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The current research proposes optimal management strategies for queueing
modeling-based renewable energy systemswith hyper-exponentially distributed
maintenance/repair under the assumption of an admission control policy.
Using the concept and steps of the matrix-analytical method, the steady-
state probability distribution associated with energy systems is explicitly
presented. A relatively straightforward computation that can help with modeling
wind energy generation, investigating wind farm performance, optimizing
energy based on system storage, reliability inspection, service maintenance
planning, and numerous other purposes can be employed to mathematically
derive several system performance indicators. The investigation findings are
validated via quantitative outcomes, illustrative possesses, and a step-by-step
recursive methodology for efficient management of the renewable energy
system. Additionally, considering multiple governing parameter values, the
nature-inspired optimization technique, Cuckoo Search (CS), is employed to
demonstrate the optimum anticipated cost of renewable energy system. A
comparison with other metaheuristics and semi-classical approaches is also
presented to establish the best convergence results. In order to help system
designers, policymakers, engineers, and researchers, several numerical examples
are also provided to construct more practical strategies based on the production
of energy, storage, and system management. The economic, parametric, and
performance investigation findings are highlighted, and the opportunities and
recommendations for further research are provided. In a nutshell, the outcomes
of the present analysis can be adopted to formulate themost effective economic
strategies and regulate decision-making processes in the energy sectors.
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renewable energy systems, admission control policy, hyperexponential distribution, cost
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1 Introduction

The management and controlling the inflow of energy from
renewable sources is a process used by system designers, engineers,
and policymakers to enhance better service strategies and provide
a high grade of service to individuals based on energy demand
fluctuations in the energy systems. This type of queueing scenario
specifies the demand management of energy or energy storage
and buffering in any industry or organization. Energy generation
assets can be available for the better service in real-time scenario
as per service distribution and can be changed as per requirement.
In this era of modernization, management and control of energy
flow from renewable sources in the energy systems becomes a
primary concern. Therefore, the optimal management strategies to
control energy dispatch and distribution in energy systems is a
challenge for decision/policymakers, scholars, and researchers from
an economic point of view. In the queuing literature, it has been
observed that controllable queuing systems, in general, have no
buffer for long-term waiting demands. Therefore, these systems
are also known as a loss system. Stidham Jr and Weber (1993)
provided a survey based on optimal control of the broad network
of queues and emphasized the models based on Markov decision
theory. Furthermore, over the recent past, many studies related to
optimal management and control of queues have been provided
that can help researchers and investigators to enumerate various
system parameters for better service strategies (cf. Aghighi et al.
(2021); Jain and Sanga (2020); Wu and Yang (2021); Yang
(2022)).

In the congestion situations that occur in our day-to-day life
and technical/managerial circumstances, it has been found that
phase-type services within queueing-based systems are essential
in outlining and examining Markovian/Non-Markovian queueing
problems. In conventional queueing problems, each newly joined
individual requires the primary service to be accomplished in
a single phase. Though, in many realistic circumstances, it has
been examined that service provisioning may be performed in
many different stages. The concept of phase-type service was
first proposed by Jackson (1954) utilizing the queueing-theoretic
approach in literature. Generally, the mean time of inclusion
of a continuous stochastic process for a single system state
can be characterized by the distribution that follows a phase-
type service (cf. Latouche and Ramaswami (1999)). The concept
of phase-type service patterns has been extensively used in
various models involving stochastic applications in diverse fields,
namely, telecommunications, finance and portfolio management,
reliability engineering, queuing modeling, biotechnology and
biostatistics, supply chain, inventory control, etc. The phase-
type service discipline has gained considerable popularity among
researchers and systems analysts in the queuing literature because
it constitutes a uniform and versatile class of distributions
described by nonnegative real numbers that confer dominance
over algorithmically controllable queuing models. In the past,
several illustrations have been performed based on numerous
queueing nomenclatures along with phase-type service patterns (cf.
Dudin and Dudin (2016); Dudin et al. (2016); Dudin and Dudina
(2019)).

In recent times, the growing interest in maximizing energy
utility and productivity from renewable sources, energy distribution

and storage has contributed significantly to research on queuing-
based renewable energy systems (cf. Kocaman et al. (2016);
Talari et al. (2018); Noorollahi et al. (2020); Samain et al. (2021);
Baik and Ko (2023); Momenitabar et al. (2023); Nagababu et al.
(2023); Patel et al. (2023)). To the best of our collective
understanding, no literature-based investigation has yet been
presented on the economic and performance evaluations of
renewable energy systems with admission control and hyper-
exponentially distributed maintenance/repair. Our motivation for
the current study stems from the literature’s lack of qualitative
research opportunities. Besides, inspired by the adaptive capabilities
of the nature-inspired CS and PSO algorithms, optimal system
design parameters and the total anticipated cost associated with the
renewable system have been calculated utilizing these evolutionary
algorithms. The present research aims to assist practitioners,
system analysts, and policymakers in constructing and analyzing
the queueing-theoretic stochastic modeling of renewable energy
systems. The novelty of the current research is to achieve the
proper characterization based on convergence results and statistical
inference incorporating different evolutionary algorithms. In
algorithms. In addition to the parametric analysis, a comparative
investigation among CS, PSO algorithms, QN, and DS methods
is also provided to verify the optimum combinations of design
variables and the superiority of the metaheuristics. The primary
contribution of the present investigation is the execution of
the MATLAB codes along with associated algorithms for an
empirical comparison of the research findings of the CS algorithm,
PSO algorithm, QN method, and DS method with respect to
computational time, statistical parameters, and standard operating
procedures, etc.

In order to propose the best energy management approaches,
the primary objectives of the present investigation are to analyze
and estimate the system performance indicators to demonstrate
the efficiency, utility, and quality performance of the energy
systems. The entire research can be categorized into categories as
follows.

(i) To categorize a novel and challenging stochastic scenario
based on congestion situations that corresponds to
a practical renewable energy system in a random
environment;

(ii) To establish an adequate mathematical approach to interpret
the numerical results according to equilibrium conditions;

(iii) Demonstration, analysis, and classification of numerous energy
systems’ efficiency metrics depending on fluctuations in energy
consumption, transmission of energy, cost-effective generation,
and strategies used for controlling and managing the energy
generated by renewable energy sources;

(iv) To identify the essential energy system characteristics required
for maintaining the service system’s higher efficiency;

(v) Utilization of evolutionary algorithms, such as PSO and CS
algorithms, for the economic investigation of constructed
queueing-based renewable energy system;

(vi) To validate the convergence results produced by the cost
optimization problem by comparing the PSO, CS, QN, and DS
algorithms.

The current study addresses a variety of stochastic problems
pertaining to queue-based energy systems that originated and
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evolved in accordance with numerous industrial, managerial,
and economic problems. The following points highlight how
the research findings analyzed for the developed model in
the present investigation differ from the outcomes of previous
research.

(i) To demonstrate the equilibrium queueing distribution
employing the matrix-analytical approach for the energy
system having finite buffer storage with admission control
policy and hyper-exponential service pattern;

(ii) To establish a specific optimization problem and demonstrate
which optimization approaches are most effective in
minimizing the energy system’s overall anticipated
expenditure;

(iii) To construct the converging results in terms of optimum
cumulative values of discrete and continuous system design
parameters F, μ1, and μ2, simultaneously by implementing
semi-classical optimizers: QN and DS methods and nature-
inspired algorithms: CS and PSO algorithms.

2 Literature review

Examining the subsequent research investigations drawn from
the queueing literature could suggest essential perspectives on how
stochastic/Markovian modeling can be utilized in the context of
renewable energy systems. A more comprehensive understanding
of the theoretical foundations and efficient strategies for enhancing
the reliability and effectiveness of renewable energy systems may be
acquired through the investigation.

2.1 Control policies

The quality-of-service (QoS) and efficiency of service systems
can be characterized in terms of the variable number of active units,
the number of servers available/service rate of the service provider,
throughput, total anticipated cost of the service system, etc. In
our daily life, there is a requirement to control the queues as it
causes resource consumption, high operational costs, additional
energy expenditures, and contrary environmental impacts of
these consumptions. Thus, analysis of queue discipline, queue-
size distribution, and control policies to minimize the waiting
period can lead to more efficient service systems with positive
significance in reaching viable development goals. The control
of queues in service systems can be classified in two ways, first
includes the arriving control policy (F-policy), introduced by Gupta
(1995). The other are service control policies, namely, the T-policy,
N-policy, and D-policy, which are proposed by Heyman (1977),
Yadin and Naor (1963), and Balachandran (1973), respectively.
Apart from that, several research problems can be found in the
queueing literature on the controllable queues (cf. Chang and Ke
(2011); Efrosinin D. V. et al. (2018); Shekhar et al. (2017); Yang and
Wang (2013); Yang et al. (2010; 2011); Yeh et al. (2017)), which
put the controlling policy in the context of Markovian/Non-
Markovian queueing system. Recently, Chen (2018) studied
the finite population machining system and performed the
sensitivity investigation for reliability andmean-time-to-first-failure

(MTTFF). Efrosinin D. et al. (2018) studied the queueing situation
incorporating the Markov arrival process (MAP) and analyzed
the deterministic control strategies for the distribution of arrived
customers among the available servers. Again, Efrosinin and Sztrik
(2018) extended the work done in Efrosinin D. et al. (2018) for the
unreliable heterogeneous servers and provided the algorithms for
finding the MTTF, reliability function, and stationary reliability
characteristics for the machining repair system. To stabilize a
partially-controllable network, Liang and Modiano (2019) designed
the optimal control algorithms. They investigated the system states
where the controllable and uncontrollable nodes use the dynamics
of queue-dependent service systems. Further, Shekhar et al. (2020b)
investigated a controllable queue with vacation interruption of
the service provider. They applied the matrix-analytical approach
to determine the closed-vector form expressions of several
system performance indicators. In the last 4 years, many scholars
and researchers, including Yen et al. (2020), Yang et al. (2021),
Safaei et al. (2022), and Wu et al. (2023), used different solution
methodologies and optimization algorithms to study the admission
control policy under different hypotheses via queueing-theoretic
approach.

2.2 Service in phases

Numerous mathematicians and research analysts have studied
optional phase-type services to improve queue-based service
systems’ workability, utility, and service quality (cf. Flatto (1985);
Flatto and Hahn (1984); Sharma (2014); Wang et al. (1999;
2004)). Shang and Wolter (2016) addressed the impact of the
probability of messages in terms of packets on the execution of
open-flow networks using the queueing-theoretic approach. They
provided the expressions based on the sojourn time distribution
for switches and controllers. Tarasov and Bakhareva (2018)
analyzed three different queueing models based on service in
phases. They proposed an approach to calculate the expected
values and variances of the time intervals using the general
assumptions of the probability distribution between the system
states. In recent years, Tarasov (2022), Khayyati and Tan (2022),
and Kumar and Jain (2023) examined the queueing-based service
systems and discussed different methods for the numerical
approximation of queue-size distribution under diverse service
regimes.

Queueing systems following Earlangian distributed service
patterns have also been considered in different frameworks recently.
One can easily extend the single server Markovian queueing models
to the Earlang models utilizing a series of exponential and identical
service phases using several theoretical aspects and phenomenons of
queueing modeling. The Erlang-type service distribution produces
much better flexibility in modeling real-time service patterns that
does the exponential. Further studies on this topic were done
by many researchers (cf. Baek et al. (2014); Griffiths et al. (2006);
Yu et al. (2011); Yue et al. (2009); Zhang et al. (2016)). Besides, Liu
and Fralix (2019) employed the lattice path counting techniques
to examine the time-dependent and equilibrium behavior of
continuous-time Markov chains (CTMC) and Markovian queueing
systems. More recently, Pandey and Gangeshwer (2020) utilized the
probability-generating function approach to derive the steady-state
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queue-size distribution by employing the ambulance service as a
server.

2.3 Evolutionary algorithms

Due to the complex stochastic problems, the conventional
linear and nonlinear optimization techniques, namely, LPP, and
gradient-based algorithms, are usually insufficient to demonstrate
solutions to such problems efficiently. Evolutionary algorithms
such as heuristics and metaheuristics are among the best solution
techniques used in various computational, engineering, and
industrial problems because they provide efficient solutions to
complex stochastic problems in reasonable time intervals. Most
of these are motivated by wild animals’ physical and biological
behaviors and use Darwin’s theory of sustainability of the fittest. For
instance, taking inspiration from birds flocking and fish schooling,
Kennedy and Eberhart (1995) introduced the particle swarm
optimization (PSO) algorithm. In contrast, the clever algorithm,
namely, the bees optimization algorithm, was established by taking
motivation from the social grouping behavior of honey bees (cf.
Pham et al. (2006)). New optimization algorithms, including cuckoo
search (cf. Bulatović et al. (2013)) and an algorithm having flashing
behavior of fireflies (cf.Yang (2009)) have also been recently evolved.
During the past decade, the aforementioned techniques have
been extensively implemented to solve several decision-making
situations in supply-chain management, inventory problems,
production systems, scheduling problems, etc (cf.Khajehzadeh et al.
(2013); Kumar et al. (2022); Shekhar et al. (2021); Subbaiah and
Kannayaram (2021); Zhang et al. (2011)).

Yang and Deb (2009) developed the cuckoo search (CS)
algorithm in 2009 by motivating the adaptation to parasitism of
cuckoos. Cuckoos lay their eggs in other species’ communal nests
for reproduction. In fact, for the CS algorithm to execute, host
eggs in a host nest must always be distinguished from cuckoo
eggs. After spotting cuckoo eggs, birds have two options: either
abandon the eggs or permanently abandon the nest and construct
a new one. Certain cuckoos have developed a specialization
in imitating host bird eggs, which lowers their risk of being
recognized and leaving the nest and boosts their chances of
reproducing. CS performs significantly better than PSO and other
algorithms. In addition, because of its assured global convergence
quality, it is appropriate for multi-modal/multiple constraint-
based optimization problems, such as queueing aspects, inventory
management, mechanical design, computer graphics and computer
vision, and many more. Moreover, the CS algorithm requires
minimal algorithmic parameters than the PSO algorithm and
several other population-based optimization methods. Because of
its enhanced efficiency, the CS algorithm is best suited for a
wide range of real-time optimization problems. Several computer
scientists, engineers, decision-makers, and academicians have
recently used various nature-inspired algorithms formulti-objective
complex optimization problems. They emphasized various selection
strategies of these algorithms (cf. Baskar (2023); Dwivedi et al.
(2022); Gupta et al. (2023); Han et al. (2023a; b); Li et al. (2023a;
b,c); Liu et al. (2022); Mareli and Twala (2018); Mitra and Acharyya
(2022); Rani et al. (2023); Sahu et al. (2023); Shehab et al. (2017);
Zhang et al. (2019)).

3 Model description

3.1 Practical justification of the model

In the context of the renewable and wind energy sectors, the
proposed queueing framework can be viewed as a special type
of queueing model incorporating a hyperexponential service time
distribution with a Markovian arrival procedure and a single server.
It can be implemented significantly in many scenarios, including
modeling wind energy generation, performance investigation of
wind farms, storage systems for energy optimization, reliability
inspection, service planning, and maintenance planning. The
designed queueing framework can be used to establish an
efficient forecasting system for estimating wind energy production.
This mathematical model might help to predict and forecast
the outcomes of wind energy infrastructure, enabling enhanced
management and planning of energy generation. It empowers
the scenario by incorporating the variations of wind speeds and
their impact on the generation of energy as a Markovian process.
Additionally, by combining the variations in wind speed and the
resulting energy production, this model can help to determine
the effectiveness of wind farms. The suggested queueing model
can provide perspectives on the efficient operation of energy
conversion procedures within wind farms by analyzing the arrival
and service times of wind energy production, however, enabling it
to be easier to recognize feasible challenges and opportunities for
optimization.

The proposed queueing model based on a hyperexponential
service pattern can be used to enhance the performance of energy
storage systems concerning the intermittent nature of wind energy.
This model can help to identify the ideal dimensions, location,
and functioning of energy storage units within the renewable
energy framework. Thus, enhancing energy efficiency and the
grid’s stability, It accomplishes this situation by considering the
stochastic nature of energy inflows and outflows. Further, the
developed queueingmodelmay aidwith the development of optimal
management strategies for planning services and maintenance
scheduling for wind energy installations. This approach can help
optimize the scheduling of maintenance operations/activities,
minimize downtime, and maximize the overall operational
efficiency of wind energy infrastructure by examining the arrival
and service times of maintenance requests and considering the
stochastic nature of the systembreakdowns.Thewind and renewable
energy industries can discover considerable information concerning
system performance, reliability, and operational effectiveness via the
proposed queueingmodel. It will help researchers, system designers,
and decision-makers to develop more effective approaches
based on energy production, storage, and controlling energy
systems.

3.2 Assumptions and notations

In this section, strategies established to monitor and regulate
the proportion of energy generated by renewable sources with
hyper exponentially distributed repair of energy infrastructure are
discussed in detail. The concept of the consumer’s arrival and
customer service procedure in the queueing modeling can be
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associated with numerous factors related to the energy generation
and distribution processes, namely, energy demand fluctuations,
load balancing, grid integration, maintenance, and repairs, et cetera
in context with the wind and renewable energy fields. Inspired by
these actual situations, the following fundamental assumptions for
the queueing modeling have been presented for analysis purposes.

Arrival Pattern.

• Customers enter the system and proceed in accordance with
an independent Poisson process using λ as a parameter. If the
server is already occupied, the subsequent arriving customer
joins the waiting queue in the system; otherwise, he receives
service immediately.
• Depending on the access in the system, the newly arrived

customers arrange themselves into one particular waiting
line.
• Thesystemhas twodifferent categories of customers: type-1 and

type-2. The likelihood that a new type-1 (or type-2) customer
will enter the system is p (or (1− p)).
• The system prohibits any customer from joining the system

until the size of the queue surpasses a prefix threshold value F
after the system’s capacity K is reached.

Service Pattern.

• For type 1 and type 2 customers, the service times follow
an exponential distribution with corresponding parameters, μ1
and μ2, respectively.
• When customers are permitted to rejoin the system to begin the

service, the service provider needs an exponentially distributed
startup time with rate parameter γ.

All processes and occurrences happened repeatedly and
independently of one another.In order to model the system
states of the developed model at time t, the states are described
as

N (t) =Numberofcustomers inthesystemat time t

J (t) =
{{
{{
{

0, Server is idleat timeinstant t
1, Server isbusyandin− servicecustomer isof type1at timeinstant t
2, Server isbusyandin− servicecustomer isof type2at timeinstant t

Y (t) = {
0, thecustomersareallowedtoenter inthesystemat timeinstant t
1, thecustomersarenotallowedtoenter inthesystemat timeinstant t

Then, X(t) = {(N(t), J(t),Y(t)) ; t ≥ 0} represents the continuous
stochastic process with the state space

Θ ≡ {(0,0, l) ; l = 0,1} ∪ {(n, j,0) ; n = 1,2,…,K− 1, & j = 1,2}

∪ {(n, j,1) ;n = 1,2,…,K& j = 1,2}

It signifies the irreducibility of the Markov chain {X(t); t ≥ 0}.
Due to the finite nature of the state space Θ, the Markov chain
{X(t); t ≥ 0} is also positively recurrent. Furthermore, The state

probabilities at the instant of time t are represented by the following
annotations.

P0,0,0 (t) ≡ Probability that serviceprovider is in idlestateand

thatnocustomer is initiallypresent inthesystem.

Pn,1,0 (t) ≡ Probability that serviceprovider is inbusystate

andnewcustomersareallowedandthe in− service

customer isof type− 1.

Pn,2,0 (t) ≡ Probability that serviceprovider is inbusystate

andnewcustomersareallowedandthe in− service

customer isof type− 2.

Pn,1,1 (t) ≡ Probability that serviceprovider is inbusystate

andnewcustomersarenotallowedandthe

in− servicecustomer isof type− 1.

Pn,2,1 (t) ≡ Probability that serviceprovider is inbusystate

andnewcustomersarenotallowedandthe

in− servicecustomer isof type− 2.

Now, employing the appropriate birth-death axioms and preventing
the transitions from inflow to outflow in equilibrium, the
governing set of Kolmogorov differential equations is constructed
to demonstrate the state probabilities linked with different system
states as follows.

(i) Customers are permitted to join the system during idle state of
the server.

dP0,0,0 (t)
dt
= −λP0,0,0 + μ1P1,1,0 + μ2P1,2,0 + γP0,0,1 (1)

(ii) Customers can join the service system while the service
provider is active and the in-service customer is a type 1
customer.

dP1,1,0 (t)
dt
= −(λ+ μ1)P1,1,0 + λpP0,0,0 + pμ1P2,1,0

+ pμ2P2,2,0 + γP1,1,1 (2)

dPn,1,0 (t)
dt
= −(λ+ μ1)Pn,1,0 + λPn−1,1,0 + pμ1Pn+1,1,0

+ pμ2Pn+1,2,0 + γPn,1,1; 2 ≤ n ≤ F (3)

dPn,1,0 (t)
dt
= −(λ+ μ1)Pn,1,0 + λPn−1,1,0 + pμ1Pn+1,1,0

+ pμ2Pn+1,2,0; F+ 1 ≤ n ≤ K− 2 (4)

dPK−1,1,0 (t)
dt
= −(λ+ μ1)PK−1,1,0 + λPK−2,1,0 (5)

(iii) Customers can join the service system while the service
provider is active and the in-service customer is a type 2
customer.

dP1,2,0 (t)
dt
= −(λ+ μ2)P1,2,0 + λ (1− p)P0,0,0

+ (1− p)μ2P2,2,0 + (1− p)μ1P2,1,0 + γP1,2,1 (6)
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dPn,2,0 (t)
dt
= −(λ+ μ2)Pn,2,0 + λPn−1,2,0

+ (1− p)μ2Pn+1,2,0 + (1− p)μ1Pn+1,1,0
+ γPn,2,1; 2 ≤ n ≤ F (7)

dPn,2,0 (t)
dt
= −(λ+ μ2)Pn,2,0 + λPn−1,2,0

+ (1− p)μ2Pn+1,2,0
+ (1− p)μ1Pn+1,1,0; F+ 1 ≤ n ≤ K− 2 (8)

dPK−1,2,0 (t)
dt
= −(λ+ μ2)PK−1,2,0 + λPK−2,2,0 (9)

(iv) Customers can not enter in the system during idle state of the
server.

dP0,0,1 (t)
dt
= −γP0,0,1 + μ1P1,1,1 + μ2P1,2,1 (10)

(v) Customers cannot join the system during servers’ busy period;
however, the in-service customer is of type 1.

dP1,1,1 (t)
dt
= −(μ1 + γ)P1,1,1 + pμ1P2,1,1 + pμ2P2,2,1 (11)

dPn,1,1 (t)
dt
= −(μ1 + γ)Pn,1,1 + pμ1Pn+1,1,1

+ pμ2Pn+1,2,1; 2 ≤ n ≤ F (12)

dPn,1,1 (t)
dt
= −μ1Pn,1,1 + pμ1Pn+1,1,1

+ pμ2Pn+1,2,1; F+ 1 ≤ n ≤ K− 1 (13)

dPK,1,1 (t)
dt
= −μ1PK,1,1 + λPK−1,1,0 (14)

(vi) Customers cannot join the system during servers’ busy period;
however, the in-service customer is of type 2.

dP1,2,1 (t)
dt
= −(μ2 + γ)P1,2,1 + (1− p)μ2P2,2,1 + (1− p)μ1P2,1,1 (15)

dPn,2,1 (t)
dt
= −(μ2 + γ)Pn,2,1 + (1− p)μ2Pn+1,2,1

+ (1− p)μ1Pn+1,1,1; 2 ≤ n ≤ F (16)

dPn,2,1 (t)
dt
= −μ2Pn,2,1 + (1− p)μ2Pn+1,2,1

+ (1− p)μ1Pn+1,1,1; F+ 1 ≤ n ≤ K− 1 (17)

dPK,2,1 (t)
dt
− μ2PK,2,1 + λPK−1,2,0 (18)

The state probabilities for the steady-state characterization in
equilibrium (i.e., as t→∞) are shown as follows

P0,0,0 = lim
t→∞

P0,0,0 (t) , P0,0,1 = lim
t→∞

P0,0,1 (t) ,

PK,j,1 = lim
t→∞

PK,j,1 (t) ; j = 1,2 & l = 0,1

and

Pn,j,l = lim
t→∞

Pn,j,l (t) ; n = 1,…,K− 1, j = 1,2 & l = 0,1

4 Model formulation

4.1 Matrix analytic method

In general, it is not straightforward to derive the equlibrium
state probabilities from the governing differential equations. The
reason is the existence of multiple variables, multiple equations, and
numerous parameters in stochastic environments.Many researchers
followedNeuts (1981)matrix solution technique to tackle such types
of complex engineering and queueing situations. Therefore, the
transition block matrix Q is represented in the subsequent manner
to figure out the flowbalance differential-difference equations for the
probability distribution.

Q =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

A0 B0 0 ⋯ 0 0 0 ⋯ 0 0 0

C1 A1 B1 ⋯ 0 0 0 ⋯ 0 0 0

0 C2 A1 ⋯ 0 0 0 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ A1 B1 0 ⋯ 0 0 0

0 0 0 ⋯ C2 A1 B1 ⋯ 0 0 0

0 0 0 ⋯ 0 C2 A2 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 0 0 ⋯ A2 B1 0

0 0 0 ⋯ 0 0 0 ⋯ C2 A2 B2

0 0 0 ⋯ 0 0 0 ⋯ 0 C3 A3

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

where, the block-diagonal matrices A0 and A3 are the square
matrices of order 2, while A1, A2 and C2 are the square matrices
of order 4. Similarly, block matrices B0 and C3 are the rectangular
matrices of dimension (2× 4) and B2 and C1 have the dimension
(4× 2), respectively. The block sub-matrices for the environmental
process are A0, A1, A2 and A3. In contrast, the super and sub-
diagonal matrices for the Markov process are B0, B1, B2, C1,
C2 and C3 having elements λ, μ1, μ2 and p, respectively. The
following are the structures of each block sub-matrix of the rate
matrix Q.

A0 = [

[

−γ γ

0 −λ
]

]
; B0 = [

[

0 0 0 0

0 0 pλ (1− p)λ
]

]

A1 =

[[[[[[[

[

−(γ+ μ2) 0 0 γ

0 −(γ+ μ1) γ 0

0 0 −(λ+ μ1) 0

0 0 0 −(λ+ μ2)

]]]]]]]

]

A2 =

[[[[[[[

[

−μ2 0 0 0

0 −μ1 0 0

0 0 −(λ+ μ1) 0

0 0 0 −(λ+ μ2)

]]]]]]]

]

;

A3 = [

[

−μ2 0

0 −μ1

]

]
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B1 =

[[[[[[[

[

0 0 0 0

0 0 0 0

0 0 λ 0

0 0 0 λ

]]]]]]]

]

; B2 =

[[[[[[[

[

0 0

0 0

0 λ

λ 0

]]]]]]]

]

C1 =

[[[[[[[

[

μ2 0

μ1 0

0 μ1

0 μ2

]]]]]]]

]

; C2 =

[[[[[[[

[

(1− p)μ2 pμ2 0 0

(1− p)μ1 pμ1 0 0

0 0 pμ1 (1− p)μ1

0 0 pμ2 (1− p)μ2

]]]]]]]

]

C3 = [

[

(1− p)μ2 pμ2 0 0

(1− p)μ1 pμ1 0 0
]

]

With the transition rate matrix Q partitioned in
Π0,Π1,Π2,…,ΠK−1,ΠK, such that Π0 = [P0,0,0,P0,0,1] and ΠK =
[PK,1,1,PK,2,1] are the sub-vectors of dimension 1× 2 and.Πn =
[Pn,1,0,Pn,2,0,Pn,1,1,Pn,2,1]; n = 1,2,…,K− 1 are of dimension
(1× 4), let. Π = [Π0,Π1,Π2,…,ΠK−1,ΠK] signifies the associated
probability vector in equilibrium.Thehomogeneous systemof linear
equations ΠQ = 0 is now analyzed using the recursive algorithm
and the normalizing condition Πe1 = 1. Further, e1 is the column
vector of order 4 in this instance, and it has a single element as 1.
The detailed iterative procedure of the recursive methodology is
outlined in the subsequent procedure.

Π0A0 +Π1C1 = 0 (19)

Π0B0 +Π1A1 +Π2C2 = 0 (20)

Πn−1B1 +ΠnA1 +Πn+1C2 = 0; 2 ≤ n ≤ F (21)

Πn−1B1 +ΠnA2 +Πn+1C2 = 0; F+ 1 ≤ n ≤ K− 2 (22)

ΠK−2B1 +ΠK−1A2 +ΠKC3 = 0 (23)

ΠK−1B2 +ΠKA3 = 0 (24)

Now, using a recursive approach, state probability vectors are
obtained after suitable substitution in the following form

Π0 =Π1C1 (−A
−1
0 ) =Π1X0

Πn =Πn+1 {−C2(Xn−1B1 +A1)
−1} =Πn+1Xn; n = 1,2,…,F

Πn =Πn+1 {−C2(Xn−1B1 +A2)
−1} =Πn+1Xn; n = F+ 1,

F+ 2,…,K− 2

and

ΠK−1 =ΠK {−C3(XK−2B1 +A2)−1} =ΠKXK−1

Again, the equilibrium probability vector Πn in the compact
form of Xn; n = 0,1,2,…,K− 1 can be efficiently interpreted
as

Πn =ΠK [XK−1XK−2XK−3⋯Xn+2Xn+1Xn] ; n = 0,1,2,…,K− 1

Πn =ΠK

n

∏
i=K−1

Xn =ΠKΦn; n = 0,1,2,…,K− 1 (25)

Let e1 and e2 are the column vectors having form [1111]T, [11]T,
respectively. Hence, the normalization condition is re-expressed
as

Π0e2 +
K−1
∑
n=1

Πne1 +ΠKe2 = 1

[Π1 +Π2 +⋯+ΠK−2 +ΠK−1]e1 + [Π0 +ΠK]e2 = 1

[ΠKΦ1 +ΠKΦ2 +ΠKΦ3 +⋯+ΠKΦK−2 +ΠKΦK−1]e1
+[ΠKΦ0 +ΠK]e2 = 1

Finally, the normalizing conditions closed-form expression takes the
following form.

ΠK[
K−1

∑
n=1

Φne1 +Φ0e2 + e2] = 1 (26)

Therefore, using the vector Eq 24 and the normalization
condition (26), one can easily demonstrate the probability
vector ΠK. In addition, all the additional probability vectors of
steady-state probabilities are easily determined by substituting
ΠK in Eq 25. These probability vectors and steady-state
probabilities are utilized to construct several systems’ quality
performance indicators and the anticipated cost function in
the following sections to authenticate our modelling and
approaches.

4.2 System performance measures

To estimate the service quality and efficacy of the
established model, several performance indicators of the system
are defined in the context of the equilibrium probabilities
of various states and closed vector form representation.
The system’s key performance indicators are expressed as
following.

• Average count of customers in the system

LS =
K−1

∑
n=1

2

∑
j=1

nPn,j,0 +
K

∑
n=1

2

∑
j=1

nPn,j,1

=Π1

[[[[[[[

[

1

1

1

1

]]]]]]]

]

+Π2

[[[[[[[

[

2

2

2

2

]]]]]]]

]

+⋯+ΠK−1

[[[[[[[

[

K− 1

K− 1

K− 1

K− 1

]]]]]]]

]

+ΠK
[

[

K

K
]

]

= [1Π1e1 + 2Π2e1 +⋯+ (K− 1)ΠK−1e1 +KΠKe2]

=
K−1

∑
n=1

nΠne1 +KΠKe2 (27)

• Average number of waiting customers
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LQ =
K−1

∑
n=1

2

∑
j=1
(n− 1)Pn,j,0 +

K

∑
n=1

2

∑
j=1
(n− 1)Pn,j,1

=Π1

[[[[[[[

[

0

0

0

0

]]]]]]]

]

+Π2

[[[[[[[

[

1

1

1

1

]]]]]]]

]

+⋯+ΠK−1

[[[[[[[

[

K− 2

K− 2

K− 2

K− 2

]]]]]]]

]

+ΠK
[

[

K− 1

K− 1
]

]

= [0Π1e1 + 1Π2e1 +⋯+ (K− 2)ΠK−1e1 +(K− 1)ΠKe2]

=
K−1

∑
n=1
(n− 1)Πne1 + (K− 1)ΠKe2 (28)

• Probability associated to the busy state of the server

PB =
K−1

∑
n=1

2

∑
j=1

Pn,j,0 +
K

∑
n=1

2

∑
j=1

Pn,j,1

=Π1

[[[[[[[

[

1

1

1

1

]]]]]]]

]

+Π2

[[[[[[[

[

1

1

1

1

]]]]]]]

]

+⋯+ΠK−1

[[[[[[[

[

1

1

1

1

]]]]]]]

]

+ΠK
[

[

1

1
]

]

= [Π1e1 +Π2e1 +⋯+ΠK−1e1 +ΠKe2]

=
K−1

∑
n=1

Πne1 +ΠKe2 (29)

• Probability associated to the idle state of the server

PI =
1

∑
l=0

P0,0,l =Π0
[

[

1

1
]

]
=Π0e2 (30)

• Throughput of the system

τP =
K−1

∑
n=1

μ1Pn,1,0 +
K−1

∑
n=1

μ2Pn,2,0 +
K

∑
n=1

μ1Pn,1,1 +
K

∑
n=1

μ2Pn,2,1

= μ1Π1

[[[[[[[

[

1

0

1

0

]]]]]]]

]

+ μ1Π2

[[[[[[[

[

1

0

1

0

]]]]]]]

]

+⋯+ μ1ΠK−1

[[[[[[[

[

1

0

1

0

]]]]]]]

]

+ μ2Π1

[[[[[[[

[

0

1

0

1

]]]]]]]

]

+ μ2Π2

[[[[[[[

[

0

1

0

1

]]]]]]]

]

+⋯+ μ2ΠK−1

[[[[[[[

[

0

1

0

1

]]]]]]]

]

+ μ1ΠK
[

[

1

0
]

]
+ μ2ΠK
[

[

0

1
]

]

= [μ1Π1u1 + μ1Π2u1 +⋯+ μ1ΠK−1u1 + μ2Π1v1
+μ2Π2v1 +⋯+ μ2ΠK−1v1 + μ1ΠKu2 ++μ2ΠKv2]

=
K−1

∑
n=1

μ1Πnu1 +
K−1

∑
n=1

μ2Πnv1 + μ1ΠKu2 + μ2ΠKv2 (31)

• The probability that customers are re-allowed to enter the
queueing system

PA = P0,0,1 +
F

∑
n=1

2

∑
j=1

Pn,j,1

=Π0
[

[

0

1
]

]
+Π1

[[[[[[[

[

0

0

1

1

]]]]]]]

]

+Π2

[[[[[[[

[

0

0

1

1

]]]]]]]

]

+⋯+ΠF

[[[[[[[

[

0

0

1

1

]]]]]]]

]

=Π0w1 +
F

∑
n=1

Πnw2 (32)

• The probability that customers are blocked

PD = P0,0,1 +
K

∑
n=1

2

∑
j=1

Pn,j,1

=Π0
[

[

0

1
]

]
+Π1

[[[[[[[

[

0

0

1

1

]]]]]]]

]

+Π2

[[[[[[[

[

0

0

1

1

]]]]]]]

]

+⋯+ΠK−1

[[[[[[[

[

0

0

1

1

]]]]]]]

]

+ΠK
[

[

1

1
]

]

=Π0w1 +
K−1

∑
n=1

Πnw2 +ΠKe1 (33)

• The effective arrival rate of the customers

λeff = λP0,0,0 +
K−1

∑
n=1

2

∑
j=1

λPn,j,0

= λΠ0
[

[

0

1
]

]
+ λΠ1

[[[[[[[

[

1

1

0

0

]]]]]]]

]

+ λΠ2

[[[[[[[

[

1

1

0

0

]]]]]]]

]

+⋯+ λΠK−1

[[[[[[[

[

1

1

0

0

]]]]]]]

]
= [λΠ0w3 + λΠ1w4 + λΠ2w4 +⋯++λΠK−1w4]

= λΠ0w3 +
K−1

∑
n=1

λΠnw4 (34)

• Total anticipated waiting period of customers in the system

WS =
LS
λeff

(35)

4.3 Cost function

The optimization function of the governing model is developed
in this section, which benefits system analysts, decision-makers,
and system engineers in decision-making by finding the appropriate
operating policies and service and maintenance costs. The proposed
model considers three decision variables: F, μ1, and μ2. Our
intuition’s fundamental goal is to present the optimum threshold
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FIGURE 1
Anticipated customers in the system (LS) with respect to λ for different system parameter values.

value F* and the preferred service rates μ*
1 & μ*

2, respectively.
The system engineers, researchers and professionals would execute
the most effective operating strategy to streamline the anticipated
total cost. The subsequent cost components correlated with various
quality performance indicators are taken into consideration and
characterized in the following manner.

Ch ≡Holdingcostassociatedwitheachcustomer in

thesystem

Cb ≡ Costassociatedwiththebusystateof theserver

Cd ≡ Fixedcostassociatedwitheach lostcustomer

Ca ≡ Unitcost toallowthecustomers toenter in thesystem

CK ≡ Fixedcostassociatedwiththesystems’capacity (K)

C1 ≡ Associatedcost forprovidingtheservicewithrateμ1

C2 ≡ Associatedcost forprovidingtheservicewithrateμ2

The cost function is characterized as follows using the queueing-
theoretic framework and the fundamental principle enabling the
utilization of the aforementioned cost elements.

TC(F,μ1,μ2) = ChLS +CbPb + λCdPd +CaPa +CkK+C1μ1 +C2μ2
(36)

The discussed model’s cost minimizing problem can be
mathematically represented as an unconstrained problem in the
following manner

TC(F*, μ*
1, μ

*
2) = min
(F, μ1, μ2)

TC(F, μ1, μ2) (37)

5 Economic analysis

Economic investigation is a comprehensive approach to
understanding and evaluating diverse financial decisions, policies,
and circumstances. It is usually associated with examining
the advantages and disadvantages of a statistical procedure or
methodology. It is usually associated with examining the advantages
and disadvantages of a statistical procedure or methodology.
Economic researchers typically use economic and statistical
methods to balance both advantages and disadvantages to establish
whether a decision is feasible from a financial perspective.
Furthermore, economic investigation involves analyzing how
different strategies affect stakeholders and determining whether
the approach meets its primary objectives. Statistical and economic
analysis makes logical decisions possible based on mathematical
and economic principles and enhances rational decision-making
by considering marginal analysis, opportunity costs, and trade-offs.
Therefore, from an economic perspective, one can demonstrate that
resource allocation optimization, cost minimization, service quality
improvement, and customer satisfaction depend on the economic
analysis of queuing models. In fact, a thorough understanding
of system dynamics, customer behavior, and trade-offs between
various costs and benefits is essential to make better economic
decisions that support corporate objectives.

The majority of real-time stochastic optimization problems are
typically nonlinear and have a high degree of complexity in nature
due to the presence of multiple combinatorial constraints, which
makes it very challenging to compute the solution analytically.
In addition, other associated cost elements further increase
the complexity of these optimization problems. In order to
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FIGURE 2
System throughput (τP)measured in terms of μ1 for various system parameter values.

overcome this restriction, effective alternative solutions are needed,
including global optimizers like metaheuristics and gradient-
based optimization algorithms, which are particularly effective in
solving such kinds of problems numerically. Using the conceptual
framework of the CS algorithm, an optimization approach that
depends on natural circumstances is carried out for the economic
investigation purpose in the current research. Under the same
constraints and service system-based decision-making processes,
the outcomes are compared to the research findings of the well-
known evolutionary optimization method, PSO technique, and
heuristics like DS and QN approaches. For the detailed study and
utilization of these algorithms in the context of queueing-based
service systems, refer to (cf. Shekhar et al. (2020b); Shekhar et al.
(2020a; c)) and references therein. Furthermore, the subsequent
subsections provide a more detailed description of the procedures
involved in these algorithms in order to visualize the necessary
successive iterations.

5.1 Cuckoo Search Algorithm

One of the most prominent nature-inspired optimization
computational techniques, cuckoo search is widely applied to tackle
a variety of challenging and realistic optimization concerns in

different engineering fields, namely, queueing systems, inventory
systems, manufacturing systems, and many more. It is much
more convenient than the other heuristic techniques for solving
stochastic global optimal. This is because it can use the switching
parameter to maintain a balance between the local and global
random walks. The CS algorithm takes its source of inspiration
from the behavior of brood parasites, a natural occurrence
that may be transformed into an optimization problem as
follows.

• When acting like a search agent, each cuckoo only lays one egg
at a time in a nest that has been randomly searched. The term
randomly selected nest corresponds to the problem’s solution.
• A certain number of eggs are passed down from generation to

generation. The fitness functions of all agents at the current
solution point are evaluated to identify the most suitable
solutions.
• The host bird has a chance with probability qa of identifying

the cuckoo’s egg inside its nest. It is commonly referred to as
switching probability for optimization algorithms and is used
to conduct exploitation and exploration.
• Nest positions are modified in the neighborhood such that the

eggs in each nest compete to be the best. It is described as a CS
algorithm exploitation process.
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FIGURE 3
System throughput (τP)measured in terms of μ2 for various system parameter values.

• Most likely, the parent birds will evacuate the nest and
arbitrarily construct a new one. When certain agents are unable
to locate a better solution in their immediate region, exploration
for a new solution is conducted in this type of situation.

The behavior of local and global random walks is one of this
algorithm’s primary concerns. This algorithm’s switching parameter
qa balances the usage of a local randomwalk and a global exploratory
random walk. The local random walk can be defined as

Yt+1
i = Y

t
i +ω

1 β⊗H(qa − ψ̄) ⊗ (Y
t
j −Y

t
k) (38)

where β is the step size,Yt
j andY

t
k are two independent solutions that

are opted by stochastic recombination, and ψ̄ is a arbitrary number
identified from a uniform distribution. The entry-wise product of
two vectors is referred to here as ⊗.

Global convergence, as mentioned earlier, is responsible for
its effectiveness and the broad range of applications. Levy flights
regulate the CS algorithm’s global random walks. The exponentially
decreasing tails of the distribution function in isotropic random
walksmake significant step sizes less likely than in population-based
approaches. Animals, birds, and insects use L’evy flights to generate
extremely rational random walks for a variety of survival methods,

including searching for food. Due to its power characteristics, the
L’evy distribution (40) has a strong tail and permits substantially
larger step sizes than the normal distribution.

Yt+1
i = Y

t
i +ω

1L f (β,ψ1) (39)

where

L f (β,ψ1) =
ψ1Γ(ψ1) sin(

πψ1
2
)

β(1+ψ1)π
; β≫ β0 > 0 (40)

In the present scenario, the scaling factor for step size is ω1 > 0.
It should be chosen on the basis of the problem’s characteristics.
Eq. 38 uses the formula ω1 = O( ζ

10
), where ζ is the problem of

interest’s characteristic scale. These phases in global optimization
would guarantee that the solution would not become stuck in a
particular local optimum.

The step-size β in Mantegna’s algorithm may be computed by
using the concept proposed by Yang (2014).

β = u

|Ξ|
1
ψ1
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FIGURE 4
The system’s anticipated cost (TC) concerning different combinations of design parameters.

FIGURE 5
The minimum systems’ cost along with the best system design parameters value.
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FIGURE 6
Three dimensional contour plot for the optimal combination of (μ1,μ2) wrt optimal cost of the system.

FIGURE 7
Surface plot for the optimal combination of (μ1,μ2) wrt optimal cost of the system.

where u and Ξ are opted from the Gaussian distribution, i.e., u ∼
N(0,σ2

u) and Ξ ∼ N(0,σ2
v) s.t.

σu =
{{
{{
{

Γ(1+ψ1) sin(
πψ1
2
)

Γ[ (1+ψ1)
2
]ψ1 2{

(ψ1−1)/2}

}}
}}
}

1
ψ1

, σv = 1

When |β| ≥ |β0|, where β0 is the least step exists, the distribution
of β follows the predicted L ́evy distribution. Although in
practice, β0 may be considered a reasonable amount, which is
β0 = 0.1 to 1. The cuckoo search with L’evy flights has the following
pseudo-code.

5.2 Particle swarm optimization

An optimization technique named PSO is extensively utilized
to tackle a diverse set of situations. The PSO algorithm was first
suggested by Kennedy and Eberhart (1995). The grouping behavior
of a community of fish or birds that schools together served as
the model for such a stochastic optimization technique. The PSO
method uses a particle population that roams randomly through
the search space. Based on every particle’s best position (p-best)
and common/global best positions (g-best) in the search area, its
intrinsic velocity as well as position are updated. Each particle’s
velocity component is updated according to a predetermined
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 Input: Size of the population, shifting

parameter, and system parameters (all

having constant values)

 Output: Determine the cost function’s value

TC corresponding to the approximated

solution (F,μ1,μ2)

  Phase 1: Initialization of host nest population

through objective function

           TC(Y); Y = [Y1,Y2,…,Yd]T

  while (t < MaxGeneration) or (Stoping framework)

  Phase 2: Get the cuckoo at random

  Phase 3: Develop a solution employing L ́evy

flights

  Phase 4: Examine the solution’s effectiveness or

objectivity

  Phase 5: Choose one nest at random from n nests

           if(TCi < TCj)

           Substitute j by the updated outcome i

           end

  Phase 6: Abandon worse nests with fraction (qa)

  Phase 7: Create new perspectives while

preserving the best options (or nests

using better alternatives

  Phase 8: Determine the actual best by ranking

the solutions

  Phase 9: Keep updating t← t+1

  end while

 Outcomes from post-processing and visualizations

Algorithm 1. Pseudo-code.

formula. The updated velocity is determined from the particle’s
position, current velocity, and the swarm’s local best and common
best positions.Themodified velocity of each particle is subsequently
utilized to determine its new position. This procedure continues
until the swarm identifies the best solution.

Assume that Yi and Ui are the particles’ location and velocity
vectors of the ith polpulation agent, resp ectively. The velocity
formula may be further organised using the procedure given below

Ut+1
i = U

t
i + β
(1)ξ1 (G* −Yt

i) + β
(2)ξ2 (Y*

i (t) −Y
t
i) (41)

where β(1) and β(2) are learning variables with numerical value as 2.
ξ1 and ξ2 are two randomly generated vectors having components
ranging from 0 to 1. Hence, the ith particle’s updated position
formula is expressed as

Yt+1
i = Y

t
i +U

t+1
i (42)

To control the exploitation and exploration between each particle,
an inertia function ψ2(t) is used further by Shi and Eberhart (1998)
in the PSO approach. So the reframed equation of velocity can be
depicted as

Ut+1
i = ψ2U

t
i + β
(1)ξ1 (G* −Yt

i) + β
(2)ξ2 (Y*

i (t) −Y
t
i) (43)

Further, the range of 0.5–0.9 is chosen as the expected value of the
inertia function ψ2(t).

 Input: Initial parameters’ values, density of the

population, and learning variables.

 Output: Estimate a basic solution (F*,μ*
1
,μ*

2
) and

quantify the cost function’s value.

         TC(F*,μ*
1
,μ*

2
).

  Phase 1: Initialization: locate

n particles locations Yn.

  Phase 2: Demonstrate G* from

{TC(Y1),TC(Y2),…,TC(Yn)}.

  Phase 3: while(t <MaximumGeneration)or

(stopingframework)

           for (n agentsanddimensiond).

  Phase 4: Explore updated speed of the ith moving

agent Ut+1
i

.

  Phase 5: Locate current location for the ith

agent Yt+1
i

= Yt
i
+ Ut+1

i
.

  Phase 6: Investigate the cost value at updated

locations Yt+1
i

.

  Phase 7: Discover the p-best of each agent Y*
i
.

           end for

  Phase 8: Keep Updating g-best G*.

           t→ t+1

           end while

  Phase 9: Updated research findings Y*
i
and G*.

 Phase 10: Final outcomes of cost optimization

problem: TC* at G*.

Algorithm 2. PSO technique: Pseudo-code.

Besides this, PSO has been utilized to resolve a numerous of
global optimization issues, including difficulties concerning cost
and economic efficiency. It is a preferred feature for resolving
challenging computational optimization problems because of its
flexibility to simultaneously exploiting and exploring the region
of search interest. In conclusion, PSO is a dynamic optimization
algorithm that uses a swarm of particles to explore and take
advantage of the search space. It has become a popular alternative
for resolving challenging combinatorial optimization problems
because of its capacity to explore and exploit the solution area
continuously.

The following is a representation of the PSO technique’s pseudo-
code.

5.3 Quasi-Newton method

Executing the convergence analysis of the cost function
(36) analytically is challenging because of the high degree of
convexity and significant non-stationary behavior of the derived
cost optimization problem. In the queueing literature, many
researchers used traditional optimization approaches to overcome
this restriction for numerical simulation. As a result, the Quasi-
Newton (QN) methodology is used to illustrate the optimal
combinations of the system design variables μ1 and μ2 together with
the optimum anticipated cost. The expected cost function’s optimal
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 Input: Initialization of the vector Φ(0) = [μ
0
1
,μ0

2
]T,

input variables, tolerance ϵ.

 Output: Calculate the appropriate cost TC(μ*
1
,μ*

2
) as

a result of estimating the feasible

solution [μ*
1
,μ*

2
]T.

  Phase 1: Calculate TC(Φ(0)) by interpolating the

actual trial solution Φ(0).

  Phase 2: while| ∂TC
∂μ1
| > ϵ or | ∂TC

∂μ2
| > ϵ, do steps 3–4.

  Phase 3: Compute the gradient of cost function

⃗∆TC(Φ) = [ ∂TC
∂μ1
, ∂TC
∂μ2
]
T
. Also, compute the

Hessian matrix

           H (Φ) = [[[

[

∂2TC

∂μ2
1

∂2TC

∂μ1 ∂μ2

∂2TC

∂μ2 ∂μ1

∂2TC

∂μ2
2

]]]

]

atpoint Φ⃗i.

  Phase 4: Keep updating the test solution

           Φ(i+1) = Φ(i) − [H(Φ(i))]
−1 ⃗∆TC(Φ(i)).

           end

  Phase 5: Final outcome

Algorithm 3. Quasi-Newtonmethod: Pseudo-code.

value (36) is achieved by iteratively searching the values of μ1 and μ2
in the QN methodology. For this purpose, the vector representation
Ω0 first initializes the design parameters μ1 and μ2. Next, the cost
optimization problem’s gradients are mathematically estimated in
the subsequent steps.

5.4 Direct-Search method

The Direct-Search (DS) technique is employed to achieve the
appropriate value F*, resulting in the anticipated function having its
least value, say TC*. The least cost problem can now be analytically
represented as follows

TC(F*, μ*
1, μ

*
2) = min

F∈(1,2,…,K−1)
TC(F, μ*

1, μ
*
2) (44)

The following is a representation of the DS method’s pseudo-
code.

6 Numerical results

The present investigation examines the Markovian
circumstances’ significant and quantitative outcomes based on the
hyper-exponential service approach. In this context, many different
formulae for quality performance measurements in closed vector
form are presented for straightforward computation. In order to
validate our hypothesis and methodology, this section performs
numerical simulations using a variety of numerical experiments.
To commence the quantitative simulations, the system variables’
default values are taken as K = 15; F = 7; λ = 0.6; μ1 = 0.8; μ2 = 0.8;
p = 0.7 and γ = 2.0. In addition, the distribution of probability in an
equilibrium state is mathematically illustrated opting the MATLAB
(2018b) software and the matrix solution method.

Based on various considerable adjustments to the system
parameter values, the sensitivity investigation for the anticipated

 Input: K and all other system parameters.

 Output: Initialization of (F*,μ*
1
,μ*

2
) and computation

of anticipated cost TC(F*,μ*
1
,μ*

2
).

  Phase 1: forF=1 to K−1

  Phase 2: Fix a initial iteration (μ1,μ2)

  Phase 3: Utilize the QN approach to calculate

the pair (μ*
1
,μ*

2
) and TC(F,μ*

1
,μ*

2
)

  Phase 4: if diverging solution obtained, return

to step 2 end if

  Phase 5: ifTC(F,μ*
1
,μ*

2
) < TC*

  Phase 6: TC* = TC(F,μ*
1
,μ*

2
)

  Phase 7: end if

  Phase 8: end

  Phase 9: Outcomes TC* = TC(F*,μ*
1
,μ*

2
)

Algorithm 4. Direct-Searchmethod: Pseudo-code.

customers in the service system (LS) is carried out for the parametric
analysis, as shown in Figure 1.The variability of LS withmean arrival
rate (λ) for varied values of the system’s capacity (K) is shown
in Figure 1I. It makes intuitive sense that the length of the queue
would increase with higher values of λ. More demonstration of
the variable nature of K is provided because for a fixed extent of
λ and incremental variation of K, the value of LS improved in a
consistencemanner. In otherwords, at higher values ofK, a relatively
large value of LS is observed. The value of LS seems to increase for
increasing values of λ in Figure 1iii, iv; however, for a fixed value
of λ, the opposite behavior is observed for increasing values of μ1
and μ2, which is pretty apparent. Similar trends of LS are perceived
for increasing pattern of the other system parameters in the other
sub-figures.

The consequences of the parameters μ1, and μ2, together with the
various combinations of the system parametersK, F, p, and γ, on the
throughput of the service system (τP), are illustrated in Figures 2, 3.
The system’s throughput (τP) improves as the value of the service rate
μ1 appears to increase with the higher values ofK, F, and γ, as shown
in Figures 2I, ii,iv. However, it can be observed in Figure 2ii, iv that
the rate of incremental change in the τp is slightly slower for higher
values of γ. The higher values of p in Figure 2iii exhibit the reverse
tendency, indicating that the lower value of p in such service systems
is best suited to increase the number of consumers served in the
system. Particularly in comparison to this, it is possible to recognize
that the research outcomes correspond with the perception from
Figure 3.

Now, some numerical examples are carried out by taking into
account the following cost aspects to show that the suggested
model and methodology are convenient for the system designers,
policymakers, and practitioners in system modeling and decision-
making. For analysis purposes, the numerical values of numerous
associated cost variables are choosen as follows: Ch = 10; Cb = 50;
Cd = 350; Ca = 100; Ck = 20; C1 = 50 and C2 = 50, and for all other
default system parameters is taken as used in Figure 1. Figure 4
highlights the consequences of the various values for the system
parameters on the anticipated system cost. To examine this effect,
numerous values of the combinations (K,λ), (F,λ), (μ1,λ), (p,μ1),
(γ,λ), and (γ,μ2) up to a substantial level are presented. The
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FIGURE 8
Classification of CS optimization technique.

sub-Figure 4i-iii, v demonstrate that the estimated cost of the system
keeps rising as λ grows significantly. It is genuine because the system’s
associated cost clearly grows significantly in proportion to the higher
number of customers. The validation of our formulation can be
observed in Figure 4iv, which shows that the lower value of p and
higher service rate μ1 minimizes the associated cost (TC) of the
system. Similarly, from Figure 4iii, vi, it is clear that anticipated cost
of the system become higher with higher service rates μ1 and μ2,
respectively. These outcomes demonstrate that an additional service
facility might not always be considered into account to enhance
system performance.

To illustrate the most appropriate strategies and the optimum
anticipated cost for the suggested model, three system design
parameters F, μ1, and μ2 are recommended.Therefore, we first verify
that the anticipated cost (TC) is convex and analogous to the decision
variables F, μ1, and μ2. Our intuition indicates that the convex
behavior of the desired cost function is guaranteed by the graphic
combinations of these parameters’ variable values shown in Figure 5.
It should be noticed that F, μ1, and μ2 have optimal values that are
nearly identical to 5, 1.0, and 0.8, respectively. Since it is really very
difficult task to generate the solution analytically, the nature-inspired
optimization technique, CS algorithm, is implemented to determine

the optimum system design combinations simultaneously. We fix
the range of the decision parameter F as [1 14] and [0.5 3.0] for
μ1 and μ2, respectively. Moreover, the combined optimal variations
of μ1 and μ2 via the three-dimensional contour plot and surface
plot are provided in Figures 6, 7 for a better understanding of
research findings. As used in Figure 5, the default system parameter
values and associated unit cost elements were taken. The cost
function is clearly highly convex for the combined design parameter
values μ1 and μ2, which is apparent in Figures 6, 7. So, it implies
that engineers and system designers would be benefited more
from using queueing modeling while making decisions.Now, some
specific generations of the CS algorithm (cf. Figure 8) are specified
in the feasible domain for illustration purposes by defining the
minimal and higher ranges of the design variables μ1 and μ2 as
[0.5 3.0] with F* = 9 as the default value. With the aid of these
generations, we present the efficient expected system cost as well as
the most effective combinations of decision parameters. As the CS
technique is evolutionary in nature, it is straightforward to verify
that all search agents in the first generation are distributed randomly
throughout the feasible region. Subsequently, they approach closer
to the convergence outcomes by investigating unexplored regions,
including each subsequent generation. This suggests that the CS
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TABLE 1 Optimal choices for (F*, μ*1, μ
*
2) andminimal system cost TC* incorporating CS algorithm.

(K , λ, p, γ) F* μ*1 μ*2 TC* Mean{ TC
TC*
} Max{ TC

TC*
} CPU time

(15, 0.6, 0.7, 2.0) 9 1.036013 0.714905 439.860911 1.0000006936 1.0000010443 730.7813

(20, 0.6, 0.7, 2.0) 8 1.040046 0.719131 539.936933 1.0000002721 1.0000008080 840.4874

(25, 0.6, 0.7, 2.0) 8 1.042306 0.719935 639.968386 1.0000002538 1.0000004125 960.2196

(15, 0.4, 0.7, 2.0) 7 0.769406 0.529343 409.136949 1.0000000808 1.0000001460 740.3206

(15, 0.8, 0.7, 2.0) 11 1.295901 0.894984 468.243607 1.0000019037 1.0000049741 735.7208

(15, 0.6, 0.5, 2.0) 8 0.899836 0.899809 443.189543 1.0000001074 1.0000002017 735.6285

(15, 0.6, 0.9, 2.0) 11 1.121175 0.435621 426.668703 1.0000010943 1.0000029453 727.2163

(15, 0.6, 0.7, 1.5) 9 1.035993 0.714638 439.865751 1.0000001421 1.0000003996 700.6391

(15, 0.6, 0.7, 2.5) 9 1.035598 0.714991 439.858109 1.0000003510 1.0000009364 693.9718

TABLE 2 Optimal choices for (F*, μ*1, μ
*
2) andminimal system cost TC* incorporating PSO algorithm.

(K , λ, p, γ) F* μ*1 μ*2 TC* Mean{ TC
TC*
} Max{ TC

TC*
} CPU time

(15, 0.6, 0.7, 2.0) 9 1.035894 0.715072 439.860912 1.0000001105 1.0000003226 370.4333

(20, 0.6, 0.7, 2.0) 8 1.040021 0.718163 539.936935 1.0000072347 1.0000160244 468.3631

(25, 0.6, 0.7, 2.0) 9 1.042236 0.720193 639.968393 1.0000004749 1.0000012235 704.2960

(15, 0.4, 0.7, 2.0) 7 0.769324 0.529415 409.136949 1.0000158244 1.0000400613 479.9172

(15, 0.8, 0.7, 2.0) 11 1.295001 0.895602 468.243635 1.0000295733 1.0000443848 475.4190

(15, 0.6, 0.5, 2.0) 9 0.900871 0.900034 443.189549 1.0000496516 1.0000744922 416.5908

(15, 0.6, 0.9, 2.0) 11 1.121242 0.435747 426.668704 1.0000022885 1.0000068605 357.1831

(15, 0.6, 0.7, 1.5) 9 1.035541 0.714986 439.865754 1.0000051400 1.0000153885 353.2034

(15, 0.6, 0.7, 2.5) 9 1.035756 0.715193 439.858109 1.0000209068 1.0000626951 355.9429

approach is efficient for all underlying conceptual experiments. It
also demonstrates the capability of the CS algorithm to converge
on optimal outcomes within an appropriate time span. From the
research findings, as a concluded remark, one can easily observe
that the best agent’s coordinates are [μ*

1,μ
*
2] = [1.036013,0.714905]

and the system’s associated minimum cost is TC* = 439.860911
for the CS algorithm.For an in-depth investigation of the most
desirable outcomes, a numerical simulation covering a wide range
of values for other system parameters is conducted in Table 1,
which provides an overview of the converging research outcomes.
We independently take 50 search particles, 100 iterations, and
20 total cycles for every test to outline each of these numerical
evaluations for the CS technique. The concept of the combination
of statistical variables is used in all iterations of the CS algorithm,
particularly the average and maximal ratios of the optimized cost,
in order to confirm the algorithm’s adaptive capability. The average
and maximum values of [ TC

TC* ], displayed in Table 1, ranging from
1.0000000808 to 1.0000019037 and 1.0000001460 to 1.0000049741,

respectively. It indicates that theCS algorithm’s performance tomove
towards the best position is significantly improved.

Finally, a comparison between the CS algorithm, the swarm
intelligence-based optimization approach, the PSO algorithm, and
the traditional optimization techniques, the DS and QN method,
is conducted to highlight the validity of the obtained converging
results of the CS algorithm. As we know, the optimal outcomes,
the statistical parameters, namely, mean ratio and maximum ratio
in all independent runs, and computation time (CPU time) are
some of the crucial and fundamental aspects to consider when
comparing any algorithm’s utility and efficacy. As a result of this
fact, some numerical experiments are shown in Tables 1–5. The
minimum anticipated cost generated by the PSO, DS, QN, and
CS algorithms can be visualized to three to four decimal places.
From all of the numerical experiments, it can be observed that
the CS methodology’s adequate search quality to reach optimality
is significantly superior to the PSO approach. It can also be
strongly recommended based on the optimal strategies obtained
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TABLE 3 Ideal variations of (μ*1, μ
*
2)with correspondingminimum cost TC* for different F.

F Initial value μ*1 μ*2 TC* Iterations

F = 1 [1.5, 1.5] 1.037576 0.717363 439.992064 09

F = 2 [1.5, 1.5] 1.036834 0.716572 439.960164 08

F = 3 [1.5, 1.5] 1.036251 0.715923 439.932623 08

F = 4 [1.5, 1.5] 1.035831 0.715420 439.909608 08

F = 5 [1.5, 1.5] 1.035573 0.715063 439.891159 08

F = 6 [1.5, 1.5] 1.035471 0.714848 439.877229 09

F = 7 [1.5, 1.5] 1.035514 0.714766 439.867692 08

F = 8 [1.5, 1.5] 1.035690 0.714808 439.862343 09

F = 9 [1.5, 1.5] 1.035713 0.714957 439.860916 07

F = 10 [1.5, 1.5] 1.036378 0.715213 439.863063 07

F = 11 [1.5, 1.5] 1.036856 0.715549 439.868447 07

F = 12 [1.5, 1.5] 1.037402 0.715957 439.876783 07

F = 13 [1.5, 1.5] 1.038016 0.716436 439.888177 07

The bold combination of values indicates the optimal operating strategies along with the minimal anticipated cost of the governing model.

TABLE 4 An illustration of the Direct-Searchmethod’s iterative process using the values K = 15, λ = 0.6, p = 0.7, and γ = 2.0, and initial combination
(F, μ1, μ2) = (9, 1.5, 1.5).

Iterations 0 1 2 3 4 5 6 7

μ1 1.5 1.094767 1.017981 1.054008 1.034769 1.036283 1.036159 1.035713

μ2 1.5 1.000000 0.701614 0.723721 0.717739 0.715029 0.715132 0.714957

TC 476.666965 445.855240 439.918502 439.900798 439.861663 439.860919 439.860917 439.860916

The bold combination of values indicates the optimal operating strategies along with the minimal anticipated cost of the governing model.

TABLE 5 The best combinations of (F*,μ*1,μ
*
2) and the optimum anticipated cost TC* for various combinations of λ, p, and γ.

(λ, μ1, μ2) (0.6,0.7,2.0) (0.4,0.7,2.0) (0.8,0.7,2.0) (0.6,0.5,2.0) (0.6,0.9,2.0) (0.6,0.7,1.5) (0.6,0.7,2.5)

F* 9 7 11 9 11 9 9

(μ0
1,μ

0
2) [1.5, 1.5] [1.5, 1.5] [1.5, 1.5] [1.5, 1.5] [1.5, 1.5] [1.5, 1.5] [1.5, 1.5]

Total Iteration 7 7 11 9 11 9 9

μ*
1 1.035713 0.769351 1.296033 0.900453 1.121456 1.036650 1.035996

μ*
2 0.714957 0.529391 0.895235 0.900462 0.435633 0.715061 0.715195

TC(F*,μ*
1,μ

*
2) 439.860916 409.136949 468.243608 443.189548 426.668705 439.865759 439.858110

The bold combination of values indicates the optimal operating strategies along with the minimal anticipated cost of the governing model.

by the CS algorithm compared to PSO. This demonstrates the
robustness and better economic significance of the CS algorithm
since the PSO requires numerous computations to update the
p-best and g-best outcomes. CS algorithm naturally maintains
population diversity due to its random search and cuckoo behavior,
which can be beneficial for escaping local optima. While PSO

can struggle with maintaining diversity as the particles converge
towards a single solution, potentially getting trapped in local optima.
The CS algorithm outperforms the semi-classical optimization
methodology, QN, and DS methods in all testing scenarios. The
QN approach requires a numerical estimation of the gradient or
direction of optimality due to the optimization function’s high
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nonlinearity and high degree of complexity. Hence, the substantial
degree of approximations connected to the internal iterations of the
QN approach negatively impacts the QN method’s efficiency and
searching quality.

As a concluding remark, we can emphasize that improved
system efficiency, resource utilization, and customer satisfaction
are generally considered to be the foundation of the theoretical
implications of the queueing models. For instance, in this section,
we have shown that the incremental changes in the arrival rate of
customers significantly increase the queue length, and higher service
rates reduce average customer waiting times and improve overall
system efficiency. Further, several illustrative simulations based on
the governing model are provided to validate these implications
quantitatively and outcomes from these simulations are then
comparedwith themodel’s predictions.Thus, the quantitative results
demonstrate a decrease in average waiting times when the service
provider’s service rate increases, supporting the theoretical inference
of enhanced system performance. This research confirmation
supports the theoretical understanding that optimizing certain
parameters in the queueing model can effectively enhance system
performance and meet the model’s predictions.

7 Managerial insights

The study’s numerical findings in Section 6 can benefit service
system managers and decision-makers dealing with complex and
non-linear optimization problems. They can optimize the system’s
design parameters and minimize the overall anticipated cost of
renewable energy systems by implementing the suggested CS
algorithm. It may lower anticipated costs, enhance energy demand
fluctuations, and improve energy storage management, system
reliability, and repair and maintenance policies within renewable
energy infrastructures. To avoid maintenance interruptions, system
managers may employ these insights in developing preventive
service strategies, such as regular maintenance inspections, risk
identification and mitigation, and outages.

System managers implementing the suggested approach into
practice have to take care a variety of aspects into account. For
instance, they must ensure that they have the required data to
optimize the system design parameters. Additionally, they should
consider the impact of the model parameters on their existing
repair and maintenance processes, resources, and costs. System
managers and decision-makers should also carefully consider the
mathematical validity of the model, particularly when forecasting
future service requirements. To make sure that just-in-time
operational efficiency is maintained, they should also take economic
limitations and the accessibility of quick maintenance services into
account.

In a nutshell, researchers, policymakers, and system managers
of renewable energy systems can use the study’s mathematical
outcomes to optimize demand for energy fluctuations, lower
expected costs, and optimize system design parameters. They
can ensure efficient service provisioning throughout each stage
of the energy service systems and improve the quality of their
repair and maintenance services by implementing the suggested
recommendations.

8 Conclusion and future perspectives

The proposed model based on renewable energy systems with
hyperexponentially distributed service regimes and finite buffer
storage has several unique findings and contributions. Firstly, the
model considers the impact of admission control policy, which is
an essential aspect in any energy sector but is often overlooked in
traditional models. Secondly, the model considers a finite buffer
storage, a more realistic assumption than infinite buffer in many
practical scenarios. Thirdly, the closed-vector form expressions
for different renewable system performance measures have been
derived using steady-state probability distributions, which can aid
in efficiently evaluating the energy system’s performance. Finally, the
cost optimization problem is constructed to design the appropriate
threshold F*, reasonable service parameters μ1 and μ2, and the
minimal anticipated cost associated to the energy system. The
current investigation has significant implications for researchers and
practitioners seeking to optimize several energy parameters and
improve the individual experience.

The economic analysis performed in this study also contributes
to its uniqueness. The analysis shows how the established model
can support system managers and decision-makers in decreasing
the expense of service or maintenance, an extremely desirable
component of renewable energy sector. The provision of nature-
inspired metaheuristics, such as the CS and PSO techniques, further
enhances the practical importance of the model. The validation
of the findings using the comparative investigation with the PSO
algorithm, QN method, and DS method also adds credibility
to the results. Further, the current research introduces novel
parametric and optimal analyses for a renewable energy systemwith
an admission control policy and a two-stage hyperexponentially
distributed service pattern. Our study illustrates the dynamic
behavior of the developed model using several hypotheses based on
the queueing-theoretic approach. Specifically, the current research
employs the essential assumptions of transition between consecutive
transition states to demonstrate the differential equations using
the fundamental assumptions of stochastic process. The use of the
queueing-theoretic approach enables us to provide a rigorous and
analytical framework to analyze the controllable energy system.This
framework offers insights into the optimal control policies that can
be employed to minimize system costs and improve the individual
experience. Our study also provides a detailed analysis of the
system’s robust behavior, allowing us to check the impact of distinct
design variables on the operational characteristics of the energy
system.

Despite its contributions, the proposed model has some
limitations that need to be considered. One limitation is the
assumption of hyperexponential distribution for service times and
startup times. While this assumption may hold in some cases, it
may not be applicable in all scenarios. Additionally, the model
assumes a limited buffer storage, which may not be accurate
in situations where buffer storage is not constrained. Moreover,
the model assumes a fixed number of service channels, which
may not be realistic in scenarios where the number of active
service providers can change over the time.The following potential
hypotheses can be introduced to expand the scope of the present
investigation.
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Extension to other service distributions: Extending the
suggested model to other customer service distributions, such as
Erlangian, Weibull, and geometric distributions, is one possible
direction for future investigation. This will facilitate an evaluation
of the performance of the renewable energy systems under
multiple service distribution scenarios, offering a more thorough
comprehension.

Dynamic server allocation: An additional possibility for
future study could involve examining how the suggested model
addresses dynamic service distribution. This could result in
improved performance, higher efficiency, and reduced expenses
associated with of system performance indicators by enabling a
more adaptable and effectivemanagement of resources in the energy
system.

Application to real-world scenarios: The current investigation
can further be employed to numerous realistic scenarios such
as healthcare systems, computer communication systems, and
transportation systems. The viability and applicability of the
suggested model in such circumstances may be further examined
in future research.

Machine learning-based admission control policies: Using
machine-learning-based admission control policies in the proposed
model could be another potential research direction. This will allow
individuals optimal connectivity and control over energy systems,
potentially leading to improved performance and lower expenditure.

Robustness analysis: A more in-depth analysis of the
convergence and robustness of the research findings may also
be a future research direction. This may involve examining
the effects of various types of breakdowns or interruptions on
system performance and identifying strategies to mitigate those
effects.

Analysis of real-time data: Real-time data analysis via
the model having hyper-exponential distribution can facilitate
dynamical parameter adjustments, improving forecast accuracy and
enabling real-time decision-making.

In Implementation of Modern Technologies: The queueing-
based hyper-exponentially service model can find applications in
developing domains like cloud computing, edge computing, and the
Internet-of-Things (IoT) over time as technology keeps growing.
Understanding and improving these modern technologies’ waiting
times and service patterns can help with more effective resource
management and enhanced customer satisfaction.
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