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The safety of battery energy storage systems (BES) is of paramount importance
for societal development and the wellbeing of the people. This is particularly true
for retired batteries, as their performance degradation increases the likelihood of
thermal runaway occurrences. Existing early warning methods for BES thermal
runaway face two main challenges: mechanism-based research methods only
consider a single operating state, making their application and promotion
difficult; while data-driven methods based on supervised learning struggle
with limited sample sizes. To address these issues, this paper proposes a data-
driven early warning method for BES thermal runaway. The method utilizes
unsupervised learning to create a framework that measures BES differences
through reconstruction errors, enabling effective handling of limited samples.
Additionally, ensemble learning is employed to enhance the method’s stability
and quantify the probability of BES experiencing thermal runaway. To accurately
capture the time-varying behaviors of BES, such as voltage, temperature, current,
and state of charge (SOC), and detect performance differences in BES before and
after thermal runaway, a bidirectional long short-term memory (Bi-LSTM)
network with an attention mechanism is utilized. This approach effectively
extracts features from training data. Subsequently, a Case study was
conducted using the actual operation data of retired lithium batteries to verify
the effectiveness of the proposed method.
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1 Introduction

Currently, lithium battery are primarily used in electric vehicles and energy storage
stations. With the large-scale promotion of electric vehicles and energy storage stations, as
well as the secondary use of retired lithium batteries, incidents of combustion and
explosions caused by thermal runaway of lithium battery are not uncommon.
According to incomplete statistics, there have been 32 fire and explosion incidents
caused by thermal runaway in energy storage stations globally over the past decade.
The combustion or explosion of lithium battery in energy systems poses a significant threat
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to the national economy and people’s lives. The National Renewable
Energy Lab (Doughty, 2012; Wang et al., 2012) considers early
warning of lithium-ion battery thermal runaway as an important
measure to safeguard people’s lives and property. Retired batteries
have a shorter lifespan compared to operating batteries. As
cascading or reusing retired lithium battery is an important
measure to improve the full life cycle utilization rate of lithium
battery, retired batteries are more likely to approach the end of
thermal runaway. Therefore, early warning of thermal runaway in
retired batteries can ensure the personal safety of users.

The causes of lithium-ion battery thermal runaway can be
divided into three categories: mechanical failure, electrical failure
(Wen et al., 2012; Spotnitz et al., 2003), and thermal failure, with a
common factor being internal short circuit (Zheng et al., 2013). The
development time scale of internal short circuits in lithium battery,
including retired batteries, can be as long as several hundred hours
(Feng et al., 2014; Barnett, 2014). Initial symptoms may not be
apparent, while the final stage can potentially lead to combustion
and explosions within a short period of time. Therefore, the issue of
thermal runaway prevention and control warning is of great
significance. To solve the problem of thermal runaway
prevention and control warning, the mainstream methods in
academia are divided into three categories: experimental-based,
model-based, and data-driven. Experimental-based methods can
determine the temperature safety boundaries of batteries and
guide battery system design. However, the accuracy of the
experimental method depends on a large number of experiments
(Feng et al., 2018), which can be unsafe and costly, making it difficult
to promote and apply. Model-based methods mainly indirectly warn
of thermal runaway by estimating the temperature rise, voltage
change, or temperature distribution of the battery (Shah et al., 2016;
Chalise et al., 2017; Ren et al., 2018). The advantage of this method is
that the physical meaning is clear, but the disadvantage is that it is
more suitable for a relatively simple working condition and may not
be applicable to complex and variable real-world conditions (Chen
et al., 2011; Ping et al., 2014).

The data-driven approach is one of the emerging research
hotspots in this field. By using historical data, data models can
be established to analyze the relationship between lithium battery
voltage, temperature, current, SOC, and its thermal runaway. Its
advantage is that it can reflect the real working conditions of the
battery and avoid the study of the complex electrochemical
mechanism inside the lithium battery. Currently, data-driven
methods are mostly supervised methods, and the research idea is
to obtain thermal runaway lithium battery data under specific
working conditions through experimental methods, and use it as
a label to train neural network models to distinguish the thermal
runaway situation of lithium batteries (Fang et al., 2012; Hussein and
Chehade, 2020). However, the above-mentioned supervised
methods have the following problems: although there is a large
amount of operational data for lithium batteries, the proportion of
thermal runaway battery data is small, resulting in a small sample
problem and low model accuracy. Literature (Ding et al., 2021) have
used similarity theory to construct more thermal runaway data,
which has alleviated the problem of small samples to some extent.
However, the thermally runaway data constructed by theory differs
from the actual data, which affects the accuracy of the model.
Therefore, supervised methods have limitations in this problem.

Unsupervised methods can learn from unlabeled data sets and are
insensitive to imbalanced data. This method is suitable for the
problem of abnormal judgment of lithium batteries containing a
large number of normal samples. In literature (Yi and Xu, 2021),
unsupervisedmethods were used for battery fault diagnosis, mainly by
classifying batteries based on feature distances. However, the
differences between lithium batteries in the mid to pre-thermal
runaway stages and normal batteries are very small, as shown in
Figures 1, 2. In the figures, thermal runaway battery data is labeled in
red and blue, while normal battery data is labeled in gray. Using a
simple distance calculationmethod for unsupervised clusteringmakes
it difficult to distinguish thermal runaway lithium batteries. The
current challenge is how to effectively extract the temporal
characteristics (this paper regards the time-varying data
information of potential thermal runaway batteries running for a
long-time scale as temporal characteristics) of lithium battery voltage,
temperature, SOC and other data during the thermal runaway
process, and efficiently excavate the differences in features between
thermal runaway lithium batteries and normal batteries, in order to
improve model accuracy. The time series modeling of LSTM has been
applied in the field of predicting the lifespan of automotive batteries,
but it has not addressed the issue of thermal runaway of retired
batteries (Ma et al., 2023a; Ma et al., 2023b). The concept of
reconstruction error has made progress in other fields of anomaly
detection (Hundman et al., 2018; Sakurada and Yairi, 2014).

FIGURE 1
Battery voltage versus time curve.

FIGURE 2
Battery temperature versus time curve.
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This paper proposes a data-driven lithium battery thermal runaway
early warning method based on reconstruction error calculation to
address the aforementioned problems. Firstly, an unsupervised and
ensemble learning-based framework for data-driven electrochemical
lithium battery thermal runaway early warning is established, and the
accuracy of this framework depends on the feature extraction ability of
the basic model. To this end, a lithium battery data features extraction

method based on Bi-LSTM and attention mechanism is proposed. The
method aims to identify potential thermally unstable lithium batteries
under long-term real working conditions, and has a wider range of
applications compared to traditional mechanism-based methods (such
as repeated charge and discharge) for identifying thermally unstable
batteries under single working conditions. In essence, supervised
learning methods require a typical form of data pattern, but the
mechanism of thermal runaway in decommissioned batteries is
complex, and there is no uniform trend in the abnormal
performance of multidimensional data. However, normal batteries
do not lack training samples. The unsupervised learning method
proposed in this article is to train a large number of normal battery
data to form a model, and the cumulative amount of reconstruction
error calculated by the model for thermal runaway batteries is
significantly increased. Therefore, the method proposed in this
article has a good early warning effect on the thermal runaway
problem of decommissioned batteries. The effectiveness of the
proposed method is verified by the real operating data of electric
vehicle lithium batteries. The proposed method in this paper is also
applicable to the thermal runaway early warning of retired lithium
batteries. The main contributions of this article are as follows:

1) Establish a lithium battery thermal runaway early warning
framework based on unsupervised and ensemble learning,
which can effectively deal with the problem of small sample
size. Firstly, the reconstruction error of lithium battery time
series data is used to define the degree of difference between
batteries, and the idea of using small reconstruction error for
normal data and large reconstruction error for abnormal data
is used to construct a reconstruction error-based basic model.
Furthermore, an unsupervised learning-based electrochemical
lithium battery thermal runaway early warning ensemble
framework is established to quantify the probability of
lithium battery thermal runaway, enhance model stability,
and enable the basic model to accurately select thermally
unstable lithium batteries in different validation sets.

2) Propose a lithium battery data feature extractionmethod based
on Bi-LSTM and attention mechanism. Firstly, a lithium
battery parameter time series feature extraction method
based on Bi-LSTM is proposed, which effectively extracts
the time-varying characteristics of lithium battery voltage,
temperature, SOC, and other data during the thermal
runaway process. Based on this, an attention mechanism-
based data mining algorithm is proposed to solve the
problem of different importance of each dimension data at
different times, realize the differentiated weight learning of
various lithium battery data at different times, and further
reduce the missed diagnosis and misdiagnosis of the basic
model for thermally unstable lithium batteries.

2 A basic model for theramal runaway
failure warning of retired batteries
based on reconstruction error
calculation

The core idea of unsupervised learning is to mine potential rules
in unlabeled data sets, so as to classify data. The reconstruction error

FIGURE 3
Basic model for thermal runaway early warning of BES.

FIGURE 4
Basic model of BES feature extraction based on Bi-LSTM.
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FIGURE 5
Ensemble learning model for thermal runaway warning of energy storage battery based on bagging algorithm.

FIGURE 6
Data-driven thermal runaway early warning algorithm process of BES.

TABLE 1 Comparison of multiple warning methods for thermal runaway failure of retired batteries.

Comparison method Comparison purpose

M0, M1 Verify the advantages of the basic model over the unsupervised clustering method based on distance calculation

M1, M2 Verify the stability advantage of the ensemble model compared to the basic model

M2, M3, M4 Verify the effectiveness of the energy storage battery thermal runaway failure warning method based on Bi-LSTM and attention
mechanism

M4, M5 Verify the effectiveness of the thermal runaway failure warning method for retired batteries based on ensemble optimization
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is an important classification basis of unsupervised learning method.
The reconstruction error is obtained by calculating the difference
between the original data and the reconstructed data (Figure 3). This
paper uses unsupervised learning to measure the risk of thermal
runaway failure of retired batteries. Its ideas are as follows: First, use
the operating data of normal batteries to train the basic model;
Subsequently, the operating status of the battery is determined by
measuring the reconstruction error of the data to be determined.
During the abnormal detection process of the battery to be tested,
due to the difference between the thermal runaway failed battery
data and the normal data used for training, the reconstruction error
of the detection is relatively large; The normal battery data is close to
the training samples, and the test reconstruction error is relatively
small. Therefore, the reconstruction error of the battery data to be
tested can serve as a criterion for determining whether the battery
has thermal runaway failure.

The operating status of retired batteries can be described by
variables such as battery voltage (V), current (I), state of charge
(SOC), temperature (T), etc. These variables can be monitored in
real-time through the Battery Management System (BMS). Due to
the different dimensions and significant numerical differences of
these variables, in order to ensure the training accuracy of the basic
reconstruction model, it is necessary to first standardize the data of
the energy storage battery samples. Due to the influence of changes
in battery physical state on retired batteries, there may be some
extreme data that deviates from the sample mean, and the z-score
standardization method utilizes the overall information of the
sample, which is less affected by extreme data. Therefore, this
article chooses the z-score standardization method. The z-score
standardization method utilizes sample mean and standard
deviation for data preprocessing, as shown in Equation 1:

x* � x − xμ

xσ
(1)

where x is the sample value to be normalized, x* represents the
normalized sample value, xμ represents the mean of the sample,

xσ represents the standard deviation of the sample, This thesis
uses standardized variables as input feature vectors for the
basic model.

The input vector of the basic model for thermal runaway
failure warning of retired batteries can be recorded as
Xin � [V , SOC, I,T,M], where Xin is the input data, This data
contains the voltage vector V , battery pack state of charge vector
SOC, total current vector I, temperature vector T, and statistical
variables of energy storage battery cellsM. Each vector contains a
time series, taking the total voltage as an example,
V � [V1, ...Vt, ...VN], where Vt represents the total voltage
value at time t in the time series, and N represents the total
duration. Due to the fact that a set of retired batteries usually
contains multiple battery cells, this article uses statistical
methods to characterize the voltage characteristics of the cells,
that is, M contains statistical variables such as voltage variance,
mean, maximum, and minimum values of all cells in a set of
battery data. The output is the reconstructed data of the input
features, which can be written as X̂out � [V̂ , SÔC, Î, T̂, M̂], The
dimensions of the input and output variables are equal. The
optimization objective of the model training process is to
minimize the reconstruction error of input and output data, as
shown in Equation 2:

TABLE 2 Comparison of warning effects for thermal runaway failure
between M0 and M1.

Model ACC/
%

PRE/
%

REC/
%

F1 False negative

M0 78.6 0 0 0 Yes

M1 92.9 50 100 0.67 No

TABLE 3 Comparison of warning effects for thermal runaway failure between M1 and M2.

Model Numer of tests ACC/% PRE/% REC/% F1/% Sort Total time/s

M1 1 85.7 25 50 0.33 3, 5 6.4

2 92.9 50 100 0.67 1, 2 6.9

3 85.7 25 50 0.33 2, 5 5.3

M2 1 92.9 50 100 0.67 1, 4 86.7

2 92.9 50 100 0.67 1, 3 90.1

3 92.9 50 100 0.67 1, 3 89.6

FIGURE 7
The top 10 early warning probability values of early warning
probability.
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min J Xin, X̂out( ) � 1
m
∑N
t�1
∑m
i�1

xin,i,t − xout,i,t( )2 (2)

where J is the reconstruction error between input data Xin and
output data Xout , m is the number of dimensions for Xin and Xout ,
xin,i,t are the element value at time t of the ith dimension in Xin,
xout,i,t is the element value at time t of the ith dimension in Xout .
After the above basic model training is completed, it can be used to
determine the thermal runaway failure of the energy storage battery
to be detected. The reconstruction error of the energy storage battery
to be tested is obtained through basic model calculation, and the
discrimination rule is shown in Equation 3:

y � 1, J′ Xin
′ , X̂out

′( )≥K

0, J′ Xin
′ , X̂out

′( )<K

⎧⎨⎩ (3)

Where Xin
′ represents the input of a certain energy storage

battery to be judged; X̂out
′ represents the output of a certain energy

storage battery to be judged; y represents the judgment result of the
basic model on the energy storage battery to be judged; K
represents the threshold for determining whether thermal
runaway failure has occurred; J′ represents the reconstruction

error of the sample to be judged calculated from the basic model. If
the reconstruction error J′ is greater than or equal to the set
threshold K, the energy storage battery is judged as thermal
runaway failure and assigned a value of 1; If the reconstruction
error J′ is less than the set threshold K, the energy storage battery is
judged as normal and assigned a value of 0. This article obtains the
corresponding reconstruction error set by training different
normal battery samples, and calculates the average value and
standard deviation of this set. Generally, the reconstruction
error at three standard deviations greater than the average value
should be selected as the threshold. However, the safety of retired
batteries is particularly important, as high threshold values can
easily lead to thermal runaway failure of retired batteries; If the
reconstruction error value at one standard deviation greater than
the average value is used as the threshold K, it will cause too many
normal retired batteries to be judged as abnormal. In summary,
this article selects the reconstruction error value at exactly two
standard deviations greater than the average value as the
threshold K.

To illustrate the importance of various characteristic parameters
of self-initiated thermal runaway failure, a basic model was used and
the reconstruction errors of known thermal runaway failure battery
voltage (V), current (I), state of charge (SOC), temperature (T), and
statistical variables (M) were calculated using Equations 4–8:

J′V Vin
′ , V̂out

′( ) � ∑N
t�1

vin,t
′ − vout,t

′( )2 (4)

y � JSOC
′ SOCin

′ , SÔCout
′( ) � ∑N

t�1
socin,t

′ − socout,t
′( )2 (5)

J′I Iin
′ , Îout

′( ) � ∑N
t�1

iin,i
′ − iout,t

′( )2 (6)

J′T Tin
′ , T̂out

′( ) � ∑N
t�1

Tin,t
′ − Tout,t

′( )2 (7)

J′M Min
′ , M̂out

′( ) � ∑N
t�1

min,t
′ −mout,t

′( )2 (8)

Taking Equation 4 as an example: vin,t′ is the element value at
time t in Vin

′; vout,t′ is the element value at time t in V̂out
′. Sum the

above reconstruction errors to obtain the reconstruction error of the
battery, as shown in Equation 9.

J′X � J′V + JSOC
′ + J′I + J′T + J′M (9)

Calculate the ratio of the reconstruction error of each feature to
the total reconstruction error J′X of the battery to obtain the

TABLE 6 Performance comparison of integrated models before and after optimization.

Model Number of models ACC/% REC/% False negative

Ensemble optimization (M5) 12 93 100 No

Random ensemble 1(M4) 12 93 100 No

Random ensemble 2(M4) 12 86 50 Yes

Random ensemble 3(M4) 12 86 50 Yes

Original ensemble (M4) 24 86 100 No

TABLE 4 Performance comparison of integrationmodels based on different
learning strategies.

Model ACC/
%

PRE/
%

REC/
%

F1/
%

False
negative

M2 92.9 50 100 0.67 No

M3 85.7 25 50 0.33 Yes

M4 92.9 50 100 0.67 No

TABLE 5 Early warning probability and sequencing of thermal runaway
energy storage battery.

Faulty battery Model P% Sort

Faulty battery 1 M2 85 4

M3 45 8

M4 90 1

Faulty battery 2 M2 75 3

M3 70 4

M4 80 2
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distribution proportion of the reconstruction error. Taking the
proportion of voltage reconstruction error as an example, as
shown in Equation 10:

αV � J′V/J′X (10)

Where αV is the proportion of voltage reconstruction error. Due
to the normalization of the reconstruction errors in the calculation
of various characteristic parameters of the battery, the proportion of
reconstruction errors in each feature can to some extent reflect the
cause of thermal runaway failure of the battery.

3 A thermal runaway failure warning
method for energy storage battery
based on Bi-LSTM and
attention mechanism

To effectively enhance the feature extraction capability of the
basic model, this section proposes an energy storage battery thermal
runaway failure warning method based on Bidirectional Long Short-
Term Memory (Bi-LSTM) and attention mechanism. The thermal
runaway failure process of retired batteries often involves a time
span of several hundred hours. Therefore, during the process of data
reconstruction, the basic model needs to have the ability to handle
long-term span information (Graves, 2012). Bi-LSTM (Cong et al.,
2018) can effectively capture the features of long-term-span
information, so this paper uses Bi-LSTM as the basic model. Its
structure is shown in Figure 4 and is obtained by combining two
layers of long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks. The output of the hidden layer at
time t can be calculated by Equations 11–13.

ht � LSTM Vt, It, SOCt, Tt,Mt, ht−1( ) (11)
hi � LSTM Vt, It, SOCt, Tt,Mt, hi−1( ) (12)

h′t � atht + bthi + ct (13)

Where LSTM(·) represents the operation process of the LSTM
network, and ht represents the forward hidden layer output at time t
calculated using the input variables Vt, It, SOCt Tt Mt and the
previous hidden layer output ht−1. The calculation of the forward
hidden layer output takes into consideration the influence of past
hidden layer outputs on the current hidden layer output, as indicated by
the blue circle in Figure 4. hi represents the backward hidden layer

FIGURE 8
Effect comparison of thermal runaway warning models before and after optimization.

FIGURE 9
Reconstruction error distribution of No. 1 thermal
runaway battery.
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output at time t calculated using the input variablesVt, It, SOCt Tt Mt

and the next backward hidden layer output hi−1. The calculation
considers the influence of future hidden layer outputs on the
current hidden layer output, as indicated by the red circle in
Figure 4. Bi-LSTM uses the reconstruction error in Equation 2 as
the loss function and updates the network’s hidden layer output h′t
using Equation 13, represented by the yellow circle in Figure 4.

When calculating the accumulated reconstruction error of
energy storage battery data during a specific period N, the
relative importance of each input variable in the reconstruction
error at the current time can differ. Directly adding up the
reconstruction error of the multi-dimensional time series of
retired batteries as if it were single variable time series data can
result in inaccurate anomaly detection. Thus, it is necessary to assign
dynamic weights to the Bi-LSTM hidden layer concerning changing
times. The attention mechanism can learn differences in the weight
of features at different time points in time-series data (Kuo and
Huang, 2018; Feng et al., 2020). Therefore, this section adds an
attention mechanism layer to the Bi-LSTM-based reconstruction
model, represented by the colorful circles in Figure 4, which assigns
different weight coefficients to feature vectors after passing through
the attentionmechanism layer. The input features of each time point
in the basic model for thermal runaway failure warning of retired
batteries undergo weight distribution using the attention
mechanism. The resulting hidden layer output is updated and
represents new inputs, h″t which use Equation 14.

h″t � Ath
′
t (14)

Where At represents the weight matrix of the attention
mechanism layer, and the elements αi,j in At are calculated using
the similarity formula in Equation 15:

αi,j �
exp hi,t′ hj,t′( )
∑l
j�1
exp hi,t′ hj,t′( ) (15)

Where hi,t′ and hj,t′ represent the ith and jth elements of the Bi-
LSTM hidden layer output h′t at time t, and l is the dimension of the
hidden layer output. Finally, the outputs V̂t, Ît, SÔCt, T̂t, M̂t are

obtained through a fully connected layer, which are represented by
the top green circle in Figure 4.

In summary, to effectively extract the data features of energy
storage battery group, including voltage (V), current (I), state of
charge (SOC), temperature (T), and battery cell voltage variance,
mean, maximum, and minimum values, this study comprehensively
considers the time-series characteristics of energy storage battery
operating data and the differentiation in feature weights. This
expands the difference between the reconstruction errors of
normal energy storage battery data and those experiencing
thermal runaway and failure while calculating reconstruction
error, further improving the accuracy of thermal runaway warning.

4 A thermal runaway failure warning
method of retired batteries based on
ensemble learning

The stability of the basic model for thermal runaway failure
warning of retired batteries is defined as whether the model can
accurately select the batteries that have experienced thermal
runaway and failure in different test datasets. Due to the
significant influence of the input sample set on the basic model
parameters described in Section 3, it is challenging to ensure the
stability of the basic model. As the basic model will be used multiple
times in the thermal runaway failure warning of retired batteries, its
insufficient stability would increase the probability of misjudgment
and omission during certain warning processes (Shi and Zhang,
2019). Ensemble learning (Bahdanau et al., 2014) uses the judgment
results of multiple basic models to evaluate thermal runaway failure,
which can enhance the stability of the model. Therefore, to ensure
the stability of the basic model, this section further establishes an
ensemble learning model for thermal runaway failure warning of
retired batteries based on bagging algorithm. In ensemble learning, a
multi-model training strategy is usually adopted to solve specific
problems, which combines multiple basic models to construct a
more precise and robust ensemble model while retaining their
respective advantages. The core assumption of this strategy is
that when combining basic models reasonably, the overall

FIGURE 10
Reconstruction error distribution of No. 2 thermal runaway battery.
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performance of the model can be further improved while retaining
their strengths. The bagging algorithm in the ensemble model
typically trains basic models independently and in parallel, and
combine them by some deterministic averaging process. This is
shown in Figure 5. By integrating the discriminant results of
multiple basic models trained from different normal energy
storage battery sample sets, the probability of thermal runaway
failure P can be obtained as shown in Equation 16.

P � ∑n
k�1

yk/n (16)

Where P represents the probability of the energy storage battery
being identified as experiencing thermal runaway and failure; yk is the
judgment result of the kth basic model for the energy storage battery,
which can be calculated using Equation 3; and n is the total number of
basic models. The architecture of the basic models in the ensemble
model shown in Figure 5 is the same, and they are trained on different
normal energy storage battery data sets, with a total of n sample sets.

The ensemble stability mentioned in this paper can be described
by the variance of the probability P calculated by the ensemble model
(Friedman et al., 2021), denoted by σE, as shown in Equation 17:

σE � Var ∑n
k�1

yk/n⎛⎝ ⎞⎠ � ρσ2 + 1 − ρ( )σ2/n (17)

Where the average correlation between the basic models can be set
to ρ, the variance of the discriminant results of each basic model is σ2,
and the variance of the ensemble model’s discriminant result is
negatively correlated with n, such that a larger n leads to smaller
variance and greater stability of the model. In practice, due to limited
sample data, the value of n in this study is determined based on the
actual situation of the sample set.

The energy storage battery thermal runaway failure warning
model based on the bagging algorithm uses the idea of ensemble
learning to train a corresponding number of thermal runaway failure
warning ensemble models by synthesizing multiple normal energy
storage battery data of the same type, and calculates the thermal
runaway failure warning probability using Equation 16. Therefore, the
accuracy of energy storage battery safety warning depends on the
accuracy of the ensemble model. However, the above method cannot
determine the optimal ensemble model, as there is no standard for
selecting the basic models that make up the ensemble model. To
determine the best ensemble model, we need to first understand the
relationship between the accuracy of the basic models, the diversity of
the basic models and the accuracy of the ensemble model. The error-
divergence theory provides a theoretical basis for selecting the best
ensemble model by describing the relationship between the accuracy
of the ensemblemodel and the basic models. Specifically, using n basic
models h1, ..., hi, ..., hn to form an ensemble model, the output is
obtained through weighted averaging, as shown in Equation 18:

H x( ) � ∑T
i�1
wihi x( ) (18)

Where wi represents the weight of basic model hi, subject to

constraints wi ≥ 0 and ∑n
i�1
wi � 1. Given a sample x, the

divergence of the ith basic model can be defined as:

A hi|x( ) � hi x( ) −H x( )( )2 (19)
Where H(x) represents the output of the ensemble model.

The divergence of the ensemble model can be defined as the
weighted average of the divergences of the basic models:

�A h|x( ) � ∑n
i�1
wi hi x( ) −H x( )( )2 (20)

Clearly, differences define the variation of the base model on the
sample.While there aremultiple definitions of error, this papermeasures
the error of the basemodel usingmean squared error. Assuming that the
true discrimination result of sample x is f(x), the errors of the base
model hi(x) and ensemble model H(x) can be expressed as follows:

E hi|x( ) � f x( ) − hi x( )( )2 (21)
E H|x( ) � f x( ) −H x( )( )2 (22)

The weighted average error of all the base models on the overall
sample can be represented as follows:

�E h|x( ) � ∑n
i�1
wi f x( ) − hi x( )( )2 (23)

By rearranging Equation 20:

�A h|x( ) � ∑n
i�1
wi hi x( ) −H x( )( )2

� ∑n
i�1
wi hi x( ) − f x( ) + f x( ) −H x( )( )2

� ∑n
i�1
wi hi x( ) − f x( )( )2 +∑n

i�1
wi f x( ) −H x( )( )2+

2∑n
i�1
wi hi x( )f x( ) − hi x( )H x( ) + f x( )H x( ) − f x( )( )2( )

(24)
Combining Equations 18–22 and constraint∑n

i�1
wi � 1, Equation

24 can be further transformed to:

∑n
i�1
wi hi x( ) − f x( )( )2 +∑n

i�1
wi f x( ) −H x( )( )2+

2∑n
i�1
wihi x( ) f x( ) −H x( )( ) + 2f x( ) H x( ) − f x( )( )

� �E h|x( ) − E H|x( )

(25)

Simplifying the above equation results in:

E H|x( ) � �E h|x( ) − �A h|x( ) (26)
According to Equation 26, the error of the ensemble model is

determined by the weighted average of all the base models on the
overall sample and the weighted average of the divergence of the
base model. The second item on the right-hand side of the equation
is positive and subtracted from the first item, which theoretically
ensures that the error after integration is lower than the weighted
average error of the base model. Moreover, the higher the accuracy
of each base model, and the greater their differences, the higher the
accuracy of the integrated model. Therefore, to further optimize the
warning model for thermal runaway failure of retired batteries based
on the bagging algorithm, this subsection adopts the integrated
model optimization method proposed in [70] based on the
conclusion obtained from Equation 26. Given M basic models
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and m battery samples waiting for discrimination, the
discrimination results are recorded in matrix P, and the element
Pij in the ith row and jth column of P is shown as Equation 27:

Pij �
0, basical model Correct  judgment of   j
on  energy  storage battery  sample  i
1, basical model Wrong  judgment of   j
on  energy  storage battery  sample  i

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (27)

Let U � PTP, then the diagonal elements Uii of U represent the
number of times the base model Uii makes an incorrect judgment,
reflecting the weighted average error of all the basemodels on the overall
sample, while the off-diagonal elements Uij,i≠j represent the number of
times both the base models hi and hj make a mistake simultaneously,
reflecting the divergence of the ensemble model. Therefore, U contains
the errors of each base model as well as their divergence, enabling
effective measurement of the error of the integrated model. Normalize
the elements in U using Equation 28. According to the definition of the
integrated model error in Equation 26, the integrated model performs
best when each element in ~U is minimized.

~Uij �
Uii

m
, i � j

1
2

Uij

Uii
+ Uij

Ujj
( ), i ≠ j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (28)

Where m is the number of samples to be discriminated. The
optimization problem of the integrated model can be transformed
into the following quadratic integer programming problem:

min
x

F � xT ~Ux (29)

s.t.∑M
i�1
xi � s (30)

xi � 0, 1{ } (31)

Where the binary scalar xi indicates whether the ith base model is
selected for the integratedmodel, and parameter s denotes the optimized
size of the integratedmodel. Thus, based on the theoretical foundation of
determining the optimal integratedmodel using equation 26, a quadratic
integer programming model can be established by Equations 27–31 to
find the optimal warning model for thermal runaway failure of retired
batteries with a given integrated model size.

In summary, this section proposes a thermal runaway warning
method for retired batteries based on ensemble learning. Firstly, the
probability of thermal runaway and failure of batteries is quantified
using ensemble learning, and a thermal runaway failure warning
method for retired batteries based on the bagging algorithm is
proposed to ensure the stability of the algorithm. Then, a
warning method for thermal runaway failure of retired batteries
is proposed based on ensemble optimization, which can select the
optimal integrated model to further improve the warning accuracy
under the premise of reducing the size of the integrated model.

5Warning process for thermal runaway
failure of retired batteries

This paper proposes a data-driven thermal runaway warning
method for retired batteries. The overall flowchart is shown in
Figure 6, and the specific steps are described as follows:

Step 1: Data preprocessing
Firstly, to eliminate the impact of different units on the

calculation of reconstruction errors, normalization is performed
on different dimensional features x3 using Equation 1 to obtain x*.
Then, multi-dimensional time-series feature vectors Xin are
constructed using the method in Section 2. Finally, n normal
battery data sets in the data set are used as n training sets, and
the remaining battery data set is used as the test set.

Step 2: Model training
Firstly, based on the feature mining method for energy storage

battery data using Bi-LSTM and attentionmechanism, a basic model
is constructed including Equations 2, 3 and Equations 11–15. Then,
n basic models are sequentially trained based on n training sets
obtained in Step 1. The reconstruction error set is obtained, and the
reconstruction error threshold K is calculated from the
reconstruction error set. Finally, an ensemble model is formed by
combining the n basic models according to the method in Section 4.

Step 3: Model optimization
Firstly, the optimization objective of the ensemble model is

designed according to Equations 27–29. Then, given the optimized
size of the ensemble model, the optimal combination of the
ensemble model with a given size s is determined using the
branch and bound method based on the quadratic integer
programming model in Section 4.

Step 4: Calculation of the samples to be judged
A given energy storage battery sample to be judged is input into

the ensemble model. Eq. 2 is used to calculate the reconstruction
error J′ of the sample, and it is compared with the given
reconstruction error threshold K. The output K (0/1) of each
basic model is determined, and the warning probability P is
calculated using Equation 16. The warning probability threshold
can be set as a variable for different industrial requirements and can
be selected based on different safety/economic considerations. This
paper regards retired batteries with a warning probability threshold
exceeding 70% as potentially thermally runaway-failed batteries.

6 Example analysis

Due to a significant proportion of retired batteries being present
in the thermal runaway batteries, this study employs retired lithium
battery for the numerical simulation tests. This paper collected
actual retired batteries data from a domestic company, involving
48 batteries in total, including voltage, current, state of charge,
temperature, and other data for each group of batteries. The time
span is about half a year for all data sets, with a sampling frequency
of 0.1 Hz. Two groups of retired batteries caused combustion due to
thermal runaway failure. All simulation examples in this chapter
were tested on hardware with an Intel(R) Core (TM) i7-9750H CPU
@2.60GHz and 24 GB RAM.

This paper will compare the following methods (M0-M5), as
shown in Table 1. M1 is the basic model of this paper’s proposed
unsupervised learning energy storage battery thermal runaway
warning model based on reconstruction error calculation. The
model uses Bi-LSTM, with 2 hidden layers, and 32 neurons per
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layer. The initial learning rate is set to 0.001, and the optimizer used
is Adaptive Moment Estimation (ADAM). M2-M4 are the proposed
ensemble models without optimization, and M5 is this paper’s
proposed energy storage battery thermal runaway failure warning
method based on ensemble optimization.

M0: Unsupervised clustering method based on K-means;
M1: Energy storage battery thermal runaway failure warning

model based on reconstruction error calculation (as the basic
model). The model uses Bi-LSTM with 2 hidden layers,
32 neurons per layer, an initial learning rate of 0.001, and the
ADAM optimizer (Kingma and Ba, 2014);

M2: The basic model is M1, and an ensemble learning
framework is further adopted to form the ensemble model;

M3: The ensemble model framework is the same as M2, but the
basic model uses a fully connected neural network with 2 hidden
layers, 32 neurons per layer, an initial learning rate of 0.001, and the
ADAM optimizer;

M4: The same as M2, but the basic model is a Bi-LSTM network
with an added attention mechanism;

M5: The same as M4, but after optimization of the basic model
selection in the ensemble model through a quadratic integer
programming model.

This paper evaluates the algorithm performance using
commonly used industrial metrics, as shown in Equations 32–35:

ACC � TP + TN( )/ TP + TN + FP + FN( ) (32)
PRE � TP/ TP + FP( ) (33)
REC � TP/ TP + FN( ) (34)

F1 � 2 × PRE × REC/ PRE + REC( ) (35)

Where TP represents the number of samples where the true value is
considered positive, while the model considers it positive, FN represents
the number of samples whose true values are considered positive, while
themodel considers themnegative, FP represents the number of samples
considered negative by the true value, while themodel considers positive
by the model, TN represents the number of samples whose true value is
considered negative, while the model considers negative, TP/TN
represents the number of positive samples predicted correctly or
negative samples predicted correctly, and FP/FN represents the
number of negative samples predicted as positive or positive samples
predicted as negative. ACC is accuracy; PRE is precision; REC is recall;
F1 is the harmonic mean of precision and recall, which can
simultaneously consider the precision and recall of the classification
model. All of these indices have a bettermodel classification performance
when the values are larger. In addition, this paper sets up the sorting
index for battery thermal runaway failure warning, which calculates the
warning probability of all batteries in the same test set, sorts the
probability values in descending order, records the probability rank
values of the two known thermal runaway failure batteries, and the
smaller the rank value of the thermal runaway failure battery, the better
the model performance.

6.1 Validation of effectiveness for thermal
runaway failure warning of retired batteries

To compare the effects of the basic model for the thermal runaway
failure warning of retired batteries based on unsupervised learning

and the unsupervised clustering method based on distance
calculation, M0 and M1 were compared. The following example
was set: M1 randomly selected 20 sets of normal energy storage
battery samples out of 48 groups of battery data as the training set and
used the remaining 28 sets of energy storage battery data (including
two sets of thermal runaway failure batteries) as the test set. M0 used
the same test set data values as M1 and conducted direct clustering
analysis on the test set, and the results are shown in Table 2.

The accuracy of the M1 method was 14.3% higher than that of the
M0method, and the recall rate of theM1method reached 100%, which
means no true thermal runaway failure energy storage battery was
missed. The recall rate of M0 was 0%, and all true thermal runaway
failure retired batteries weremissed. These results indicate that there is a
weak difference between the data of retired batteries in the early and
middle stages of thermal runaway failure and normal batteries, and it is
difficult to distinguish thermal runaway failure retired batteries using
only a simple distance calculation method for unsupervised clustering.
This also validates the effectiveness of the proposed basic model M1 in
this paper.

6.2 Validation of effectiveness for ensemble
models of thermal runaway failure warning
of retired batteries based on
bagging algorithm

Ensemble models can improve the stability of basic models. In
order to illustrate the stability performance of the ensemble model, this
section compared the warning indicators of M1 and M2. The training
set and test set of M1 were the same as those in Section 1, while the
training set and test set of M2 were the same as those inM1, except that
M2 used each set of normal battery data to train a basic model, resulting
in 20 basic models in total. M1 and M2 were tested three times each
with different 20 sets of normal battery data randomly selected as the
training set, and the remaining 28 batteries (including two sets of
thermal runaway failure batteries) were used as the test set. The training
set and test set of M2 were consistent with those of M1 in each test.

According to Table 3, for the basic model M1, the evaluation
indicators varied greatly in the three tests, and the accuracy was low in
the first and third evaluations while high in the second evaluation. In
contrast, the evaluation indicators of the ensemble model M2 were
consistently high in all three tests, and except for a slight fluctuation in
the warning ranking value of thermal runaway failure batteries, other
indicators remained unchanged. These results demonstrate that the
ensemble model for the thermal runaway failure warning of retired
batteries has higher stability compared to the basic model. Although
the total time required for training and testing for M2 is longer than
that for M1, the time spent at the hundred-second level does not
significantly influence the thermal runaway failure warning compared
to the long-term use of batteries. Thus, this section verifies the stability
advantage of the ensemble model over the basic model.

6.3 Validation of the effectiveness of thermal
runaway failure warning method for energy

Storage Batteries Based on Bi-LSTM and Attention Mechanism
The accurate feature mining method for energy storage battery data
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aims to improve the accuracy of each basic model in the integrated
model. In order to demonstrate the improvement in model accuracy
of this method, the following experiment was conducted:
M2 randomly selected 20 sets of normal energy storage battery
samples out of 48 groups of battery data as the training set and used
the remaining 28 sets of energy storage battery data (including two
sets of thermal runaway failure batteries) as the test set. The training
set and test sets of M3 and M4 were the same as those of M2. The
results are shown in Tables 4, 5, and Figure 7.

According to Table 4, since M2 and M4 considered the
temporal features of data, there was no missing detection of
thermal runaway failure retired batteries, and the classification
accuracy, precision, and recall rates increased by 7.2%, 25%, and
50%, respectively, compared to M3. To further explain the
advantage of the method proposed in this paper, M4 was
analyzed for warning probability and sorting index for thermal
runaway failure retired batteries. According to Table 5, for
thermal runaway failure retired batteries, M3 had a warning
probability of only 45% and 70% for the two groups of thermal
runaway failure retired batteries, and the above two groups were
ranked only 8 and 4 in terms of thermal runaway failure
probability among 28 retired batteries. Compared with M3,
M2 and M4 significantly improved the warning probability of
the two groups of thermal runaway failure retired batteries to 75%,
85%, and 80%, 90%, respectively. Further comparison between
M2 and M4 shows that the attention mechanism set in
M4 effectively improved the model accuracy.

To further illustrate the difference in warning probability
between thermal runaway failure and normal batteries in the
prediction results of M4, the warning probability values for the
top 10 ranked cases in the test set were compared and shown in
Figure 7. The red bars with warning probability values higher than
represent thermal runaway failure batteries, while the blue bars with
warning probability values lower than represent normal batteries.
According to Figure 7, there was a significant difference in warning
probability values between the third-ranked normal energy storage
battery and the thermal runaway failure battery. This result
demonstrates the effectiveness of M4.

6.4 Validation of the effectiveness of thermal
runaway failure warning method for retired
batteries based on ensemble optimization

The ensemble optimization-based thermal runaway failure
warning method proposed in this chapter aims to provide the
optimal ensemble model based on error-divergence theory, given
a fixed ensemble model size. In order to demonstrate the
improvement in prediction accuracy of the ensemble model using
this method, the following experiment was conducted: M4 randomly
selected 24 sets of normal energy storage battery samples out of
48 groups of battery data as the training set (the original ensemble
model), and used the remaining 24 sets of energy storage battery
data (including two sets of thermal runaway failure batteries) as the
test set. The optimized ensemble model size was set to 12, and as a
control group, three models with a size of 12 were randomly selected
from the 24 training sets for combination, with the test set
unchanged. The results are shown in Table 6 and Figure 8.

According to Table 6, compared with the original ensemble
model (M4), the ensemble optimization method (M5) achieved
higher accuracy with the same number of ensemble models. It
performed better than random ensemble 2 and 3, without any
missed detection of thermal runaway failure batteries, and had
higher accuracy and recall rates. To further illustrate the
effectiveness of the optimized model, the warning probability
values of batteries with high warning probabilities in different
models were compared in Figure 8. Batteries labeled 1 and 2 are
real thermal runaway failure batteries, and batteries labeled 3, 4, 5,
and 6 have high warning probabilities and are normal batteries. As
shown in Figure 8, both real thermal runaway failure batteries were
calculated to have a thermal runaway failure warning probability
value of 100% by the optimized model, which is significantly higher
than that of the original model and random ensemble models with
the same size. In summary, ensemble optimization improved the
accuracy of the original model and performed even better than
random ensemble models.

6.5 Importance analysis of various features
of thermal runaway failure batteries

Using M5, the reconstruction errors and percentages of each
feature were calculated for two sets of thermal runaway failure
batteries according to Equations 4–10, as shown in Figures 9, 10.
The darker the color in the figure, the larger the percentage. From
the figures, it can be seen that the reconstruction errors of the two
sets of thermal runaway failure batteries are mainly distributed
among three factors: voltage, temperature, and SOC. In
particular, voltage has the largest impact on the overall
reconstruction error, accounting for 34.99% and 42.87%
respectively for the two sets, indicating that voltage is the
most important factor.

6.6 Conclusion

To address the issue of ineffective warning for thermal runaway
failure of retired batteries, this paper proposes a data-driven thermal
runaway failure warning method for retired batteries and validates
the effectiveness of the proposed method using real operational data
from a company’s retired batteries. First, the paper establishes a
basic model for thermal runaway failure warning of retired batteries
based on reconstruction error calculation, which defines the degree
of difference between batteries using their reconstruction errors and
forms a discriminant model. By comparing the basic model with
K-means clustering method, the study demonstrates that the
reconstructed basic model is effective in identifying thermal
runaway failure batteries. Second, the paper proposes a thermal
runaway failure warning method for retired batteries based on Bi-
LSTM and attention mechanism, which effectively extracts dynamic
features of voltage, temperature, SOC, etc., during the thermal
runaway failure process, and uses attention mechanism to
improve the basic model by learning differentiated weights of
various parameters at different time intervals, thereby reducing
false negatives and false positives of the ensemble model for
thermal runaway failure batteries. Furthermore, the paper
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proposes an ensemble learning-based thermal runaway failure
warning method for retired batteries, which quantifies the
probability of thermal runaway failure and reduces the variance
of the ensemble model while ensuring its accuracy, compared with
the basic model. Finally, the study proposes an ensemble
optimization-based thermal runaway failure warning method for
retired batteries, which optimizes the original model given a fixed
ensemble model size and achieves higher accuracy than random
ensemble models. This paper proposes a precise warning method for
thermal runaway failure of retired batteries, which helps ensure the
safe and reliable operation of energy storage battery systems at the
safety level. The proposed method is applicable to thermal runaway
warning of lithium batteries, including retired batteries. From the
perspective of data requirements, the method can utilize time-series
data from batteries under various operating conditions such as
charging, discharging, and storage in any combination. This
makes it easier to generalize and apply compared to mechanism
research methods.

This article studies the precise warning method for the thermal
runaway problem of energy storage batteries, which has certain
practical significance. From the perspective of data requirements,
the time-series data of energy storage batteries required by this
method can be arbitrarily combined with various working
conditions (charging, discharging, static, etc.), making it more
easy to expand compared with mechanistic research methods. In
addition, for the accurate description of the time and degree of
thermal runaway in thermal runaway warning problems, this article
will continue to explore in subsequent studies.
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