364 53.7185 0.00098602 * 0.017855 0.0009910860 0.0007775708

Xiong et al. (2018) Xiong et al.
(2018)

SOS 0.7608 0.3579 1.4916 0.0359 53.7835 0.00098609 0.0181 0.017936 0.0010383398 0.0008271520

Gao et al. (2018) Gao et al.
(2018)

ISCE 0.76077553 0.32302083 1.4811836 0.03637709 53.71852771 0.0009860219 0.01770412 0.01769 0.0009860374 0.0007753929

Merchaoui et al.
(2018)

Merchaoui et al.
(2018)

MPSO 0.760787 0.310683 1.475262 0.036546 52.88971 0.000773006 * 0.075171 0.0073358971 0.0043631866

Oliva et al. (2017) Oliva et al.
(2017)

CWOA 0.76077 0.3239 1.4812 0.03636 53.7987 0.00098602 * 0.01913 0.0013523496 0.0009502452

Yu et al. (2017) Yu et al. (2017) IJAYA 0.7608 0.3228 1.4811 0.0364 53.7595 0.00098603 * 0.017534 0.0009873288 0.0007761540

Kler et al. (2017) Kler et al.
(2017)

ER-WCA 0.760776 0.322699 1.48108 0.036381 53.691 0.00098602 * 0.017663 0.0009861732 0.0007753219

Ma et al. (2016) Ma et al. (2016) PPSO 0.7608 0.323 1.4812 0.0364 53.7185 * * 0.017855 0.0009910860 0.0007775708

Jordehi (2016) Jordehi (2016) TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644 0.00077301 * 0.075302 0.0073494354 0.0043712778

Jordehi (2016) Jordehi (2016) GWO 0.760996 0.2430388 1.451219 0.037732 45.116309 0.00095145 * 0.078277 0.0072901713 0.0043528672

Jordehi (2016) Jordehi (2016) TLBO 0.760809 0.312244 1.47578 0.036551 52.8405 0.00077487 * 0.075073 0.0072779110 0.0043381404

Jordehi (2016) Jordehi (2016) ICA 0.760624 0.2440691 1.451194 0.037989 56.052682 0.0010372 * 0.078617 0.0077975543 0.0046109238

Jordehi (2016) Jordehi (2016) CPSO 0.760788 0.3106975 1.475262 0.036547 52.892521 0.00077301 * 0.075326 0.0073519795 0.0043728073

Jordehi (2016) Jordehi (2016) WCA 0.760908 0.413554 1.504381 0.035363 57.669488 0.00094655 * 0.081482 0.0076124226 0.0046504704

Chen et al. (2016a) Chen et al.
(2016a)

GOTLBO 0.76078 0.331552 1.48382 0.036265 54.115426 0.000987442 * 0.017766 0.0009874544 0.0007797881

(Continued on following page)
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TABLE 2 (Continued) The results of traditional and correct RMSE and SIAE for the parameters reported for the RTC France solar cell in a variety of published sources.

References Authors,
year

Algorithm Iph(A) IS (μA) n Rs

(ohm)
Rsh(ohm) Reported

RMSE in
literature

Published
SIAE in
literature

Calculated
SIAE

RMSE
calculated
using Eq. 16

Novel RMSE
calculated
using Eq. 18

Ali et al. (2016) Ali et al. (2016) MVO 0.7616 0.32094 1.5252 0.0365 59.5884 0.0020771 * 1.327257 0.1267944533 0.0862750393

Chen et al. (2016b) Chen et al.
(2016b)

EHA-NMS 0.760776 0.323021 1.481184 0.036377 53.718521 0.00098602 0.01770412 0.017694 0.0009860303 0.0007753906

El-Fergany (2015) El-Fergany
(2015)

MBA 0.7604 0.2348 1.489 0.0388 44.61 * * 1.156841 0.1167180446 0.0762016532

Alam et al. (2015) Alam et al.
(2015)

FPA 0.76079 0.310677 1.47707 0.0365466 52.8771 0.00077301 0.015971 0.017787 0.0012153674 0.0008795392

Cai and Gong
(2013)

Cai and Gong
(2013)

IJADE 0.760776 0.323021 1.481184 0.036377 53.718526 0.00098602 0.01770357 0.017694 0.0009860303 0.0007753906

El-Naggar et al.
(2012a)

El-Naggar et al.
(2012a)

SA 0.762 0.4798 1.5172 0.0345 43.1034 0.0017 0.03712 0.199728 0.0190035037 0.0116580742

Askarzadeh and
Rezazadeh (2012)

Askarzadeh
and Rezazadeh

(2012)

HS 0.7607 0.30495 1.47538 0.03663 53.5946 0.0009951 * 0.01744 0.0009952122 0.0007762628

Askarzadeh and
Rezazadeh (2012)

Askarzadeh
and Rezazadeh

(2012)

GGHS 0.76092 0.3262 1.48217 0.03631 53.0647 0.00099097 * 0.017885 0.0009910210 0.0007814787

AlHajri et al. (2012) AlHajri et al.
(2012)

PS 0.7617 0.998 1.6 0.0313 64.1026 0.2863 0.055993 0.175727 0.0149416401 0.0098203051

Huang et al. (2011) Huang et al.
(2011)

CPSO 0.7607 0.4 1.5033 0.0354 59.012 0.265 * 0.022332 0.0013826805 0.0010237285
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Existence of the solution vector ‘x’ is a fundamental requirement
for all optimization techniques. The second requirement is the
search range, as shown in Table 1. The third requirement is the
objective function, whose final form is shown in Eq. 15,

Objective Function �
















1
N
∑N

i�1J V , I, x( )2
√

(15)

The number of data points that were measured is represented by N.
Once the steps or the error tolerance has reached the predetermined
value, iteration ends. The objective function chosen in this case has been
rated as RMSE in several published literature.

The typical RMSE formula, which also evaluates the objective
function, is as follows:

RMSE conventional( ) �
















1
N
∑N

i�1J V , I, x( )2
√

(16)

The RMSE function may be expressed by pseudo-substituting
Eq. 12 in Eq. 16 and V= Vexp and I= Iexp as:

RMSE �
















































1
N
∑N

i�1 Iph − IS e
Vexp+VexpRs

nVT − 1( ) − Vexp + IexpRs

Rsh
− Iexp( )2

√√
(17)

The issue with this RMSE calculation is that it uses the observed or
experimental current value rather than the calculated value of current, I.
The precise RMSE equation employed in this study is shown in Eq. 18,

TABLE 3 Characteristics data of RTC France Solar Cell and PVM752 GaAs.

Characteristic RTC france solar cell PVM752 GaAs thin-film cell

Open circuit voltage, Voc (V) 0.9926 0.5727

Short circuit current, Isc (A) 0.0999 0.0937

Voltage at MPP, Vmp (V) 0.8053 0.7605

Current at MPP, Imp (A) 0.4590 0.4755

Temperature, T (K) 306.15 298.15

Irradiation, W/m2 1000 1000

No. of samples 26 44

No. of cells, N 1 1

TABLE 4 Search range of parameters of RTC France Solar cell for SDM and DDM.

Iph(A) IS1, IS2, IS3(μA) n1,n2,n3 Rs (ohm) Rsh(ohm)
SDM Lower bound 0 10−1 1 0 0

Upper bound 1 1 2 1 100

DDM Lower bound 0 10−1 1 0 1

Upper bound 1 1 2 1 100

TABLE 5 Assessment of SDM (RTC France Solar Cell) parameters derived using the AOA method and other method.

Parameters Methods

AOA[P] AOS Ali et al.
(2023)

MADE Li et al.
(2019)

TVACPSO Jordehi,
(2016)

SA El-Naggar et al.
(2012b)

Iph(A) 0.76110 0.760776 0.7608 0.760788 0.7620

IS (μA) 0.3948 0.322689 0.3230 0.3106827 0.4798

n 1.4864 1.48108 1.4812 1.475258 1.5172

Rs (ohm) 0.036004 0.036379 0.0364 0.036547 0.0345

Rsh(ohm) 51.678 53.69001 53.7185 52.889644 43.10345

RMSE published 9.8602E−04 7.7301E-04 0.0017

SIAE calculated 0.071845 0.017696 0.017855 0.075302 0.199728

RMSE using Eq. 18 3.7415*10−3 7.752726*10−4 7.775708*10−4 4.3712778*10−3 0.011658
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where current is computed at each value of output voltage where it is
observed utilising other retrieved relevant parameters.

RMSE x( ) �


























1
N
∑N

i�1 Iexperimental
i − Iestimated

i( )2√
(18)

Eq. 18 makes it clear that the model’s parameters are recovered
with greater accuracy the lower the RMSE value. The fitting error is
calculated using the sum of each individual absolute error, as
illustrated by equation:

SIAE � ∑N

i�1 I
experimental
i − Iestimated

i

∣∣∣∣∣ ∣∣∣∣∣ (19)

The experimental data sheet for the two types of solar cell such
as, PVM752 GaAs thin film and RTC France, is sourced from
(Easwarakhanthan et al., 1986; Jordehi, 2016). The purpose of
this study is to compare AOA with existing optimization
techniques for extracting solar photovoltaic characteristics and to
verify AOA, which is a novel approach.

4 Archimedes optimisation algorithm

4.1 Basics of archimedes
optimisation algorithm

Archimedes principle describes the Archimedes Law of
buoyancy. It imitates the idea of buoyant force, which is
proportionate to the weight of the fluid being displaced and ap-
plied to an object that is partly or entirely immersed in a fluid
(water). When the weight of the liquid displaced is more than the
weight of the item, the object floats, and when it is less than the
weight of the liquid displaced, the object sinks. The objects which are
sub-merged in the fluid are the population individual in the
Archimedes Optimization algorithm (AOA). These substances
possess volume, acceleration, and density, all of which contribute
to an object’s buoyancy. The objective of AOA is to reach a position

where the fluid net force is zero and objects remain neutrally
buoyant (Hashim et al., 2021).

When an object (W1) is partially or fully immersed in a fluid,
Archimedes’ principle states that the fluid exerts an upward force on
the object, equivalent to the weight of the fluid displaced by the
object. As illustrated in Figure 4, when an object is submerged in
fluid, it experiences an upward force known as the buoyant force
(W2), which is equal to the fluid it displaces.

4.2 Mathematical modelling of archimedes
optimisation algorithm

Let’s assume in the same liquid a large number of objects are
submerged (Figure 5) and each one of them is aiming to achieve an
equal equilibrium state. The submerged objects have distinct
volumes and densities which cause distinct acceleration.

If the weight of the object (Wobj) is the same as the buoyancy
force (Fby) then the object will reach an equilibrium state.

Fby � Wobj

δby Vby Aby � δobj Vobj Aobj
(20)

Where “δby” denotes density, “V” denotes volume and “A”
denotes acceleration or gravity. obj and by subscripts are for
submerged objects and fluid, respectively.

Further Eq. 1 can be written as,

Aobj � δbyVbyAby

δobj Vobj
(21)

Suppose, the object is affected by another force, such as a contact
with another nearby objects.

Then Eq. 1 will modify as,

Fby � Wobj

Wby −Ws � Wobj

δbyVbyAby − δsvsAs � Wobj

(22)

TABLE 6 Parameter extraction for DDM (RTC France Solar cell) utilizing the AOA approach compared to other methods.

Parameters Methods

AOA[P] AOS Ali et al.
(2023)

MADE Li et al.
(2019)

TVACPSO Jordehi,
(2016)

SA El-Naggar et al.
(2012b)

Iph(A) 0.76078 0.76078 0.7608 0.760809 0.7623

IS1 (μA) 0.2245 0.22732 0.7394 0.04046782 0.4767

IS2 (μA) 0.3504 0.72895 0.2246 0.9274655 0.0100

n1 1.7214 1.45151 1.9963 1.327160 1.5172

n2 1.4840 1.99879 1.4505 1.735315 2.0000

Rs (ohm) 0.0349 0.036717 0.0368 0.037973 0.0345

Rsh(ohm) 64.5329 55.3951 55.4329 56.549605 43.10345

SIAE published 0.023

RMSE published 9.8261E−04 7.4365E-04

SIAE calculated 0.021268 0.017592 0.017500 0.074329 0.176483

RMSE using Eq. 18 1.0033*10−3 7.605956*10−4 7.620401*10−4 4.365720*10−3 0.010234
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The AOA is one of the most modern algorithms that draws
inspiration from nature and is based on Archimedes’ Law of
Buoyancy, a physics principle. AOA is based on population and
in this suggested method, the submerged objects are the individual
population. Like all other meta-heuristics algorithms which are
based on population, AOA starts the search with a random
population of particles (also known as the solution of the
candidate) with stochastic densities, acceleration and volumes.

The object possesses a distinct entity during this position. Object’s
random position in the fluid is initialized at this instant. Next, initial
fitness calculations of population fitness, AOA continues the iterations
up-to the condition meets of improve termination. After every one
iteration, AOA improves the object’s density and the volume.

Based on circumstances of impact with some other nearest
object, the object’s acceleration is corrected. The improved
acceleration, density and volume helps to find out the object’s
new position.

The steps of the suggested algorithm are mathematically
represented as follows: STEP-1 (Initialization)

With the help of Eq. 23 each object position can be initialized.

OI � lbI + Rand ubI − lbI( ) (23)
For I � 1, 2, 3, 4, . . . .N
Where, OI denotes ith object in a population of the total number

of N objects. ubI and lbI are the search-space of upper bounds and
lower bounds respectively of ith object.

TABLE 7 Fitting Results for SDM and DDM of RTC France Solar cell.

Voltage (V) Iexperimental Easwarakhanthan et al. (1986)(Amp) SDM DDM

Icalculated (Amp) IAE Icalculated (Amp) IAE

−0.2057 0.7640 0.7645 0.0005 0.7635 0.0005

−0.1291 0.7620 0.7631 0.0011 0.7623 0.0003

−0.0588 0.7605 0.7617 0.0012 0.7612 0.0007

0.0057 0.7605 0.7605 0.0001 0.7602 0.0003

0.0646 0.7600 0.7593 0.0007 0.7593 0.0007

0.1185 0.7590 0.7583 0.0007 0.7584 0.0006

0.1678 0.7570 0.7573 0.0003 0.7576 0.0006

0.2132 0.7570 0.7563 0.0007 0.7568 0.0002

0.2545 0.7555 0.7552 0.0003 0.7558 0.0003

0.2924 0.7540 0.7537 0.0003 0.7544 0.0004

0.3269 0.7505 0.7512 0.0007 0.7521 0.0016

0.3585 0.7465 0.747 0.0005 0.7478 0.0013

0.3873 0.7385 0.7393 0.0008 0.7403 0.0018

0.4137 0.7280 0.7261 0.0019 0.7272 0.0008

0.4373 0.7065 0.705 0.0015 0.7063 0.0002

0.459 0.6755 0.6726 0.0029 0.6744 0.0011

0.4784 0.6320 0.6274 0.0046 0.6299 0.0021

0.496 0.5730 0.5678 0.0052 0.5713 0.0017

0.5119 0.4990 0.4946 0.0044 0.4991 0.0001

0.5265 0.4130 0.408 0.0050 0.4135 0.0005

0.5398 0.3165 0.3114 0.0051 0.3177 0.0012

0.5521 0.2120 0.206 0.0060 0.2127 0.0007

0.5633 0.1035 0.0964 0.0071 0.1033 0.0002

0.5736 −0.010 −0.0158 0.0058 −0.0091 0.0009

0.5833 −0.1230 −0.1311 0.0081 −0.1249 0.0019

0.59 −0.2100 −0.2161 0.0061 −0.2105 0.0005

SIAE 0.071845 0.021268
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With the help of Eq. 24 and Eq. 25, the density (Den) and
volume (Vol) of every iteration of ith object can be initialized.

DenI � Rand
VolI � Rand

(24)

Where, Rand is a D dimensional vector which generates a
random number in the middle of [0, 1].

Lastly, with the help of Eq. 25 the acceleration (Acc) of ithobject
can be initialised as,

AccI � lbI + Rand × ubI − lbI( ) (25)

In this initialization step, the value of the best fitness object is
picked and allotted as Accbest ,Denbest ,Xbest and Volbest .

STEP-2 (Update Volumes and Densities)
The volume and density of ith object for t+ 1 iterations is

improved using Eq. 26.

Dent+1
I � Dent

I + Rand × Denbest − Dent
I( )

Volt+1I � VoltI + Rand × Volbest − VoltI( ) (26)

Where, Denbest and Volbest denote density and volume related
with the best object notice up to this point and Rand is an arbitrarily
generated number.

STEP-3 (Density Factor and Transfer Operator)
At first, there are collisions with nearby items, but over time, the

objects work to reach an equilibrium condition. In AOA, the
Transfer Operator (TG), which transforms inquiries between
exploration and exploitation, can be utilised to do this.

TG � exp
tn − tMax

tMax
[ ] (27)

where, Transfer Operator (TG) moderately increases with the time
till reaching 1. tn and tMax denote number of iterations and
maximum iterations respectively. Similarly, using density
decreasing factor(d), the AOA is a betted on global search to
local search.

With the help of Eq. 28, it reduces with time

dt+1 � exp
tMax − tn
tMax

( ) − tn
tMax

( ) (28)

dt+1 reduces over time, causing it to converge in a predefined
acceptable zone. It is important to remember that precise control
of this parameter will assure a good balance between exploration and
exploitation.

STEP-4.1 (Occurrence of collision between adjacent objects,
i.e., exploration phase)

If TG is less than or equal to value 0.5 (TG ≤ 0.5) collision
between adjacent objects occurs. Choose a random material (rm)
and by taking help of Eq. 29, the acceleration of each object for t+1
iteration can be improved.

Acct+1I � Denrm + Volrm × Accrm
Dent+1

I × Volt+1I

(29)

FIGURE 7
Comparison between estimated data and experimentally
recorded data for SDM (RTC France solar cell).

FIGURE 8
Comparison between estimated data and experimentally
recorded data for DDM (RTC France solar cell).

FIGURE 9
Convergence curve of SDM for RTC France.

FIGURE 10
Convergence curve of DDM for RTC France.
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WhereAccI ,DenI andVolI are acceleration, density and volume of
ith object. Whereas Denrm, Volrm and Accrm are the density, volume
and acceleration of randomly chosen material. It’s worth remembering
that Transfer Operator (TG≤ 0.5) assures exploration for one-third of

iterations. The behavior of exploration and exploitation can be altered
when a value other than 0.5 is used.

STEP-4.2 (Occurrence of no collision between adjacent objects,
i.e., exploitation phase)

TABLE 8 Search range of parameters of PVM752 (Oliva et al., 2019) as thin film solar cell.

Iph(A) IS1, IS2, IS3(μA) n1,n2,n3 Rs (ohm) Rsh(ohm)
SDM Lower bound 0.1 10−7 1 0.5 100

Upper bound 0.2 10−3 2 1 1000

DDM Lower bound 0.1 10−7 1 0.5 100

Upper bound 0.2 10−3 2 1 1000

TABLE 9 Parameters derived by the AOA algorithm for SDM (PVM752 GaAs THIN FILM SOLARCELL) for SDM compared to those extracted by othermethods.

Methods

Parameters AOA [P] AOS Ali et al.
(2023)

TGA Diab et al.
(2020)

ABC Karaboga and Akay,
(2009)

COA Chin and Salam,
(2019)

Iph(A) 0.10001 0.10001 0.1007 0.103312 0.1816

IS (μA) 1.6494*10−4 5.944*10−6 2.8324*10−4 3.2*10−5 0

n 1.9099 1.646700 1.9707 1.774159 1.5848

Rs (ohm) 0.4561 0.6479 0.5092 0.5 0

Rsh(ohm) 761.0707 662.9896 349.8888 100 10.4707

SIAE published

RMSE published 9.037521E−04 2.0412E−03 0.221817

SIAE calculated 0.031488 0.006069 0.025237 0.077921 2.303786

RMSE using Eq. 18 1.6564*10−3 1.61841195205*10−4 6.956224*10−4 2.1620*10−3 5.90891*10−2

TABLE 10 DDM (PVM752 GaAs THIN FILM SOLAR CELL) parameters extraction using the AOA algorithm compared to other method.

Methods

Parameters AOA [P] AOS Ali et al.
(2023)

TGA Diab et al.
(2020)

ABC Karaboga and Akay,
(2009)

COA Chin and Salam,
(2019)

Iph(A) 0.101217 0.103192 0.1001 0.103252 0.12291

IS1 (μA) 1.668*10−6 1.775*10−4 2*10−4 4*10−5 0

IS2 (μA) 4.9081*10−6 1*10−6 2*10−4 1*10−6 0.01216

n1 1.61970 1.999 1.9306 1.792987 2.92677

n2 1.85630 1.571052 1.9808 2 2.39519

Rs (ohm) 0.67073 0.6547 0.511 0.5 1

Rsh(ohm) 414.5075 200 960.4025 100 1000

SIAE published

RMSE published 6.3867360E−04 0.002044 0.04005

SIAE calculated 0.040224 0.064469 0.357849 0.078420 0.688716

RMSE using Eq. 18 0.00106365 0.0017804 0.01317406 0.0021697 0.017514
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If Transfer Operator (TG) is greater than the value 0.5 (TG >
0.5), there is no collision with neighboring objects. In this case
acceleration of each object for t+1 iteration is improved using Eq. 30.

Acct+1I � Denbest + Volbest × Accbest
Dent+1

I × Volt+1I

(30)

Here, Accbest ,Denbest and Volbest are the acceleration, density
and volume of the best object.

STEP- 4.3 (Normalization of Acceleration)
Using Eq. 31 acceleration can be normalized to determine

percentage of change.

Acct+1i−norm � u × Acct+1I − Accmin

Accmax − Accmin
(31)

where, the normalization ranges u and l are fixed at 0.9 and 0.1,
respectively.

The percentage of steps that each agent will alter is specified by
Acct+1i−norm. The value of acceleration will be high when object i is
distant from the global optimum representing that it is in the
exploration phase rather than exploitation phase. This depicts the
transition from exploration to exploitation in the search process. In a
typical case, the acceleration factor starts off large and gradually
decreases. This supports search agents in straying from local
solutions and heading for the best global solution. It’s important
to keep in mind that the same search agent can take longer than
normal. As a consequence, AOA achieves stability between
exploration and extraction.

STEP-5 (Position Update)
Considering the exploration phase, i.e., TG ≤ 0.5, the position of

ith object is updated for following t+1 iterations using Eq. 32.

Xt+1
I � Xt

I + Acct+1i−norm × Rand × B1 × d × XRand − Xt
I( ) (32)

Here, B1 is a constant whose value is equal to 2. Similarly,
considering the Transfer Operator is greater than the value
0.5 (TG> 0.5) i.e., exploitation phase. In this case using Eq. 33,
the object updates their position for following t + 1 iterations.

Xt+1
I � Xt

best + Acct+1i−norm × Rand × F × B2 × d T × Xbest − Xt
I( )
(33)

Here, B2 is another constant whose value is equals to 6. can be
defined with Transfer Operator relation, i.e., T � B3 × TG. It may be
inferred from this relationship that T first deducts a certain amount
from the best position before rising in the range of (0.3 × B3, 1) over
time. The randomwalk’s step size is huge since it starts off with a low
percentage, which causes a big gap between the best and current
position. This proportion steadily increases as the search goes on,
closing the gap between the best and current position. A good
balance between exploration and exploitation may be reached as a
consequence.

Letter F is used for flag which changes motion’s directions using
Eq. 34

F � +1 if P ≤ 0.5
−1 if P > 0.5{ (34)

Here, P � 2 × Rand − B4

STEP-6 (Evaluation)

FIGURE 11
Comparison between estimated data and experimentally
recorded data for SDM (PVM752 GaAs thin film solar cell).

FIGURE 12
Comparison between estimated data and experimentally
recorded data for DDM (PVM752 GaAs thin film solar cell).

FIGURE 13
Convergence Curve of SDM for PVM752 GaAs thin film.

FIGURE 14
Convergence Curve of DDM for PVM752 GaAs thin film.
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TABLE 11 Fitting results for SDM and DDM of PVM752 GaAs THIN FILM SOLAR CELL.

Voltage (V) Iexperimental (Amp) Easwarakhanthan et al. (1986) SDM DDM

Iestimated (Amp) IAE Iestimated (Amp) IAE

−0.1659 0.1001 0.1002 0.0001 0.1015 0.0014

−0.1281 0.1 0.1001 0.0001 0.1014 0.0014

−0.0888 0.0999 0.1001 0.0002 0.1013 0.0014

−0.049 0.0999 0.1000 0.0001 0.1012 0.0013

−0.0102 0.0999 0.1000 0.0001 0.1011 0.0012

0.0275 0.0998 0.0999 0.0001 0.1010 0.0012

0.0695 0.0999 0.0998 0.0001 0.1009 0.0010

0.1061 0.0998 0.0998 0.0000 0.1008 0.0010

0.146 0.0998 0.0997 0.0001 0.1007 0.0009

0.1828 0.0997 0.0997 0.0000 0.1006 0.0009

0.223 0.0997 0.0996 0.0001 0.1005 0.0008

0.26 0.0996 0.0996 0.0000 0.1004 0.0008

0.3001 0.0997 0.0995 0.0002 0.1003 0.0006

0.3406 0.0996 0.0995 0.0001 0.1002 0.0006

0.3789 0.0995 0.0994 0.0001 0.1001 0.0006

0.4168 0.0994 0.0994 0.0000 0.1000 0.0006

0.4583 0.0994 0.0993 0.0001 0.0999 0.0005

0.4949 0.0993 0.0993 0.0000 0.0999 0.0006

0.537 0.0993 0.0992 0.0001 0.0997 0.0004

0.5753 0.0992 0.0991 0.0001 0.0996 0.0004

0.6123 0.099 0.0990 0.0000 0.0995 0.0005

0.6546 0.0988 0.0988 0.0000 0.0992 0.0004

0.6918 0.0983 0.0985 0.0002 0.0989 0.0006

0.7318 0.0977 0.0978 0.0001 0.0980 0.0003

0.7702 0.0963 0.0963 0.0000 0.0964 0.0001

0.8053 0.0937 0.0936 0.0001 0.0933 0.0004

0.8329 0.09 0.0899 0.0001 0.0890 0.0010

0.855 0.0855 0.0854 0.0001 0.0839 0.0016

0.8738 0.0799 0.0800 0.0001 0.0780 0.0019

0.8887 0.0743 0.0746 0.0003 0.0722 0.0021

0.9016 0.0683 0.0689 0.0006 0.0663 0.0020

0.9141 0.0618 0.0625 0.0007 0.0598 0.0020

0.9248 0.0555 0.0562 0.0007 0.0536 0.0019

0.9344 0.0493 0.0499 0.0006 0.0476 0.0017

0.9445 0.0422 0.0427 0.0005 0.0409 0.0013

0.9533 0.0357 0.0358 0.0001 0.0346 0.0011

0.9618 0.0291 0.0287 0.0004 0.0283 0.0008

(Continued on following page)
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Using objective function (f ) to compute each object and take
into account the best solution computed until now. Allocate Volbest ,
Xbest ,Accbest and Denbest .

The flowchart for the proposed AOA for parameter extraction
has been shown in Figure 6.

5 Simulation results

This section displays the outcomes of computations performed
using a MATLAB R2018a application on an Intel(R) Core (TM) i5-
10210U CPU running at 2.11 GHz and 8 GB of memory. This
section tests and validates the suggested AOA approach that was
utilized to extract the solar photovoltaic parameters of SDM and
DDM. Using the most modern and accurate metaheuristic
algorithms, the results are compared. The best (minimum),
average (mean), worst (maximum), and standard deviation of the
RMSE values are computed after 50 iterations of the method. Before
that, SIAE and RMSE were computed for the single diode model and
in particular for the RTC France solar cell based on the extracted
parameters of reported 30 approaches from different published
literature.

Since many writers used various methods to calculate the RMSE,
practically all of the literature says that the algorithms they
employed performed better than others. This leads us to the
conclusion that no approach can definitively show that it is the
best and most effective one to use for the extraction of unknown
solar parameters. Based on the characteristics of 30 suggested
methods that were taken from different published literature, the
actual RMSE is determined in this study. Because of its popularity
and extensive usage in published literature, the RTC France single-
diode solar cell type has been employed. First, the RMSE is
computed using Eq. 16, which was often used to extract
parameters in significant publications published before 2019.
Next, using Eq. 4, the current is computed for the appropriate
voltage value, and Eq. 18 is used to get the RMSE. For all computed
current values and experimental current values derived from data
sheets, the innovative RMSE Eq. 18 is implemented. The estimated
RMSE and the RMSE that has been reported in the literature are
compared. The findings for the stated parameters of the RTC France

solar cell in the different published literature are shown and
contrasted in Table 2 using the traditional RMSE formula, the
accurate RMSE formula, and the computed SIAE. The same
experimental current-voltage (I-V) characteristics are used as the
basis for all comparison techniques.

Table 2 shows that there is a discrepancy between the estimated
RMSE and the reported RMSE in published articles. A result
mismatch might be caused by.

•A crude approximation, traditional Eq. 16, may have been used
to determine RMSE. • Instead of using the lengthier form (NIST,
2018; N.I.Technology, 2023) of the value, some writers may have
used the compact value of the electron charge q, q = 1.6*10−19 C or
maybe q = 1.6021*10−19 C, and k = 1.38*10−23 J/K or k =
1.3806*10−23 J/K is the Boltzmann constant. • It’s possible that
some writers didn’t utilize all of the I-V characteristic
measurement points. For the RTC France solar cell, N =
26 samples. • It’s possible that the RMSE calculation was done
incorrectly.

The SIAE plays a crucial role in providing insight into the
effectiveness of the strategy. This demonstrates the comparison
between the experimental value and the estimated value. The
curve between experimental and predicted values fits well with
the lower SIAE. Table 2 demonstrates that the performance of
each method has a lower RMSE when the SIAE value is closer to
0.01 than other values. Whereas, the characteristics data for RTC
France Solar cell and PVM752 GaAs has been shown in Table 3.

The goal of this research is to lay a solid groundwork for future
work that uses proper analysis and applies an optimization
technique to the problem of determining unknown solar
parameters. There is no use in comparing two approaches and
asserting that one is superior if the RMSE is not calculated properly.
If we just considered the RMSE number that has been previously
reported in the literature, it would be easy for us to give proper credit
to the AOA method we used. This, however, is inaccurate, as their
method and strategy may have flaws. Therefore, we first compared
the efficacy of AOA by estimating the new value of RMSE with a
rigorous formula. The AOA method is tested on two types of solar
modules: an RTC France silicon solar cell operating at 1000 W/
m2 irradiance at 33°C temperature and a PVM752 GaAs thin-film
solar cell operating at 1000 W/m2 irradiance at 25°C temperature.

TABLE 11 (Continued) Fitting results for SDM and DDM of PVM752 GaAs THIN FILM SOLAR CELL.

Voltage (V) Iexperimental (Amp) Easwarakhanthan et al. (1986) SDM DDM

Iestimated (Amp) IAE Iestimated (Amp) IAE

0.9702 0.0222 0.0212 0.0010 0.0217 0.0005

0.9778 0.0157 0.0140 0.0017 0.0156 0.0001

0.9852 0.0092 0.0067 0.0025 0.0093 0.0001

0.9926 0.0026 −0.0009 0.0035 0.0029 0.0003

0.9999 −0.004 −0.0088 0.0048 −0.0036 0.0004

1.0046 −0.0085 −0.0140 0.0055 −0.0078 0.0007

1.0089 −0.0124 −0.0189 0.0065 −0.0118 0.0006

SIAE 0.031488 0.040224
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5.1 Parameters of RTC france solar cell

The process of determining the parameters of a single diode
model of a 57-mm-diameter silicon solar cell (RTC France) begins
by applying the AOA (Archimedes Optimization algorithm). The
data used for this analysis was taken from a measured data sheet
(Easwarakhanthan et al., 1986) commonly used in related literature.
The temperature for the analysis was 33°C, and the irradiance was
1000 W/m2. The search range for the parameters of the RTC France
cell under the Single Diode Model (SDM) and Double Diode Model
(DDM) is outlined in Table 4.

The comparison of the extracted parameters of the single diode
model (SDM) and the double diode model (DDM) by the AOA
algorithm with those obtained using other algorithms such as
Memetic Adaptive Differential Evolution (MADE) (Li et al., 2019),
Time Varying Acceleration Coefficients Particle Swarm Optimization
(TVACPSO) (Jordehi, 2016), Simulated Annealing (SA) (El-Naggar
et al., 2012b), Tree Growth Algorithm (TGA) (Diab et al., 2020), and
Artificial Bee Colony (ABC) (Diab et al., 2020) is presented in Table 5
andTable 6, respectively. To assess the accuracy of the AOA algorithm
in determining the unknown parameters, the RMSE and the SIAE
were calculated and compared with the published parameters
obtained from other algorithms. Table 7 demonstrates the
similarity between the predicted results and the experimental results.

Table 7 also shows the outcomes of the SDM and DDM fittings for
the RTC France solar cell. Calculated and experimental data for SDM
and DDM of RTC France solar cells are used to depict I-V
characteristics and compare the two sets of data. It reveals how well
the theoretical outcomes correlate with the empirical findings.
Individual absolute error (IAE) was used to quantify the discrepancy
between the actual current in an experiment and the theoretical current
that was obtained by putting in the extracted parameters. The SIAE is a
metric used to evaluate the accuracy of a model by comparing the
predicted values with the actual values. A lower SIAE value indicates
that the model has better accuracy in predicting the behaviour of the
device. All of the SDM IAE values are less than 0.00159633, and all of
the DDM values are less than 0.00150183. This demonstrates the high
accuracy of the derived parameters. It should have been set up such that
when the model parameters are increased, the RMSE lowers from a
SDM to a DDM. After comparing the results of SDM and DDM, and
we discover that DDM (1.0033*10-3) provides the lowest and best
RMSE value, while SDM (3.7415*10-3) provides the highest RMSE.
This could be because SDMrequires the extraction of just five unknown
parameters, while DDM requires seven. The best and least SIAE values
are provided by DDM (0.021268), while the highest SIAE values are
provided by SDM (0.071845).

The SIAE value for the DDM is less than the SDM, it signifies
that the DDM is a better fit for the measured data. The DDM is a
more complex model that takes into account additional parameters,
such as the shunt resistance, that the Single Diode Model does not
con-sider. This additional complexity may allow the DDM to better
capture the underlying physics of the device and provide a more
accurate prediction of its behaviour. These findings demonstrate
that DDM is appropriate for RTC France solar cells.

The comparison between estimated data and experimentally
recorded data for SDM and DDM for the RTC France solar cell are
shown in Figures 7, 8. This is done to check for consistency between
experimental and predicted results. Further, the convergence curve

during its best run for bothmodel such as SDM andDDM are shown
in Figures 9, 10, respectively. From figure, we can see how quickly
SDM and DDM converged on their best run with the smallest
RMSE. It also demonstrates that the SDM converge quickly at the
start of iterations than DDM. The objective functions of SDM
converge to the optimal values with little variation after
350–400 iterations whereas, the objective functions of DDM
converge to the optimal values after 400 iterations.

5.2 Parameters of PVM752 GaAs thin film
solar cell

The AOSmethod is used to figure out the unknown values of the
PVM752 GaAs thin-film solar cell at 25°C and 1000 W/m2. The
PVM752 GaAs solar PV cell’s recorded data sheet, which is made up
of 44 I-V measurements, is from (Jordehi, 2016). The search range
for the PVM752 GaAs solar cell’s PV cell characteristics for both
model SDM and DDM are shown in Table 8. The comparison of the
extracted parameters of the single diode model (SDM) and the
double diode model (DDM) by the AOA algorithm with those
obtained using other algorithms such as to atomic orbital search
(AOS) (Ali et al., 2023), Tree Growth Algorithm (TGA) (Diab et al.,
2020), Coyote Optimization Algorithm (COA) (Chin and Salam,
2019) and Artificial Bee Colony (ABC) (Karaboga and Akay, 2009)
are shown in Table 9 and Table 10, respectively.

Tables 9 and 10 show the SDM and DDM values that were taken
from the PVM752 GaAs thin film solar cell. In terms of RMSE and
SIAE, it is clear that the proposed algorithm AOA does better than
AOS (Mirjalili and Lewis, 2016), TGA (Diab et al., 2020), ABC
(Karaboga and Akay, 2009), and COA (Chin and Salam, 2019). The
PVM752 GaAs thin film solar cell’s SDM results gave the best RMSE
of everything that has been done so far. SDM provides the best and
lowest RMSE (1.6564*10-3) for the PVM752 GaAs solar cell,
whereas DDM provides the greatest RMSE (0.00106365). The
SDM and DDM of the PVM752 GaAs solar cell, both measured
and predicted, are compared in Figures 11, 12, respectively. The
best-performing PVM GaAs solar cell SDM and DDM convergence
curves are depicted in Figures 13, 14, respectively. This demonstrates
that, unlike DDM, SDM’s goal function tends to decrease over time.
SDM and DDM fitting results for the PVM752 GaAs thin film solar
cell are also shown in Table 11. It demonstrates how well the
expected and actual outcomes match up.

Using extracted numbers, one may calculate the difference
between the actual and expected currents, denoted by the
individual absolute error (IAE). The Standardised Intrinsic
Accuracy Evaluation (SIAE) compares a model’s predicted and
observed values to determine how well the model performs. The
more accurately the model can anticipate the device’s behaviour, the
less the SIAE value will be. The lowest SDM IAE value is 0.0002670,
while the lowest DDM IAE value is 0.00358210. This demonstrates
that the extracted parameters are reliable. When comparing the
SIAE values, SDM (0.031488) is the best and lowest, while DDM
(0.040224) is the worst. These findings support the use of SDM in
the production of PVMGaAs thin-film solar cells. Wemay conclude
that the optimisation algorithms have a more difficult time
extracting data from the PVM752 GaAs thin film cell than from
the RTC France solar cell. It’s possible that the difference stems from

Frontiers in Energy Research frontiersin.org18

Hussain et al. 10.3389/fenrg.2023.1326313

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1326313


the usage of 44 pairs of I-Vmeasured data, as opposed to the 26 pairs
utilised for the RTC France solar cell.

6 Conclusion

This research introduces the Archimedes optimization method
(AOA) as a novel metaheuristic approach for the precise extraction
of solar unknown parameters. Themethod is applied to both single- and
double-diode variants of the RTC France solar cell and the PVM
752 GaAs thin film solar cell. The effectiveness of the Archimedes
optimization method is evaluated using the RMSE value and compared
with other optimization techniques. We provide a novel and precise
formula for calculating RMSE for the RTC French solar cell single diode
model. In our analysis, we review 30 alternative methods from diverse
literature and note variations in RMSE calculation methodologies. The
study emphasizes the importance of proper RMSE calculation for
accurate performance evaluation and comparison of optimization
algorithms. The proposed AOA, when used on RTC France solar
cells, gave RMSE values of 3.7415 × 10−3 for the SDM and 1.0033 ×
10−3 for the DDM. For PVM752 GaAs thin film solar cells, the RMSE
values were 1.6564 × 10−3 and 0.00106365, respectively. The SIAE
values for RTC France cells were 0.071845 for the SDM and
0.021268 for the DDM. For PVM752 GaAs thin film, the SIAE
values were 0.031488 and 0.040224. Comparing AOA’s performance,
we find that it outperforms state-of-the-art methods, exhibiting a
smaller RMSE and superior curve fitting between recovered
parameters (I-V characteristics) and experimental data. se results
suggest that the AOA method has the potential to estimate
unknown parameters in various modules. It can be utilized in
applications of parameter extraction in photovoltaics, including
performance evaluation under diverse operating conditions, design
optimization for enhanced efficiency and reduced costs, and quality
control in production to detect defects and variations. In the future, the
scope of parameter extraction entails developing new modeling
techniques, refining measurement methods, and integrating artificial
intelligence and machine learning algorithms. These advancements aim
to significantly enhance the accuracy and efficiency of solar parameter
extraction. The research contributes to the field by introducing a robust
optimization method and emphasizing the importance of rigorous
RMSE calculation in solar cell parameter extraction studies.
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