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This article presents a DOD-SOH equalization method for a DRB system based on the Deep DQN algorithm. The proposed method utilizes DQN to learn the operational processes of the system. By integrating the advantages of DRB with SOH equalization theory and the DQN algorithm from the perspective of DOD, our method significantly improve battery performance and ensure cell balancing. To begin with, we present a dynamic reconfigurable battery system with a simple topological structure and outline its switching control process. Additionly, we provide an analysis of the SOH balancing principle and elaborate on the control process of DQN algorithm. Finally, subsequent simulations are carried out, and the simulation results demonstrate outstanding performances in reducing the variance of SOHs, which indicates an enhancement in the level of SOH balancing as well.
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1 INTRODUCTION
The development of energy storage science and technology has greatly propelled the advancement of various intelligent electrical devices in recent years (Lawder et al., 2014; Li et al., 2021; Abomazid et al., 2022). With ongoing technological advancements and breakthroughs in battery materials, battery management, and battery systems, the development of battery energy storage has become increasingly significant. Under traditional methods, battery system configurations often employ fixed series and parallel connections, resulting in inevitable differences among individual battery cells. Consequently, battery systems are prone to the “barrel effect,” wherein cells with lower capacity discharge first, and cells with poorer health degrade faster. This imbalance leads to premature failure of the battery system, causing issues such as capacity loss, reduced energy efficiency, and shorter cycle life.
In order to overcome the challenges posed by differences among individual battery cells, the concept of a dynamic reconfigurable battery system has been proposed (Kim and Shin, 2009; Ci et al., 2012; Ci et al., 2016). This system involves high-speed MOSFETs connected in series and parallel to each individual battery cell, controlling the opening and closing of switches based on the real-time state of the battery to achieve SOH equilibrium. In recent years, there has been a growing body of research in the field of DRB, with much of the focus on circuit topology design and control. (Morstyn et al., 2016),critically, they have summarized the existing hardware topologies, and compared their functionalities and losses. Another study by (Gunlu et al., 2017) proposed a dynamically reconfigurable independent cellular switch circuit to facilitate the necessary battery connections, significantly improving circuit efficiency. Additionally, (Kim et al., 2012), introduced a novel battery switch topology circuit and high-performance battery management system to enhance battery energy conversion efficiency.
The dynamic reconfigurable battery system has proven effective in overcoming the “weakest link” issue and achieving balance among individual battery cells. SOH represents the battery’s health status in terms of the remaining charge capacity, and is often used to quantitatively measure differences among batteries. Accurately measuring SOH is not a simple task, but it is an essential step before implementing SOH balance control. Existing methods for measuring SOH typically involve model-based and data-driven approaches. Model-based methods entail constructing electrochemical and equivalent circuit models, utilizing Kalman filtering (Duan et al., 2023; Zhao et al., 2018; Chen et al., 2022) and Gaussian filtering (Wang et al., 2023; Cui et al., 2022; Fan et al., 2023) to estimate SOH. Data-driven methods primarily rely on machine learning (Shu et al., 2021; Buchicchio et al., 2023; Raoofi and Yildiz, 2023) and deep learning (Wang et al., 2022; Khalid and Sarwat, 2021b; Xu et al., 2023). These methods require feature extraction, establishing the mapping between features and SOH for predictive purposes.
For a battery pack, smaller differences in SOH at the end of discharge significantly improve the pack’s lifespan. A study by (Ma et al., 2020) proposed a hierarchical SOH balancing control method by combining passive (Khalid et al., 2021a) or active battery balancing circuits (Ren et al., 2018) with battery pack SOH balancing schemes. Similarly, (Li et al., 2018), introduced a relative SOH balancing method by indirectly balancing SOH through power redistribution among sub-modules.
While the aforementioned methods for SOH balancing have shown promising results, they often require detailed modeling of the battery system or the design of complex balancing circuit topologies. Typically, these battery models necessitate rich experience and intricate parameters. In situations where the system is highly complex, reliance on model-based methods might even be challenging to implement.
Contrary to model-based approaches, artificial intelligence methods do not require the establishment of a system model. Instead, they learn control strategies from vast amounts of historical system data. By integrating deep reinforcement learning methods (Mnih et al., 2015), it's possible to continuously generate training data while the system is operating, continually adjusting the model’s parameters. This approach has garnered attention from researchers in recent years (Mocanu et al., 2019; Wan et al., 2019). In a groundbreaking move, (Yang et al., 2022), for the first time introduced deep reinforcement learning algorithms into dynamic reconfigurable battery systems and obtain excellent performance in battery balance.
Up to this point, there hasn't been a paper that introduces artificial intelligence algorithms into the study of SOH balancing in a DRB system. Traditional methods often rely on sorting algorithms or expert systems to achieve specific objectives for simpler tasks. However, for systems with complex features and tasks, solving them using traditional empirical and model-based approaches can be challenging. Deep reinforcement learning, on the other hand, can continuously attempt different actions based on various types of state values in a battery system. By combining these attempts with reward values to update network model parameters, even when dealing with high-dimensional data inputs, it can still achieve relatively good results for complex tasks.
Therefore, this paper introduces the deep reinforcement learning algorithm into the dynamic reconfigurable battery system to address the issue of SOH balancing. Firstly, we proposes a simple dynamic reconfigurable battery topology and analyzes the process of battery insertion and removal. Subsequently, leveraging the principle of achieving SOH balance and combining it with the DQN algorithm, the paper constructs a simulation model of the battery system in the Gym environment and conducts simulation experiments. Finally, the paper evaluates the simulation training, analyzes and compares the testing process. The simulation results indicate that the proposed method, in contrast to traditional approaches, exhibits a significant advantage in reducing the disparity in SOH between batteries.
2 SYSTEM MODEL
2.1 Series topology of the dynamic reconfigurable battery system
The DRBS depicted in the diagram consists of multiple battery cells connected in series to form a particular branch of the system. Due to differences in the initial capacity, health status, internal resistance, and other factors among the batteries, variability among the batteries is a common issue. Figure 1 illustrates a diagram of DRB system, focusing on a series-connected branch. This series branch is formed by N batteries connected in series via reconfigurable switches. Assuming an external load requires connection to a specified number of batteries, denoted as K, the system achieves a reconfiguration through a selection of K out of N batteries. In order to achieve SOH balance among multiple batteries, the system typically operates with a discharge principle: batteries with higher SOH should receive more opportunities for discharge, while those with lower SOH receive fewer discharge opportunities.
[image: Figure 1]FIGURE 1 | Dynamic Reconfigurable Battery System Topology.
Figure 2 displays the internal structure of the reconfigurable switch, typically composed of two N-type MOSFETs, S11 and S11′, which jointly control the connection and disconnection of the battery. When S11 is conducting and S11 is off, the battery is engaged for use. Conversely, when S11 is off and S11’ is conducting, the battery is bypassed. This dual-MOSFET switch structure is simple in design and offers flexible and convenient control.
[image: Figure 2]FIGURE 2 | Two MOFETs Switches.
For an entire series branch within the circuit, Figure 3 illustrates the detailed switching process of two batteries in the circuit, reflecting changes in the system’s topology. In the configuration depicted in Figure 3, initially, battery B11 is connected to the circuit, while battery B12 remains disconnected. When a battery switch is required in the circuit, the process begins by closing the main branch switch, Sm2, and opening the main branch switch, Sm11. Subsequently, the sequence involves opening S11 and S12′, closing S11′ and S12 to connect battery B12 into the branch. Finally, the branch’s main switch, Sm12, is opened, and the main branch switch, Sm11, is closed.
[image: Figure 3]FIGURE 3 | The Transition Process of Individual Battery Cell Deployment.
Sm11 and Sm12 employ MOSFET switches to prevent arcing. The role of the branch diode Dm1 is to prevent localized loop currents caused by transient voltage fluctuations during the insertion or removal process of a battery within a particular branch.
2.2 SOH balancing issue
2.2.1 SOH imbalance phenomenon
The batteries within the battery pack exhibit varying capacities among individual cells. Some battery cells may possess higher capacities, while others have lower capacities. This disparity leads to certain battery cells depleting or charging more quickly during the discharge and charge processes, ultimately shortening the overall lifespan of the entire battery pack.
Depth of Discharge, often referred to DOD, is typically considered a key factor influencing the number of cycles a battery can undergo. As DOD increases, the rate of change in SOH also accelerates. In a study by (Li et al., 2018), a method for relative SOH balancing is proposed. By employing different DOD levels among battery packs within the system, the SOH curves of different battery packs gradually converge, optimizing the overall system’s output capacity and lifespan.
To provide a more comprehensive description of the relationship between DOD, SOH, and cycle life, Figure 4 illustrates the theoretical situation of SOH changes concerning DOD and the number of cycles. If the SOC is controlled to be the same as traditional methods, the DODs among different battery packs will be identical, leading to the SOH of the weaker batteries deteriorating first to retirement levels, as depicted in Figure 4A. Adopting the proposed SOH balancing method, the better (poorer) batteries are subjected to higher (lower) DOD levels initially. As their SOH levels align, their DODs are then regulated to be the same. This process results in a uniform decline in the SOH of all battery packs, as shown in Figure 4B.
[image: Figure 4]FIGURE 4 | SOH variation profiles with (A) SOC balancing control strategy and (B) proposed SOH balancing method.
2.2.2 SOH balancing objectives
In order to simplify our research focus, our work primarily concentrates on a single serial branch of the dynamic reconfigurable battery system. Let us define a serial branch with N batteries, where the voltage at the two ends of the branch is denoted as [image: image], and the SOC for the batteries is represented as [image: image], [image: image], [image: image], [image: image]. Additionally, SOH for the batteries is represented as [image: image], [image: image], [image: image], [image: image]. The switches that control the connection or disconnection of the batteries to the circuit are represented as [image: image], [image: image], [image: image], [image: image], where the voltage V, SOC, and SOH are continuous variables typically characterized based on actual values, and the switch states SS are Boolean variables with values between 0 and 1. When [image: image] =1, it indicates that the i-th battery is in a connected state, while [image: image] =0 represents that the i-th battery is in a disconnected state, where i ranges from 1 to N.
For a typical series-connected battery energy storage system, it is easier for the batteries within the battery pack to reach retirement levels with similar SOH when the differences in SOH between batteries are smaller. Therefore, addressing the issue of SOH balance should be the primary concern. When battery packs already have batteries with approximately similar SOH, maintaining a close proximity of SOC among them can significantly enhance the overall lifespan of the battery pack.
Here, we first need to introduce a metric to quantify the SOH disparity within a particular serial branch of the dynamic reconfigurable system at time t, denoted as δ.
[image: image]
Here, [image: image] represents the average SOH of the N batteries at time t, and it is defined by the following formula Eq. 2:
[image: image]
The control objective of the dynamic reconfigurable battery system is to minimize the δ value in Eq. 1 during the SOH balancing phase.
2.3 SOH balancing principles
In typical situations, SOH can be defined based on the degradation of battery maximum capacity and the increase in internal resistance. SOH based on capacity degradation can be defined Eq. 1:
[image: image]
[image: image] is the maximum deliverable capacity under the current conditions, [image: image] is the nominal (rated) capacity。
In the paper (Wang and Hong, 2018), the authors propose a SOH definition based on cycle life, expressed as in Eq. 4:
[image: image]
Here, [image: image] refers to the remaining number of cycles from the current state to the end of use, and [image: image] represents the total number of cycles, [image: image] signifies the accumulated cycle life used up to the present. SOH(0) represents the initial SOH value.
Building upon prior research, this paper defines and analyzes SOH from the perspective of cycle life (Wang and Hong, 2018) proposes a method for calculating battery cycle life without considering temperature. The relationship between total cycle life and DOD can be expressed in a simplified form by the following Eq. 5.
[image: image]
where a and b are parameters that vary for different types of batteries. To better describe the relationship between SOH, DOD, and in the subsequent sections, this paper’s case study is proposed with constant values of a = 694 and b = 0.795 for a typical lithium-ion batteries (Li et al., 2018; Dallinger et al., 2013)
Where DOD can be expressed in terms of SOC of the battery:
[image: image]
Subsequently, based on Eqs 5, 6, the relationship between the battery’s cycle life, discharge depth, and SOH can be derived.
[image: image]
It can be observed in Eq. 7 that with an increase in discharge depth, the rate of change of SOH also accelerates. In theory, by applying different DODs to batteries with varying health states, the SOH of different batteries will eventually converge to a single curve.
In order to achieve the goal of SOH balance, we consider the SOH states of two batteries, denoted as i and j. Let’s assume these two batteries have different initial SOH values. Their instantaneous SOH can be represented as:
[image: image]
From Figure 5 and Eq. 8, it can be observed that with specific cycle numbers and the application of varying DODs to different batteries, when certain conditions for DOD application are met, the SOH levels among the batteries tend to converge.
[image: Figure 5]FIGURE 5 | The relationship between DOD, Cycle times and SOH.
The subsequent algorithms, while ensuring final SOH balance, essentially coordinate the simultaneous achievement of a particular SOH equilibrium level by each battery, as will be detailed in the following sections.
3 CONTROL STRATEGIES
3.1 DQN control framework
The control framework of this article is depicted in Figure 6. It consists of two neural networks with an identical structure and an experience replay module, commonly referred to as the agent. The experience replay area generally stores data collected from the environment, where each data entry includes a tuple of state, action, reward, and the next action. Data sampled from the experience replay is usually shuffled randomly to disrupt the correlations between the data. Due to the efficient access characteristics of experience replay, the DQN algorithm does not need to rely on real-time generated data every time, which reduces the demands on computational resources.
[image: Figure 6]FIGURE 6 | System Block Diagram.
In addition, The two neural networks are known as the evaluation neural network and the target neural network. The evaluation neural network updates its parameters through loss gradient descent and backpropagation after each decision by the agent. Meanwhile, the parameters of the target neural network are copied from the evaluation network every C steps. The evaluation neural network chooses the next action based on its maximum value at each decision of the agent. This action is then fed back into the environment for further decisions.
The entire system forms a closed-loop control, allowing the agent not only to learn an existing control strategy from historical data offline but also to update the control strategy parameters through interaction with the environment. The algorithmic steps used in training the intelligent agent are summarized in Algorithm 1.
3.2 Details of the DQN network for the agent
3.2.1 State apace
The proposed agent’s state space consists of thirty state values, which include the SOC, SOH, and switch state for each of the ten batteries. These values are represented as: [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image] S
3.2.2 Action space
Behavior of individual battery [image: image] can be represented using a Boolean matrix [image: image].
[image: image]
It is worth noting that here, in Eq. 9 “ai” serves as both the set of actions that each switch can take and can also be stored as a state value in the state space. The previously mentioned SS1, SS2, [image: image] , SS10 represent the individual states that a switch can have. For example, for a specific individual battery, the state of SSi (i ranges from 1 to 10) is jointly determined by S11 and S11′ as illustrated in Figure 2.
3.2.3 Reward space
The smaller the difference in SOH among the batteries, the better the balance performance. During the SOH balance phase, let us define the reward at time t as [image: image]in Eq. 10:
[image: image]
A total reward R for one episode is defined as in Eq. 11:
[image: image]
T represents the number of switch actions taken in one episode.
3.2.4 Learning process
The experience replay memory stores environmental state information collected from the environment. During the training process of the neural network, a batch of data is sampled from the experience replay buffer. The current state value‘s' and action value ‘a' are passed to the evaluation neural network, and the resulting next state value after taking the current action is passed to the target neural network for forward propagation. The evaluation neural network calculates the loss gradient based on the Q-values and rewards from the target neural network and performs backpropagation to update network parameters, gradually seeking the optimal policy. The number of input neurons in the neural network corresponds to the quantity of elements in the state space. The configuration of hidden neurons is typically predetermined and can be adjusted based on experimental results. The number of output neurons corresponds to the number of possible actions, and the output values represent Q-values, indicating the maximum value of the current action.
The loss function is defined as follows in Eq. 12:
[image: image]
The gradient value for gradient descent is in Eq. 13:
[image: image]
The update of the network parameters is
[image: image]
where in Eq. 14, α is the learning rate, generally in the range between 0 and 1.
The target neural network does not undergo backpropagation; its weight parameters are periodically copied from the evaluation neural network every few training steps.
3.2.5 Decision-making process
Based on the neural network training in the learning process, there are typically many possible actions for the current state. However, taking different actions leads to different output values from the neural network. The agent selects the action with the highest Q-value output and applies it to the environment for the environment to make control decisions.
Algorithm 1. DQN Algorithm.
: 1 Initalize Experience Replay memory D to capacity N;
: 2 Initialize behavior network with random parameter W= [image: image];
: 3 Initialize target network with parameter [image: image] = W;i
: 4 for episode = 1,M do
: 5  Initialize sequence [image: image] = {s};
: 6  for t =1,T do
: 7   With probability ε select a random action [image: image];
: 8   otherwise, select [image: image] = [image: image]
: 9   Execute action [image: image] in environment and update [image: image]
: 10   observe reward [image: image] and state [image: image];
: 11   Store transition ([image: image], [image: image], [image: image], [image: image]) in D;
: 12   Experience Replay
: 13   Sample a batch of (S,A,R,S_) randomly from D;
: 14   Set [image: image] = [image: image] [image: image]
: 15   Perform a gradient descent step on [image: image];
: 16   Calculate the update parameter [image: image]_ = [image: image] + Δ [image: image];
: 17   Update the behavior network parameter [image: image] = [image: image]_
: 18   Update of target network
: 19   Replace [image: image] = [image: image] every C steps;
: 20   End for
: 21 End for
3.2.6 Detailed implement in a DRB system
In a DRB system, the battery state is taken as the observation state, and the switch control sequence is taken as the control target. Reward value [image: image] is derived from evaluating state S.
During the training process, the goal of DQN is to minimize the error between the estimated Q-values and the target Q-values, gradually learning a more accurate action-value function. This enables the agent to make wiser decisions to maximize the cumulative reward. While in the testing phase, the trained DQN is used to make decisions in the environment. During testing, the agent employs its learned Q-values to choose actions in different states.
In concrete terms, if the state values of the DRB system at a specific moment are transmitted to the DQN agent, we can obtain the optimal switch control strategy for the system at that particular state.
Furthermore, to better leverage the advantages of the DQN algorithm and achieve a higher level of SOH balance, we have introduced an additional evaluation criterion into the testing results of DQN. When the system meets the specified criterion, we consider that the balance of SOH has achieved satisfactory results. This condition is also permissible for practical system deployment.
Here, we define a new indicator ε, where ε can be calculated in Eq. 15 as follows:
[image: image]
ε reflects the degree of difference between the SOH of each battery at a specific moment and its mean. A smaller ε indicates that the SOH balance has reached a higher level at that moment.
Meanwhile, the criterion for considering that the SOH has achieved a good balance is as follows in Eq. 16:
[image: image]
In the actual simulation scenarios, We can set a 5% deviation band, and theoretically, during the interval from the first entry to the first exit of ε into this deviation band, we can randomly choose a termination time for the algorithm. Furthermore, if we select the minimum value of ε as the termination criterion, it will result in the best SOH balancing effect.
4 SIMULATION EXPERIMENT PARAMETERS AND INITIAL VALUE SETTINGS
The simulation experiments were conducted in the Gym environment developed by OpenAI (OpenAI, 2023). Here, Gym is a toolkit tailored for reinforcement learning algorithms, aiming to furnish researchers and developers with a standardized interface, facilitating the seamless design, implementation, and evaluation of diverse reinforcement learning algorithms.
Initially, a battery discharge model was set up in the configured environment. Then, using the reinforcement learning DQN algorithm, appropriate simulation parameters were set to facilitate the training and testing processes. The neural network parameters and hyperparameters during the training process are shown in Tables 1, 2. In order to better demonstrate the effectiveness of the DQN algorithm, Table 3 provides the initial values of the battery state information during the algorithm’s testing phase.
TABLE 1 | Neural network parameters.
[image: Table 1]TABLE 2 | Algorithmic hyperparameters.
[image: Table 2]TABLE 3 | Initial value Configuration.
[image: Table 3]Due to the computational demands of the DQN algorithm in solving optimal control strategies, a certain amount of computing resources, typically GPUs, is needed to accelerate the training process, especially for complex tasks. However, in the simulated experiments conducted in this study, the training process is not aimed at achieving an exceptionally fast training speed. The simulations are run on a personal Huawei laptop equipped with an AMD Ryzen 7 3700U processor.
5 SIMULATION RESULTS AND DISCUSSION
In this section, we evaluated the proposed control framework based on simulation experiments. We compared the proposed control method with traditional methods by analyzing battery discharge curves under the proposed method and assessed the performance advantages.
5.1 Simulation results
According to Eq. 7, it can be observed that the decay of SOH for individual batteries is related to the number of cycles and the depth of discharge. If a specific number of cycles is set, such as 300 cycles in this simulation, the DQN algorithm will eventually converge to a certain SOH level. As shown in Figure 7 and Figure 8, to achieve better practical simulation results, we selected the process from the initial value to the 40th step based on the changes in values of Ɛ as our control strategy according to the 5% criteria.
[image: Figure 7]FIGURE 7 | SOH variation profile.
[image: Figure 8]FIGURE 8 | The value of Ɛ at each episode step in the DQN Algorithm.
In the task of SOH balancing, the main objective of the control strategy is to achieve the desired DOD for each battery within a predetermined number of cycles. The reduction curve of SOC within a single cycle, as shown in Figure 9, also reflects the switching control process to achieve this control goal. Figure 10 displays the state changes of the 10 switches in achieving the expected DOD. A state value of 1 indicates that the switch controls the insertion of the corresponding battery, while a state value of 0 indicates the removal of the corresponding battery at that time. The corresponding insertion and removal principles and processes are illustrated in Figures 2, 3.
[image: Figure 9]FIGURE 9 | SOC variation profile.
[image: Figure 10]FIGURE 10 | Switch Control Waveform.
Once a control strategy for a cycle is determined, theoretically, in the real DRB system, this strategy will be repeated for a set of numbers to achieve the balance of SOH.
5.2 Performance analysis
Figure 11 shows the change in episode rewards during our training process. Figures 11A, B represent the changes in reward values and reward variance values, respectively. The reward values gradually converge to a relatively stable value as the training episodes increase. The variance of rewards is initially large at the beginning of an episode but gradually decreases to a smaller level. When the reward values stabilize, the variance of rewards also stabilizes at a smaller level, indicating that the training process has reached a good level of performance at this point. Figure 11 also reflects, from a certain perspective, the learning process of the agent: in the initial stages of learning, the agent may be completely unfamiliar with the environment and undergo exploratory actions. Over time, the intelligent agent gradually learns the patterns of the environment, the strategy becomes stable, and both the reward and its variance decrease, ultimately reaching stability.
[image: Figure 11]FIGURE 11 | Variations in Reward and Reward Variance over episodes: (A) Reward; (B) Reward Variance.
To better illustrate the advantages of the DQN algorithm combined with SOH balancing theory, we conducted a simulation comparison between the SOH balancing under the DQN algorithm and the traditional fixed series-parallel configuration (Li et al., 2018).
As shown in Figure 12A, the initial variance and range of SOH correspondingly match the variance and range at cycle times = 300, being 13.43% and 12%, respectively. This indicates that the traditional fixed series-parallel topology is not effective in addressing the issue of SOH balance. Batteries with lower SOH will reach retirement levels prematurely, thereby reducing the cycle life of the battery system.
[image: Figure 12]FIGURE 12 | SOH degradation Curves: (A) Conventional Approach, (B) Proposed Method.
In contrast, as shown in Figure 12B, our approach, utilizing DQN and the principle of SOH balance as features, is capable of reducing the initial SOH variance from 13.43 to 0.21 and decreasing the SOH range from 12% to 1.56%. This significantly reduces the variability among batteries when reaching or approaching a certain ideal DOD level. For example, in this case, the SOH imbalance, represented by the variance, is reduced by 87%. Consequently, by reducing this variability among batteries, our method plays a crucial role in enhancing the overall cycle life of the entire DRB system, contributing significantly to energy efficiency.
5.3 Further discussions
While our method has indeed achieved outstanding results in achieving the goal of SOH balance, Figure 9 indicates that this balance obtained at the expense of sacrificing SOC balance, posing a challenging and difficult-to-reconcile issue. Our future work will attempt to comprehensively address the balance between SOC and SOH from alternative perspectives. Meanwhile, We will fully consider the challenges presented in achieving a balance between SOC and SOH, and focus on deploying the DQN algorithm in a real DRB system.
6 CONCLUSION
This paper introduces a DOD-SOH balancing method for DRB system based on the DQN algorithm in deep reinforcement learning. The proposed intelligent agent progresses from initially having no knowledge of the system’s environmental features to gaining a profound understanding of the system’s operational procedures. First of all, we presents a simple dynamic reconfigurable battery topology, and analyzes the process of battery insertion and removal. Subsequently, by utilizing the principles of SOH for equilibrium, our work combines the balancing process with the advantages of the DQN algorithm in seeking the optimal decision sequence. Finally, Simulation results indicate that our method exhibits a significant advantage over traditional methods in reducing the disparity in SOH among batteries. Future work will be geared toward the deployment of the proposed method in practical systems, aiming to bridge the gap between the theoretical framework and real-world application.
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