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Because of the fast deterioration speed of the surface function of conventional asphalt pavement, thin overlayer with many advantages has been applied to the pavement surface. However, due to problems such as insufficient stripping resistance and cracking resistance, the performance of the thin overlayer needs to be further improved. To achieve this target, basalt fiber was introduced into two types of thin overlayer asphalt mixtures (Open graded friction course, OGFC-5, and Stone matrix asphalt mixture, SMA-5). The wheel tracking test and uniaxial penetration test for high temperature deformation resistance, low temperature bending beam test and indirect tensile asphalt (IDEAL) cracking test for cracking resistance, cantabro test for stripping resistance, and friction coefficient test for skid resistance were conducted to evaluate various performance of thin overlayer asphalt mixtures, along with the dynamic modulus test for dynamic mechanical response. The results showed that adding basalt fiber could enhance the high temperature deformation resistance, low temperature cracking resistance, intermediate temperature cracking resistance and stripping resistance of the thin overlayer, while having no significant impact on skid resistance. Furthermore, adding basalt fiber could increase the modulus in the high temperature region and decrease the modulus in the low temperature region of the thin overlayer asphalt mixtures, indicating thin overlayer with basalt fiber presenting superior both high temperature and low temperature performance. In addition, the evaluation indexes of SLT and SHT proposed from dynamic modulus test exhibited good consistency with the results of the performance tests.
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1 INTRODUCTION
Due to long-term direct exposure to the external environment, suffering from the multiple influences of temperature fluctuation, rain erosion and vehicle load, the surface function of some asphalt pavements decays rapidly (Ding et al., 2022; Li et al., 2023; Yaqub et al., 2023). The thin overlayer has superior service performance, outstanding skid resistance and drainage performance, which not only enhances pavement service life, but also greatly improves the safety and comfort of the vehicle travel (Chen et al., 2019; Cui et al., 2021). In order to solve the problem of surface function deterioration, thin overlayer has been widely used in both new road construction and road maintenance projects (Correia and Zornberg, 2018; Almaali and Al-Busaltan, 2021; Jin T. et al., 2023).
However, the thin overlayer also has low durability due to its thin thickness and small aggregate particle size, which is manifested as insufficient cracking resistance, stripping resistance and high temperature deformation resistance (Ingrassia et al., 2012; Liu et al., 2019; Han et al., 2021). These problems limit further application of thin overlayer in pavement engineering. Huang et al. (2020) mixed cellulose fiber and basalt fiber into SMA and conducted experiments to determine the optimal mixing ratio. The findings indicated that the high temperature deformation resistance of the mixture increased with the increase of basalt fiber incorporation. The study conducted by Zhao et al. (2020) revealed that basalt fiber exhibited superior enhancement in the low temperature performance of asphalt mixture compared to lignin fiber and polyester fiber. As a new type of fiber commonly used in asphalt pavement surface layers, basalt fiber exhibits favorable reinforcement effect on asphalt mixtures, including significant enhancement in cracking resistance, rutting resistance and other performance (Zhang Y. et al., 2022; Zhang M. et al., 2022). Therefore, it can be considered that basalt fiber has great potential in improving the performance of thin overlayer, though few studies concerning this topic. Since a surface layer is directly subjected to the dynamic interaction of temperature and load, the dynamic mechanical response of the thin overlayer is also very important, in addition to the conventional experiments (Javilla et al., 2017; Jin et al., 2021; Liu et al., 2023). The dynamic modulus test was conducted using temperature and load frequency as environmental variables (Gudmarsson et al., 2015; Qin et al., 2019; Zhang C. et al., 2022), which gets closer to the realistic state than the conventional pavement performance test conditions. The master curve could be drawn, so that the dynamic modulus under extreme conditions could be predicted (Ling et al., 2017; Podolsky et al., 2018).
In this research, the influence of basalt fiber on the performance of OGFC-5 and SMA-5 was studied by multiple performance tests and dynamic modulus test. In addition, the results of dynamic modulus test and related performance tests (the wheel tracking test, uniaxial penetration test and low temperature bending beam test) were compared and analyzed.
2 MATERIALS AND MIXTURE DESIGN
2.1 Materials
In this research, SBS modified asphalt was selected. The performance tests of the asphalt were conducted with the Chinese standard of JTG E20-2011 (JTG, 2011), and the indexes are displayed in Table 1. The coarse and fine aggregates selected were all basalt aggregates.
TABLE 1 | Indexes of SBS modified asphalt.
[image: Table 1]The basalt fiber (BF) was used in OGFC and SMA, and lignin fiber (LF) was only used in SMA. The technical indexes of the fibers are displayed in Tables 2, 3, and the macroscopic appearances of the fibers are illustrated in Figure 1.
TABLE 2 | Indexes of basalt fiber.
[image: Table 2]TABLE 3 | Indexes of lignin fiber.
[image: Table 3][image: Figure 1]FIGURE 1 | Macroscopic appearances of fibers: (A) Basalt fiber; (B) Lignin fiber.
2.2 Mixture design
The OGFC-5 and SMA-5 gradations were selected for the asphalt mixture design, and the gradation curves of the two types of mixtures are displayed in Figure 2. There were four kinds of asphalt mixtures tested in this study, ordinary OGFC-5 without fiber, OGFC-5-BF with basalt fiber (0.3% by mixture mass), SMA-5 with only lignin fiber (0.3%), and SMA-5-BF with lignin fiber (0.1%) and basalt fiber (0.3%). The optimum asphalt content (OAC) and volumetric properties of the four asphalt mixtures, including voids in mineral aggregate (VMA), volume of air voids (VV), and voids filled with asphalt (VFA), are shown in Table 4.
[image: Figure 2]FIGURE 2 | Gradation curves of asphalt mixtures: (A) OGFC-5; (B) SMA-5.
TABLE 4 | Optimum asphalt content and volumetric properties of asphalt mixtures.
[image: Table 4]3 TEST METHODS
3.1 High temperature deformation resistance tests
3.1.1 Wheel tracking test
Wheel tracking test is usually conducted to test high temperature deformation resistance of mixtures. The test was conducted according to JTG E20-2011 (JTG, 2011), with three duplicates per group. The evaluation index is dynamic stability (DS), which is determined by Eq. 1.
[image: image]
in this equation, d1 is the deformation depth corresponding to t1 time (45 min), mm; d2 is the deformation depth corresponding to t2 time (60 min), mm; C1 and C2 are the test coefficients, in this study, C1 = C2 = 1.0; and N is the speed of the wheel, 42 cycles/min.
3.1.2 Uniaxial penetration test
Uniaxial penetration test is usually conducted to test high temperature deformation resistance of mixtures. The test was conducted according to JTG D50-2017 (JTG, 2017), with five duplicates per group. The evaluation index of shear strength [image: image], can be determined by Eqs 2, 3.
[image: image]
[image: image]
in this equation, σp is the penetration stress, MPa; P is the peak load of the specimen, N; A is the cross-sectional area of the pressing tool, mm2; and [image: image] is stress coefficient, which is 0.35.
3.2 Cracking resistance tests
3.2.1 Low temperature bending beam test
Low temperature bending beam test is usually conducted to test low temperature cracking resistance of mixtures. The test was conducted according to JTG E20-2011 (JTG, 2011), with four duplicates per group. The evaluation index is the failure strain [image: image], which is determined by Eq. 4.
[image: image]
in this equation, h is the height and L is the span of the specimen, mm; and d is the mid-span deflection of the specimen when damaged, mm.
3.2.2 IDEAL cracking test
IDEAL cracking test is usually conducted to test intermediate temperature cracking resistance of mixtures. The test was conducted according to ASTM D8225-19 (ASTM D8225-19, 2019), with three duplicates per group. The evaluation indexes are crack initiation work (WS) and cracking tolerance index (CTindex), which are determined by Eqs 5, 6.
[image: image]
in this equation, P is the load, N; l is the displacement, mm; l100 is the displacement at peak load in the load-displacement curve.
[image: image]
in this equation, Gf is the fracture energy, J/m2; l75 is the displacement at 75% peak load in the rear section of the load-displacement curve, mm; [image: image] is absolute value of the rate of change at the 75% peak load in the rear section of the load-displacement curve, which is calculated by interpolation.
3.3 Stripping resistance test
Cantabro test is usually conducted to test stripping resistance of mixtures. The test was conducted according to JTG E20-2011 (JTG, 2011), with four duplicates per group. The specimens were firstly immersed in a water bath at 20°C for 20 h, and then put into the Los Angeles abrasion machine after being dried. The test was running for 10 min at the speed of 30 r/min. The evaluation index is the cantabro mass loss [image: image], which is determined by Eq. 7.
[image: image]
in this equation, m0 and m1 are the total mass of the specimen before and after the cantabro test, g.
3.4 Skid resistance test
The friction coefficient (British pendulum number, BPN) test is usually conducted to test skid resistance of mixtures. The test was conducted according to JTG 3450-2019 (JTG, 2019), with three duplicates specimens per group. Each specimen was measured five times. The evaluation index is British pendulum number at 20°C (BPN20), which is determined by Eq. 8.
[image: image]
in this equation, BPNT is the British pendulum number corresponding to test temperature; [image: image] is the temperature correction number.
The indexes of the performance tests are summarized in Table 5.
TABLE 5 | Evaluation indexes of conventional performance tests.
[image: Table 5]3.5 Dynamic modulus test
Dynamic modulus test was conducted according to JTG E20-2011 (JTG, 2011), and the compression dynamic modulus of mixtures was obtained. In this test, specimens with the diameter of 100 mm and height of 150 mm were prepared, with four duplicates in each group. The dynamic modulus test procedures are roughly displayed in Figure 3.
[image: Figure 3]FIGURE 3 | The dynamic modulus test procedures: (A) Specimen preparation; (B) Core sample drilling; (C) Sensor installation; (D) Testing.
Asphalt mixture has the time-temperature equivalence property. Thus, dynamic modulus measured at other temperatures can be converted to the reference temperature (normally 20°C) by shift factor [image: image] (Tan et al., 2020). Finally, the dynamic modulus master curve founded on the Sigmoidal function can be formed with the reference of NCHRP 9-29, so as to evaluate mechanical performance of mixtures. Sigmoidal function is shown in Eqs 9–13.
[image: image]
in this equation, [image: image] is the dynamic modulus of specimen, MPa; [image: image] is the maximum dynamic modulus, MPa; [image: image] is the reduced frequency, Hz; and [image: image], and [image: image] are fitting parameters. [image: image] is determined by Hirsch model, as shown in Eq. 10.
[image: image]
where Pc is an intermediate variable in the model calculation process, which is determined by Eq. 11.
[image: image]
where VMA and VFA are the volumetric properties of the specimen, %.
[image: image] is the reduced frequency, which is to convert loading frequency at different temperatures into the frequency at the reference temperature by shift factor. The conversion between loading frequency and reduced frequency is determined by Arrhenius equation, as displayed in Eqs 12, 13.
[image: image]
[image: image]
where ω is the loading frequency, Hz; T is the test temperature, °C; Tr is the reference temperature, °C; and [image: image] is the activation energy, which is a fitting parameter.
The converting process of the master curve is illustrated in Figure 4. It can be seen from Figure 4 that the high frequency section was obtained by shifting the low temperature parts of the loading frequency section, while the low frequency section was obtained by shifting the high temperature parts of the loading frequency section. Hence, the high frequency section of the mater curve reflects the low temperature performance of mixtures while the low frequency section reflects the opposite.
[image: Figure 4]FIGURE 4 | Shift process of each part of the loading frequency section.
4 RESULTS AND DISCUSSION
4.1 High temperature deformation resistance
DS and Rτ characterize high temperature deformation resistance of mixtures. As seen in Figures 5A, B, after adding basalt fiber, DS and Rτ of OGFC-5 increased by 24.7% and 12.3% respectively, while those of SMA-5 increased by 28.1% and 14.5% respectively. The results refer that adding basalt fiber could enhance the high temperature deformation resistance of the two thin overlayer asphalt mixtures, though a slightly greater enhancement could be observed on SMA-5 than OGFC-5. This phenomenon might be attributed to the fact that the addition of fiber could enhance the modulus of asphalt binder (Lou et al., 2022; Xie and Wang, 2023), thereby reducing the internal flow deformation of thin overlayer asphalt mixtures at high temperatures.
[image: Figure 5]FIGURE 5 | The results of high temperature deformation resistance tests: (A) DS; (B) Rτ.
4.2 Cracking resistance
[image: image] characterizes low temperature cracking resistance of mixtures. As seen in Figure 6A, after adding basalt fiber, [image: image] of OGFC-5 and SMA-5 increased by 26.4% and 22.7% respectively. The results refer that adding basalt fiber could enhance the low temperature cracking resistance of the two thin overlayer asphalt mixtures, though a slightly greater enhancement could be observed on OGFC-5 than SMA-5. In addition, it can be found that [image: image] values of OGFC-5 and SMA-5 (or OGFC-5-BF and SMA-5-BF) were at the same level, indicating the two types of mixtures demonstrated the approximate low temperature cracking resistance. Zhao et al. (2020) found that the addition of basalt fiber, lignin fiber and polyester fiber could enhance the low temperature cracking resistance of asphalt mixture to different degrees. Among these fibers, basalt fiber demonstrated the optimal improvement effect.
[image: Figure 6]FIGURE 6 | The results of cracking resistance tests: (A) εB; (B) WS; (C) CTindex.
WS and CTindex characterize intermediate temperature cracking resistance of mixtures. WS reflects the resistance of crack formation, and CTindex reflects the resistance of crack expansion. As seen in Figures 6B, C, after adding basalt fiber, WS and CTindex of OGFC-5 increased by 26.7% and 24.8% respectively, while those of SMA-5 increased by 37.1% and 41.7% respectively. The results indicate that adding basalt fiber could increase the intermediate temperature cracking resistance of the two thin overlayer asphalt mixtures, and a greater enhancement could be observed on SMA-5 than OGFC-5. This phenomenon might be attributed to the fact that the addition of fiber could enhance the toughness of asphalt binder (Wang et al., 2023; Xie and Wang, 2023), thereby delaying the cracking of thin overlayer asphalt mixtures at low and intermediate temperature. Furthermore, due to the lower volume of air voids (VV) and higher voids filled with asphalt (VFA) in SMA-5, the reinforcing effect of fiber in its asphalt binder was more pronounced, resulting in superior enhancement effect of intermediate temperature cracking resistance.
4.3 Stripping resistance
ΔS characterizes stripping resistance of mixtures. As seen in Figure 7, after adding basalt fiber, ΔS of OGFC-5 and SMA-5 decreased by 10.6% and 39.7% respectively. The results present that adding basalt fiber could strengthen the stripping resistance of the two thin overlayer asphalt mixtures, and a greater enhancement could be observed on SMA-5 than OGFC-5. Zhang et al. (2020) observed that basalt fiber, polyester fiber and polyacrylonitrile fiber could effectively improve the stripping resistance of OGFC mixture, and the enhancement effect was superior when the basalt fiber content was between 0.15% and 0.30%. This phenomenon might be due to that the addition of fiber could increase the adhesion effect between asphalt binder and aggregates (Pei et al., 2021; Guo et al., 2023), thereby strengthening the overall integrity of thin overlayer asphalt mixtures.
[image: Figure 7]FIGURE 7 | The results of stripping resistance test.
4.4 Skid resistance
BPN20 (20°C) characterizes skid resistance of mixtures. As seen in Figure 8, after adding basalt fiber, BPN20 of OGFC-5 and SMA-5 only increased by 4.8% and 7.7% respectively. It means that adding basalt fiber presented no obvious effect on the skid resistance of the two mixtures, the reason might be that the addition of fibers caused hardly changes on the surface microtexture of thin overlayer asphalt mixtures, which is the key factor affecting the skid resistance (Xue et al., 2022). The addition of basalt fiber could only slightly change the surface macrotexture of mixtures, and the contribution to the improvement of skid resistance was very small, resulting in very limited enhancement effect.
[image: Figure 8]FIGURE 8 | The results of skid resistance test.
4.5 Dynamic mechanical response
By the method described in the Section 3.5, the measured dynamic modulus data of OGFC-5, OGFC-5-BF, SMA-5, and SMA-5-BF were respectively fitted to master curves, which are displayed in Figure 9.
[image: Figure 9]FIGURE 9 | The results of dynamic modulus test: (A) Master curves of OGFC-5 and OGFC-5-BF; (B) Master curves of SMA-5 and SMA-5-BF.
Asphalt mixtures present both elastic and viscous characteristics. The mixture is mainly elastic at low temperature and viscous at high temperature, which is primarily due to the complexity of the asphalt (Büchner et al., 2019; Jin D. et al., 2023). The mixture is prone to cracking at low temperature and excellent deformation ability is essential. Therefore, smaller modulus of the mixture should be desirable at low temperature. The mixture is prone to rutting at high temperature and good resistance to deformation is necessary. Subsequently, bigger modulus of the mixture should be desirable at high temperature. As shown in Figure 9, for both types of mixtures, adding basalt fiber could decrease the dynamic modulus of high frequency (low temperature) region, and increase the dynamic modulus of low frequency (high temperature) region.
In order to quantitatively analyze the dynamic modulus changes of mixtures caused by basalt fiber, the indexes SLT and SHT were introduced. SLT and SHT are determined by Eqs 14, 15, and the calculation diagram is displayed in Figure 10.
[image: image]
[image: image]
[image: Figure 10]FIGURE 10 | Schematic diagram of SLT and SHT calculation.
SLT and SHT are relative indexes. When SLT < 0, it means low temperature performance of mixture 2 is greater than that of mixture 1. When SHT > 0, it means high temperature performance of mixture 2 is greater than that of mixture 1. The four mixtures were divided into the following groups for analysis, as shown in Table 6.
TABLE 6 | Grouping of asphalt mixtures.
[image: Table 6]The SLT and SHT indexes of the four groups of mixtures were calculated respectively and the results are illustrated in Figure 11.
[image: Figure 11]FIGURE 11 | Calculation results of SLT and SHT.
It was found from Figure 11 that the SLT values of mixtures in group I and group II were all negative. It meant that adding basalt fiber could decease the modulus in low temperature region, resulting in superior low temperature cracking resistance for both of the mixtures. Besides, the SLT values of mixtures in group III and group IV were closer to zero, indicating the low temperature performance of OGFC-5 and SMA-5 was roughly the same. On the opposite, the SHT values of mixtures in group I and group II were all positive. It referred that adding basalt fiber caused an increase in the modulus in high temperature region, which was also desirable to improve the high temperature deformation resistance. In addition, the SHT values of mixtures in group III and group IV were also negative, indicating that the high temperature deformation resistance of OGFC-5 was better than that of SMA-5, which was accordance with the high temperature performance test results. Overall, after adding basalt fiber, the dynamic modulus of the two types of mixtures decreased in the high frequency (low temperature) section and increased in the low frequency (high temperature) section, reflecting that adding basalt fiber could enhance both of the low temperature and high temperature performance of mixtures.
4.6 Comparative analysis
Based on the correlation analysis, the consistency of the indexes SLT and SHT with the performance test indexes was investigated. The degree of correlation is determined by the Pearson correlation coefficient, as expressed by Eq. 16.
[image: image]
where Xi and Xj are index vectors.
Before analyzing the correlation, the index vectors needed to be constructed. The groups used in dynamic modulus test were also used herein. The index vector X1 corresponded to the index DS of the wheel tracking test, the index vector X2 corresponded to the index Rτ of the uniaxial penetration test, the index vector X3 corresponded to the index εB of the low temperature bending beam test, the index vector X4 corresponded to the index SLT introduced in the dynamic modulus test, and the index vector X5 corresponded to the index SHT introduced in the dynamic modulus test. The values of the index vectors are displayed in Table 7.
TABLE 7 | Values of the index vectors.
[image: Table 7]Correlation analysis was performed through combining (X1, X5), (X2, X5), and (X3, X4), and the correlation coefficient results are displayed in Table 8.
TABLE 8 | Results of the correlation coefficients.
[image: Table 8]As can been seen from Table 8 that the three index vector groups of (X1, X5), (X2, X5), and (X3, X4) were all highly correlated, and the correlation coefficients were all above 0.9960. The results showed that the index DS and [image: image] showed a great correlation degree with index SHT, and the index εB presented a great correlation degree with index SLT. By analyzing the two-dimensional distribution of the three groups, the evaluation consistency was further studied. The two-dimensional distribution diagrams are shown in Figure 12. It can be observed from Figure 12 that, the (X1, X5) and (X3, X4) groups had a strong linear correlation, all data points basically fell on the fitting curve with the R2 above 0.9980. The linear correlation of (X2, X5) group was slightly weaker, and the data points had a certain fluctuation from the fitting curve with the R2 around 0.9920. Overall, the two evaluation indexes introduced in the dynamic modulus test were exactly consistent with the performance test indexes, which could be used to predict and characterize high temperature and low temperature performance of thin overlayer mixtures.
[image: Figure 12]FIGURE 12 | Two-dimensional distribution diagrams of the index vector groups: (A) (X1, X5); (B) (X2, X5); (C) (X3, X4).
5 CONCLUSION
In this research, the influence of basalt fiber on the performance of the thin overlayer was studied by multiple performance tests and the dynamic modulus test. In addition, the consistency between the introduced indexes (SLT and SHT) and the evaluation indexes in performance tests was analyzed. The conclusions are as follows:
(1) Adding basalt fiber can increase DS and Rτ presenting high temperature deformation resistance by around 26% and 13% respectively, increase εB presenting low temperature cracking resistance by around 24%, and increase WS and CTindex presenting intermediate temperature cracking resistance by more than 26% and 24% respectively of thin overlayer mixtures.
(2) Adding basalt fiber can enhance stripping resistance, but causes no obvious influence on skid resistance of thin overlayer mixtures.
(3) Adding basalt fiber can decrease dynamic modulus in the high frequency section and increase it in the low frequency section, indicating both low temperature and high temperature performance of thin overlayer mixtures can be improved.
(4) The results of the dynamic modulus test and performance tests demonstrate good consistency. The indexes SLT and SHT can be used to evaluate low temperature and high temperature performance of thin overlayer mixtures.
In future research, more test methods can be used to study the influence of basalt fiber on the performance of the thin overlayer. In addition, the influence of fiber type on the performance of the thin overlayer also need to be further studied.
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