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With the increasing proportion of renewable energy, the power system inertia
decreases, and the operation uncertainty rises. It brings concerns about the
system frequency and operational reliability. However, the impacts of the
power system frequency performance on the reliability parameters of
generation units have not been fully investigated. This paper studies the
frequency performance and the operational reliability co-evaluation for power
systems considering wind turbines. Firstly, a power system frequency regulation
model is established considering the regulation capability of wind turbines. Then,
the cluster of equivalent wind turbines is incorporated into the frequency
regulation architecture of thermal power units, which accelerates the analysis
of frequency performance. Then, the frequency performance of the power system
with the participation of wind turbines under the operation uncertainty and the
unit random faults is quantitatively analyzed. A frequency-dependent generator
reliability parameter model is derived. Next, a multi-time scale co-evaluation
framework is proposed to realize the co-evaluation of frequency performance
and operational reliability. Case studies are carried out on the modified IEEE RTS-
79 system and a provincial power system. Results show that compared with the
existing research, the proposed method can obtain the frequency performance
and reliability results efficiently.
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1 Introduction

In line with China’s “Carbon Peak and Carbon Neutrality” policy, the installed capacity
of renewable energy units is expected to experience further growth. As stated in the National
Development and Reform Commission’s report ‘China’s Renewable Energy Development in
2022"(National development and reform commission of China, 2022), China’s renewable
energy installed capacity is projected to reach 1.2 billion kilowatts by 2022, accounting for
47.3% of the country’s total power generation. This will result in a total renewable energy
power generation of 2.7 trillion kW hours, representing 31.6% of the total electricity
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consumption in society. The State Grid Energy Institute has
reported that China’s wind and solar installed capacity is
forecasted to reach 5 billion kilowatts by 2060, constituting over
65% of the total installed capacity (Lin et al., 2022a). Wind power,
being the most mature and cost-effective renewable energy
technology currently, is anticipated to witness a five-fold increase
in installed capacity by 2060. Consequently, renewable energy will
become the primary source of electricity supply in China.

The increasing integration of renewable energy sources, coupled
with the retirement of conventional synchronous units like thermal
power plants, has led to heightened uncertainty in the power supply
of the electrical grid. Consequently, the system’s inertia has
decreased, posing challenges to the frequency security and
operational reliability of the power system (Lin et al., 2023). One
potential solution to address this issue is to involve wind power
generators in economic dispatch and frequency regulation services
(Zhang et al., 2022; Lei et al., 2022; Tang et al., 2022). In line with
China’s “Guidelines for Power System Safety and Stability”
implemented on 1 July 2020, wind power generators are required
to possess primary frequency regulation capabilities, with a higher
priority assigned to primary frequency regulation than automatic
power generation control (National Power Grid Operation And
Control Standardization Technical Committee, 2023). It is
foreseeable that wind power generators, as an increasingly
significant energy source in modern power systems, will assume
more substantial responsibilities in peak load management and
frequency regulation.

The expansion of wind power generators integrated into the power
grid leads to system frequency fluctuations, thereby influencing unit
operation and dispatch as well as potentially impacting unit outage
probabilities (Wu et al., 2023). Consequently, the operational and
maintenance costs of the power system are likely to increase (Yang
et al., 2020). Notably, augmented frequency fluctuations can trigger
protective actions, such as frequency protection measures or even
generator tripping, which are considered reliability events (Zhou et
al., 2021). To illustrate this point, the British blackout incident inAugust
2019 serves as an example. The rapid decline in system frequency,
resulting from transmission line and wind turbine failures, prompted
the activation of frequency protection mechanisms in distributed
generators, leading to their shutdown. This further exacerbated the
frequency drop, ultimately necessitating the activation of the system’s
low-frequency load-shedding mechanism. Consequently,
approximately 931MW of load was disconnected, resulting in the
shutdown of local industries and commerce, paralyzing transportation,
and incurring significant economic losses (Owens, 2019). These events
demonstrate the interconnected nature of system frequency
performance and operational reliability. Therefore, it becomes
imperative to conduct a comprehensive assessment of the power
system’s operational reliability level and frequency performance.

Various studies have investigated methods for assessing the
operational reliability of power systems considering the uncertainty
of wind power. Thesemethods include analytical approaches (Sharifinia
et al., 2020), time-series Markov Monte Carlo methods (Chao et al.,
2019), and Monte Carlo hybrid sampling methods (Ding, 2022; Li,
2013; Wu and Wang, 2023) is a pioneering work in the reliability
evaluation for integrated electricity-gas systems considering hydrogen.
(Ding et al., 2021). provides a comprehensive study for the operational
reliability assessment of the integrated heat and electricity system. (Hu

et al., 2021). focuses on the power system operational reliability
assessment considering the decision-dependent uncertainty. These
studies propose an efficient reliability evaluation method for power
systems. However, they overlook the impact of frequency performance
on system reliability and fail to comprehensively capture the interplay
between frequency performance and reliability parameters. The
uncertainty in wind power output directly leads to increased system
frequency fluctuations. Then the protection device of the generation
units may be triggered and even result in generator trips, which are
considered reliability events. These events ultimately affect the outage
probability of generating units and consequently impact the results of
power system operational reliability assessments (Kundur and
Malik, 2022).

Currently, there are a limited number of studies that address the
comprehensive assessment of power system frequency performance
and operational reliability. A collaborative frequency regulation
architecture combining battery energy storage and generators is
proposed in (Farivar et al., 2022) to achieve a comprehensive
evaluation of frequency performance and operational reliability.
(Ye et al., 2023). presents a comprehensive evaluation method
considering the frequency performance reliability of
interconnected power systems, considering the characteristics of
high-voltage DC transmission. These studies primarily analyze the
impact of frequency regulation on the output power of generators,
overlooking the influence of system frequency performance on the
reliability parameters of the generation units. Moreover, they fail to
adequately consider the frequency regulation capabilities of wind
turbine clusters and neglect factors such as the wake effect of wind
turbine clusters, leading to overly optimistic reliability assessment
results (Wang et al., 2020).

This study aims to address the coupling effect between power
system frequency performance and generator unit reliability
parameters. Contributions of this paper are.

1) Propose an analytical expression of the frequency-dependent
reliability parameters for generation units. The frequency
performance of the power system is quantitatively analyzed
under load uncertainty and random unit failures.

2) Formulate a comprehensive assessment method that
incorporates the frequency regulation capability of wind
turbine clusters, which enables the comprehensive evaluation
of secondary frequency dynamics and hour-level power system
operational reliability.

3) Numerical examples are conducted using the modified IEEE
RTS-79 system and a provincial power system to validate the
accuracy of the proposed method. The results obtained from this
research contribute to the verification of the method’s
effectiveness and provide valuable insights for secondary
frequency control and reliability optimization efforts.

The rest of this manuscript is organized as follows. Section 1
introduces the frequency regulation model of wind turbine
clusters. Section 2 proposes the frequency-dependent reliability
parameters of generation units and the power system operational
reliability assessment model. Section 3 formulates the power
system frequency-reliability comprehensive assessment
framework. Case studies are illustrated in Section 4. Section 5
concludes this paper.
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2 Frequency regulation model of wind
turbine clusters

2.1 Frequency regulation model of doubly-
fed induction wind turbine

Doubly-fed induction generator converters (DFIG) wind
turbines consist of several essential components, including wind
turbines, mechanical systems, generators, converters, controllers,
and associated devices, as shown in Figure 1. The primary function
of the wind turbine component is to extract energy from the wind
and convert it into mechanical energy. This mechanical energy is
subsequently transmitted through the mechanical system, enabling
the rotation of the generator. The generator, an induction machine
in this case, converts the mechanical energy into electrical energy. To
achieve variable speed constant frequency power generation, a
converter is interconnected with the rotor of the generator. The
converter plays a crucial role in regulating the excitation current
frequency of the rotor, thereby maintaining a constant stator
frequency. Through this control mechanism, the DFIG can
operate at varying speeds while ensuring a consistent frequency
of the generated electrical power.

To provide frequency regulation services, DFIG works in sub-
optimal power point tracking mode. In this mode, the DFIG reserves
a certain amount of wind power and collects the frequency deviation
of the power system Δf and frequency change rate df/dt to adjust
its output. The wind turbine output power PWG can be established as
a piece-wise nonlinear function of the wind turbine rotor speed wG

(Lin et al., 2022b):

PWG �

Kw3
0 wG − wmin( )
w0 − wmin( ) , wmin <wG <w0

Kw3
G, w0 ≤wG ≤w1

Pm −Kw3
1( ) wG − wmax( )

wmax − w1( ) + Pm, w1 <wG <wmax

Pm, wG ≥wmax

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where wmin represents the starting speed of the fan rotor; w0

represents the rotor speed in the constant speed zone of the fan;

wmax represents the speed at which the DFIG enters the constant
power zone; Pm represents the maximum output power of the DFIG;
K is the power tracking coefficient. The value of the power tracking
coefficient K depends on the power system frequency deviation Δf
and frequency change rate df/dt such that

K � Kmax uOPPT − ΔuOPPT( ) (2)
where Kmax is the power tracking coefficient of the DFIG operating
in the maximum power tracking mode; uOPPT is the virtual inertia
factor of the DFIG; ΔuOPPT is the correction coefficient of the virtual
inertia factor of the DFIG. The relationship between the virtual
inertia factor uOPPT and power system frequency deviation Δf is

uOOPT � w3
G0 wG0 + 2πcΔf

p
( )−1

(3)

where wG0 is the rotor speed when the wind turbine participates in
frequency regulation; c is the virtual inertia coefficient of the wind
turbine; p is the number of pole pairs of the wind turbine.

The relationship between the wind turbine virtual inertia factor
correction coefficient and the power system frequency change rate is
(Shafi et al., 2020)

ΔuOPPT � 2wG0w−1
s cHf

Kmaxw3
G

· w2
G − w 2

min

w 2
max − w 2

min

· df
dt

(4)

where ws is the grid synchronous rotor speed; H is the equivalent
inertia time constant of the DFIG.

ΔPWT � 2
ωG0

ωs
cH( )fdf

dt
(5)

Figure 2 shows the relationship between the output power of the
wind turbine, the rotor speed, and the wind speed based on Eqs 1–5.
It is assumed that before the disturbance occurs, the wind turbine
operates at point A. When the system frequency decreases, the
frequency changes, i.e., Δf< 0. According to Equation 3 and
Equation 2, the virtual inertia factor of the wind turbine uOOPT
decreases. Then the power tracking coefficient K increases and the
wind turbine operating curve changes from the purple curve in
Figure 2 to the red curve. The operating point moves from point A to

FIGURE 1
The structure of the wind turbine.

Frontiers in Energy Research frontiersin.org03

Liu et al. 10.3389/fenrg.2023.1334565

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1334565


B point, thereby increasing the output power of the wind turbine
PWG. Under this circumstance, the input mechanical power of the
wind turbine remains at the level of point A. Therefore, the wind
turbine will only work at point B for a short time. Then slowly fall
back to point C where the input mechanical power and output
electromagnetic power are balanced. Point C is not the optimal
operating point at this wind speed. In consideration of the operating
economy, the output power of the wind turbine will be adjusted back
to operating point A. The moving trajectories of the wind turbine’s
working points are A, B, C, and A in sequence. Figure 3 shows the
frequency regulation model of a single wind turbine.

2.2 Frequency regulation model of wind
turbine cluster considering wake effects

Since the frequency regulation capability of a single wind turbine
is weak, clusters of wind turbines often participate in power system
frequency regulation. In wind turbine clusters, the wake effect refers
to the phenomenon that upstream wind turbines absorb part of the
wind energy, thereby affecting the wind speed of downstream wind
turbines. Ignoring this phenomenon will lead to overly optimistic
evaluation results of power system frequency performance and

reliability. This paper uses the common Jensen model to
characterize the wake effect in wind turbine clusters (Zhao et al.,
2021), as shown in Figure 4.

In Figure 4, vi is the wind speed of the upstream fan; vj is the
wind speed of the down-stream fan; ri is the blade radius of the
upstream fan; α is the wake drop coefficient; Ri represents the
influence range of the wake, satisfying Ri = ri + α xij; xij
represents the up-stream wind turbine unit i and the
downstream. The distance between wind turbines j along the
wind direction. Part of the wind energy of the downstream wind
turbine j is blocked by the upstream wind turbine i, and the blocked
area is recorded as Sij. Sj is the wind-catching area of wind turbine j.
The downstream affected area increases as the attenuation
coefficient α increases. The wind speed reaching the downstream
wind turbine j is not only affected by the upstream wind turbine i
directly in front of it, but also by other upstream wind turbines.

Based on the Jensen model, the wind speed vj of the downstream
wind turbine can be estimated as

vj � βjvi (6)

βj � 1 −∑n
i�1

1 − �����
1 − Ci

√( ) r2i Sij
R2
i Sj

(7)

where Ci is the thrust coefficient of the upstream fan i, which is
related to the operating status of the fan i itself; n is the total number
of upstream fans of the fan j. βj is the wake effect coefficient of wind
turbine j, which comprehensively reflects the influence of the wake
effect. The smaller βj is, the greater the wake effect will be, and the
weaker the frequency modulation ability of the downstream
fan will be.

When a wind turbine cluster contains hundreds or even
thousands of wind turbines, it is impossible to analyze the
frequency regulation capabilities of the units under the influence
of the wake effect and its impact on system reliability. Therefore, this
paper proposes a clustering method based on the wake effect
coefficient to classify wind turbine clusters according to the wake
effect coefficient of each wind turbine. The classification number is
A, B, C,/, and the corresponding wind turbine set is recorded as
ΩA,ΩB,/ . Wind turbines of the same type do not affect each other,
but the output of wind turbines of different types is affected by the
wind turbines of the previous type. If wind turbines of the same type

FIGURE 2
The relationship among the output power of the wind turbine,
the rotor speed, and the wind speed.

FIGURE 3
Frequency regulation model of a single wind turbine.
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are subjected to the same wind speed, the thrust coefficients of the
turbines Ci are the same.

Since the influence coefficient of the wake effect is nonlinearly
related to factors such as the spatial position of the wind turbine,
blade size, relative distance, etc., it presents characteristics of
randomness and convexity that are difficult to guarantee.
Therefore, this paper uses a density-based clustering algorithm
with the wake effect coefficient as the core index to solve the
problem of overestimation of wind turbine frequency regulation
capabilities and power system operational reliability assessment
caused by inaccurate clustering of wind turbines and inaccurate
wind speed estimation. The problem with being too optimistic.

After the clustering is completed, the withstand wind speed of
each type of wind turbine can be calculated. For example, the wind
speed of Class B wind turbines is affected by the wake effect caused
by Class A wind turbines. The wind speed is recorded as vj,B, which
can be expressed as

vj,B � βj,BvA (8)

βj,B � 1 − ∑
i∈ΩA

1 − ������
1 − CA

√( ) r2i Sij
R2
i Sj

[ ] (9)

where vA is the wind speed of class A wind turbine; CA is the thrust
coefficient of class A wind turbine; βj,B is the wake effect influence
coefficient of wind turbine j belonging to class B under the influence
of the wake effect of class A wind turbine. The wind turbine cluster
frequency regulation model considering the wake effect is shown in
Figure 5 based on Eqs 6–9.

3 Power system operational reliability
assessment model

3.1 Power system frequency
regulation model

By incorporating the wind turbine cluster frequency regulation
model, a wind turbine cluster-thermal power collaborative
frequency regulation model is obtained, as shown in Figure 6.

The collaborative frequency regulation model between wind
turbine clusters and thermal power units, as depicted in Figure 6,
incorporates various factors such as the reserve capacity, ramping
power limit of the thermal power unit, and the frequency regulation
module of the wind turbine cluster. This model facilitates the
transition from isolated analysis to integrated evaluation of these
two distinct resource types, thereby extending the assessment
framework. Each symbol in Figure 6 is explained as follows: R is
the equivalent coefficient of the governor of the reheated thermal
power generation unit; TCG is the equivalent time constant of the
governor; TCH is the equivalent time constant of the steam chamber;
FHP is the high-pressure power of the steam turbine. TRH is the steam
turbine equivalent time constant. ΔPCG is the thermal power unit
output change. MCG is the system load-damping coefficient. TCG is
the system inertia equivalent constant. A is the system frequency
deviation factor, satisfying A = D + 1/R. System power deficit ΔPD

caused by wind power output fluctuations ΔPDW , unit failuresΔPDC

, and load fluctuations ΔPDL; that is, ΔPD � ΔPDW + ΔPDC + ΔPDL.
Note that the set of thermal power units participating in

secondary frequency regulation is ΩCG. The set of thermal power
units with occasional failures isΩfault

CG . The set of thermal power units
operating normally is Ωnormal

CG . The output variation of the thermal
power generating unit can be expressed as

ΔPCG � ∑
i∈Ωnormal

CG

ΔPCG,i (10)

where ΔPCG,i is the output change amount of thermal power
generating unit i. The wind turbine cluster-thermal power
generation unit collaborative frequency regulation strategy is not
the research scope of this article. Thus, this article directly adopts the
frequency control strategy proposed in (Huang et al., 2023).

3.2 Frequency-dependent generator
reliability parameter model

The reliability parameters of the generator (such as outage
probability) are related to the health status of the generator, the

FIGURE 4
Schematic diagram of wake effect of wind turbine cluster based on Jensen model.
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FIGURE 5
Frequency regulation model of wind turbine cluster considering the wake effect.

FIGURE 6
Wind turbine cluster-thermal power coordinated frequency regulation model.
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external environment, and the system operating conditions.
Specifically, the reasons for the outage of the generating set may be.

1) Actual failure of the generating set due to aging, extreme high
temperature, or cold wave.

2) Abnormal operation of the system (such as frequency exceeding
the limit) causes the protection device to operate and power
generation The unit was not faulty but was removed from the
power grid, causing an outage in a nonfaulty state.

3) Human misoperation and protection malfunction.

When establishing a generator reliability parameter model, this
article focuses on the impact of reasons 1) and 2) on the generator
reliability parameters due to the low probability of human
misoperation and protection malfunction. The impact of reason
1) on the outage probability U of the generator is U1, and the impact
of reason 2) on the outage probability U of the generator is U2. Since
reasons 1) and 2) are independent events, the probability of
generator outage satisfies

U � U1 + U2 − U1U2 (11)
The Weibull model is used to describe the influence of the aging

degree of the generator on the probability of outage of the generator
and the probability of outage due to aging ΔtG after the generator
continues to operate for tG years is obtained

U1 �
∫tG+ΔtG
tG

β·tβ−1
αβ

e−
t
α( )βdt

∫∞
tG

β·tβ−1
αβ

e−
t
α( )βdt

(12)

where t is the running time of the generator in years; α is the size
parameter of the generator; β is the shape parameter of the
generator. α and β jointly reflect the impact of the aging degree
of the generator on the outage rate.

Analyze the impact of reason 2) on the outage rate of generating
units. The generator is equipped with a complete and sensitive relay
protection system to ensure that the generator operates within a
reasonable frequency range. When the generator operates within the
low-frequency/high-frequency protection threshold range of the
generator, the frequency does not affect the probability of outage
of the generator. The probability of an outage of the generator is
linked to the aging degree of the generator. Currently, U2 = 0 and
U = U1. When the generator reaches the protection threshold of the
generator frequency protection device, the protection device starts,
and the generator is cut off from the grid. Although the generator is
not faulty currently, it does not helpmaintain the power balance. For
the power grid, the generator is equivalent to being out of service
currently. Under this circumstance, the generator outage probability
is 1, U = U2 = 1. In the context where the system frequency falls
within the range of the normal value and the protection-action
value, a direct correlation exists between the probability of generator
failure and the frequency level, which can be expressed as Eq. 13

U f( ) �
U1 − 1( )f + fnormal

g,min − U1f
protect
g,min

fnormal
g,min − fprotect

g,min

fprotect
g,min ≤f≤fnormal

g,min

1 − U1( )f + U1fprotect
g,max − fnormal

g,max

fprotect
g,max − fnormal

g,max

fnormal
g,max ≤f≤fprotect

g,max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where f protects g, min and f protect g, max is the generator’s low-
and high-frequency protection action values. The generator will trip
when the frequency is f protect g, min or f protect g,max.

The two-state Markov model is used to describe the
reliability parameter model of the generator. Based on
calculating the probability of generator outage, the generator
outage rate can be determined. Since the generator outage
probability is related to the system frequency, without loss of
generality, note U � U(f). Then the generator outage rate can be
written as

λ f( ) � μ · U f( )
1 − U f( ) (14)

where μ is the repair rate of the generator (the unit is timed/year),
which is given by historical statistical data. Based on the Markov
limit state equation, it can be obtained that the steady-state
probability of the generator unit in normal operation is
μ/(λ(f) + μ), and the steady-state probability of the generator in
outage state is λ(f)/(λ(f) + μ).

3.3 Power system risk assessment indicators

This paper uses reliability indicators in terms of power and
probability to quantify the ability of the power system to meet
users’ power frequency quality and power demand, including 1)
expected energy not supplied (EENS), 2) expected indirect energy
not supplied (EIENS), 3) expected number of under-frequency
events (ENUF), 4) expected under frequency duration (EUFD),
5) probability of low-frequency events (LFEP) and 6) the
probability of the system recovering from the low-frequency
event (PRLFE). The detailed definitions of these metrics are
referred to Eqs 14–21.

1) EENS represents the risk of load loss in the power system within
a period and is the product of the probability of a load loss event
and the amount of load loss. Let the expected power shortage be
MEENS , which can be expressed as

MEENS � ∑
k∈S

pk · ΔPD − ΔPCG − ΔPWG( )TH (15)

where the set of loss-of-load events is S; the loss-of-load event is k;
the probability of occurrence of a loss-of-load event is pk; ΔPD −
ΔPCG − ΔPWG is the amount of load loss caused by source load
fluctuations and sporadic failures of generator units in the power
system; TH is the duration of the loss-of-load even.

2) EIENS represents insufficient power during the primary and
secondary frequency adjustment process. The power shortage
here does not appear as load loss but as a frequency deviation of
the power system. The indirect expected power shortage EIENS
is defined as

MEIENS � ∑
k∈S

pk · MIENS,k,1 +MIENS,k,2( ) (16)

where MIENS,k,1 and MIENS,k,2 respectively represent the indirect
power shortage reflected by the frequency deviation of the next and
secondary frequency modulation processes of event k. It is recorded
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that the system frequency deviation at the end of the first frequency
modulation is Δf1,end, the duration of the first frequency
modulation Δt1, and the corresponding active power deficit is
ΔP1,end. At the end of the second frequency modulation, the
system frequency deviation is Δf2,end; the duration of the second
frequency modulation is Δt2; and the corresponding active power
deficit is ΔP2,end. Then the indirect power shortage in the next
secondary frequency modulation process of event k MIENS,k,1 and
MIENS,k,2 satisfies

MIENS,k,1 � ΔP1,endΔt1 (17)
MIENS,k,2 � ΔP1,end − ΔP2,end

2
( ) Δt2 − Δt1( ) (18)

3) ENUF represents the number of frequency limit violations
within a period. The expectation of recording frequency
exceeding the limit is MENUF , which is defined as

MENUF � ∑
k∈S

pk ·NNUF,k (19)

where NNUF,k is the number of times the system frequency exceeds
the limit under event k, satisfyingNNUF,k ∈ 0, 1, 2{ }. If the frequency
limit does not occur in event k, then NNUF,k � 0. If the frequency
exceeds the limit and the frequency returns to a reasonable range
after the frequency adjustment process, then NNUF,k � 2; NNUF,k �
1 otherwise.

4) EUFD characterizes the duration of low-frequency phenomena
within a period. The expected duration of low frequency is
recorded as MEUFD, which is defined as

MEUFD � ∑
k∈S

pk · TUFD,k (20)

where TUFD,k is the duration of the low-frequency phenomenon in
event k.

5) LFEP is used to analyze the probability of low-frequency events
in the system. The probability of occurrence of low-frequency
events is recorded as MLFEP, which can be defined as

MLFEP � ∑
k∈SLFEP

pk (21)

where SLFEP is the set of events that recover from low frequency to a
reasonable frequency range.

4 Frequency-reliability comprehensive
assessment framework

This section proposes a multi-time scale power system
frequency performance-reliability comprehensive assessment
process to couple the power system frequency adjustment process
with the reliability assessment process. The evaluation process
includes three links: power system event generation, event
analysis, and indicator calculation.

This article employs the enumeration method to generate states
for analysis. In comparison to sequential and non-sequential Monte
Carlo methods, the enumeration method offers distinct advantages,
such as clearer physical interpretations and more precise
evaluation results.

In the state analysis process, the impact of the frequency
regulation process needs to be considered. Take an event k as an
example to illustrate. In event k, firstly, the power system
generates power imbalance ΔPD due to the source and load
uncertainty and sporadic failures of equipment such as
generating units. Subsequently, following the power imbalance,
two distinct effects arise. Firstly, the power imbalance triggers
frequency fluctuations within the power system, thereby
influencing the reliability parameters of the generator and
altering the event occurrence probability. Secondly, as per the
established control strategy, the power system engages in one or

FIGURE 7
The modified IEEE RTS-79 system.

Frontiers in Energy Research frontiersin.org08

Liu et al. 10.3389/fenrg.2023.1334565

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1334565


FIGURE 8
The improvement of the frequency performance with different wind speeds.

FIGURE 9
The wind speed of the wind turbine considering the wake effect.

TABLE 1 The parameters of the wind turbines.

Type Inertia constant (MWs) Ramping rate (MW/h) Frequency regulation coefficient (MW/Hz) Number

Wind Turbine — — — 681

U12 2.5 60 4.8 3

U20 3.0 80 8.2 2

U50 4.0 300 25 2

U76 4.5 304 33 2

U100 5.5 300 57 2

U155 6.5 620 79 2

U197 7.5 591 109 2

U350 8.5 350 200 1

U400 10 1,000 267 2
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two frequency regulations. This frequency regulation process, in
turn, generates an indirectly expected power shortage.
Consequently, the power imbalance after undergoing
frequency regulation is represented by ΔPD − ΔPCG − ΔPWG. If

the imbalance is not 0, the power system must reduce the load,
which occurs in the reliability event.

In the reliability metrics calculation process, the metrics are
calculated based on the indicator definition and event analysis results.

TABLE 2 Cluster results of wind turbines under different wind directions.

Wind direction Clustering results

0° Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–7 8–14 15–21 22–28 29–35 36–42

18° Area 1 Area 2 Area 3

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–15, 22, 29, 36 16–21 23–28 30, 37 31–35 39–42

32° Area 1 Area 2 Area 3

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–15, 22, 29, 36 16–21, 23, 30, 37 24–28 31, 38 32–35 39–42

45° Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–8, 15, 22, 29, 36 9–14, 16, 23, 30, 37 17–21, 24, 31, 38 25–28, 32, 39 33–35, 40 41, 42

FIGURE 10
Cluster results of wind turbines under different wind directions. (A) Thewind direction is 0°. (B) Thewind direction is 18°. (C) Thewind direction is 32°.
(D) The wind direction is 45°.
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The power system frequency performance-reliability
comprehensive assessment process is as follows.

Step 1: Input wind speed, wind turbine spatial position, load, traditional
unit operating status, frequency controlmodel parameters, generator unit
reliability parameters, and other related parameters. The parameters of
wind turbines are listed in Table 1.

Step 2: Use the enumeration method to generate the power system
event set S. Perform status analysis on the events in the set S in turn.
The status analysis is described in steps 3–6.

Step 3: Consider the event k ∈ S. The wind turbine clusters are
clustered by considering the operating status of the wind turbine
cluster, wind speed, wind direction, wind turbine cluster, and other
factors. According to Equations 5–8, calculate the equivalent
parameters of each type of wind turbine, such as wind speed, fan
thrust coefficient, etc.

Step 4: Based on the wind turbine cluster-thermal power
collaborative frequency regulation model, calculate the frequency
response curve of the power system.

Step 5: According to the frequency response curve of the power
system, record the frequency deviation amount at the end of the first
and second frequency modulation of the system, whether the low-
frequency event occurs, and its duration.

Step 6: According to the power system frequency response curve
and Equations 10–12, update the steady-state outage probability and
normal operation probability of the generating unit. Update the
occurrence probability pk of event k. Calculate system frequency
performance and reliability metrics.

Step 7:Check whether the entire system status has been analyzed. If
not, let � k + 1 , and repeat steps 3 to 6.

5 Case study

This paper uses the modified IEEE RTS79 system and a provincial
power system to evaluate the power system frequency performance and
operational reliability. It verifies the necessity of considering the impacts
of the system frequency performance on the operational reliability level.

5.1 IEEE RTS79 system settings

The IEEE RTS79 system contains 9 types of conventional
units and 1 wind turbine cluster. Assuming that the working life
of all units is within the range of 3–5 years, the outage
probability of generation units caused by aging can be
calculated by Equation 11. The ramping rate, inertia
constant, and frequency modulation coefficient of the
generation units are referenced from (Attabo Ameh et al.,
2023). The rated power of a single wind turbine is 1.5 MW,
and the wind turbine control parameters can be found in (Chen
et al., 2017). The wind power penetration rate is selected to be
30%. The load is set to a peak load of 2,850 MW and a load
adjustment coefficient of 75 MW/Hz. The normal frequency of
the system is 50 Hz, and the reasonable operating range of
frequency is [49.8, 50.2] Hz. Only fault events of order 4 and
below are considered in the reliability assessment. The time
scale of each scenario is 1 h. It is assumed that all thermal power
units participate in the primary and secondary frequency
modulation of the system. Wind speed data comes from
actual data from the San Cristobal Wind Farm. The revised
IEEE RTS-79 system diagram is shown in Figure 7.

5.2 Results of IEEE RTS79 system

Figure 8 shows the improvement effect of wind turbines
participating in system frequency control on the maximum
deviation of system frequency Δfmax under different wind
speeds. In the wind speed range of 7.2–12 m/s, the wind
turbine operates in the maximum power point tracking mode.
As the wind speed increases, the frequency improvement effect
brought by the wind turbine gradually increases. However, when
the wind speed is lower than 7.2 m/s and higher than 12 m/s, the
trend of the frequency improvement effect of wind turbines
changes. When the wind speed is between 3 m/s ~ 7.2 m/s, the
wind turbine operates in startup mode. Since the rotor speed
variable range is very small in this mode, the frequency support
for the power grid is limited. Similarly, when the wind speed is
between 12 and 13.2 m/s, the wind turbine operates in constant
speed mode and the output power is close to the rated power,
which means that the additional power for frequency control is
also limited (Liu et al., 2023). When the wind speed is greater
than 13.2 m/s, due to security constraints, the wind turbine
operating in constant power mode is limited by the rated
power and maximum rotor speed. Then, it cannot increase its
active output power. Therefore, the wind turbine cannot provide
frequency support in this mode.

TABLE 3 The results of the frequency performance and the operational
reliability.

Index Situation 1 Situation 2

MEENS (MWh/year) 259,327 254,577

MEIENS (MWh/year) 87,937 85,559

MENUF (occ./year) 4,867.4 4,747.6

MEUFD (h/year) 161.7 149.8

MPLFE 1 1

MPRFEL 0.9413 0.9297

TABLE 4 The system reliability evaluation results under four scenarios.

Index situation MEENS (MWh/year) MEIENS (MWh/year)

Situation A 259,327 87,937

Situation B 256,713 86,715

Situation C 254,577 85,559

Situation D 482,630 —
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When the natural wind speed is 13.2 m/s, the wind turbines
are clustered considering the wake effects. First, the wind speed of
wind turbines was studied when the wind direction was 0°, as
shown in Figure 9. It can be seen from Figure 9 that the wake
effect has a great influence on the wind speed of the wind turbine.
Therefore, it is necessary to cluster the wind turbines according
to the wind speed and establish an equivalent model of the wind
turbine. Table 2 shows the clustering results of wind turbines in
four cases where the wind speed direction is 0°, 18°, 32° and 45°.

Figure 10 shows the natural wind speed of the wind turbine
cluster is 13.2 m/s, and the wind speed of each wind turbine in
different wind directions. The same wind speed is drawn in the same
color. Comparing the data in Figure 10 and Table 2, it can be found
that the clustering algorithm proposed in this article can cluster
wind turbines with similar wind speeds into the same group, and
then the equivalent wind turbine cluster model can be used, which
greatly improves the efficiency of calculating frequency performance
indicators.

Then we illustrate the accuracy of the proposed model by
comparing the evaluation results of power system frequency
performance-reliability with and without considering the
impacts of frequency performance on the system
reliability level.

Assuming that the predicted wind speed is 13.2 m/s, and the
actual wind speed is 12 m/s. The absolute error of wind speed
prediction is 1.2 m/s. Table 3 shows the results of the frequency
performance and reliability of the power system. Situation
1 refers to considering the impacts of frequency performance
on the reliability parameters of generation units. Situation
2 refers to without consideration of the impacts. From the
perspective of frequency indicators, the frequency limit
expectation MENUF, low-frequency duration expectation
MEUFD, low-frequency event occurrence probability MLFEP and
system recovery probability MPRLFE corresponding to Situation
1 are 102%, 108%, 100%, and 101.25% than the ones related to
Situation 2. From the perspective of system reliability indicators,
the expected power shortage MEENS and the indirect expected
power shortage MEIENS corresponding to Situation 1 are 102%
and 103% than the ones related to Situation 2. This shows that
when the impacts of frequency performance on the reliability
parameters of generation units are not considered, the reliability
level of the generation units is overestimated, resulting in overly
optimistic frequency performance and power system reliability
evaluation results. On the other hand, the expected frequency
MENUF corresponding to Situation 1 reaches 4,867.4 times/year,
and the expected low-frequency durationMEUFD reaches 161.7 h/
year. This shows that the reliability risks caused by frequency
exceeding limits in power systems including wind power cannot
be ignored.

The model proposed in this article simultaneously considers two
factors: 1) the frequency regulation capability of wind turbine
clusters with wake effects, and 2) the dependence of system
frequency performance and generator unit reliability parameters.
To illustrate the necessity of considering these two factors, four types
of situations are set up for comparison:

Situation A: Both 1) and 2) are considered.
Situation B: Consider 1), but do not consider 2); that is, the

dependence of the system frequency performance on the reliability
parameters of the generator is ignored.

Situation C: Consider 2), but do not consider 1). Namely, the
wake effect is not ignored.

Situation D: Neither factor is considered; that is, the traditional
power system reliability assessment method.

Existing studies fall into three categories: Situations B to D. Table 4
shows the system’s expected power shortage MEENS and indirect
expected power shortage MEIENS under four types of situations.
Since traditional reliability assessment does not consider the impact
of the frequencymodulation process, there is no corresponding indirect
expected power shortage MEIENS. Scenario A considers more
comprehensive factors and can reflect more objective frequency
performance and reliability evaluation results. The factors considered
in scenarios B and C are lacking, and the corresponding expected power
shortage MEENS and indirect expected power shortage MEIENS are
smaller than those in scenario A, and the results are too optimistic.

5.3 Results of a provincial power system

To verify the accuracy and scalability of the proposed
method, a provincial power system located in China is
employed as the testing ground. This system encompasses a
considerable scale, comprising 220 generators, 1,393 buses,
and 2033 transmission lines. The peak load within this
provincial system reaches 38,760 MW, with an installed
capacity of 64,471 MW. Notably, the enumeration of branch
and generator outages is conducted up to the N-3 contingency
level, while branch outages are solely enumerated up to the N-1
contingency level. For evaluation, a period of 6 h is chosen. The
reliability evaluation outcomes are presented in Table 5, where
Situation 1 refers to considering the impacts of frequency
performance on the reliability parameters of generation units
and Situation 2 refers to without consideration of the impacts.

6 Conclusion

This paper investigates the dependence between the power
system reliability level and the system frequency performance. In

TABLE 5 The system reliability evaluation result of the provincial power system.

Index Situation 1 Situation 2

MEENS (MWh/year) 1.10 1.06

MEIENS 0.37 0.35

This case study demonstrates the feasibility of applying the proposed model to practical power systems. However, it is worth noting that the impacts of system frequency on component

reliability parameters are necessary to be considered.
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this study, a power system frequency regulation model is developed
that considers the regulation capabilities of wind turbines.
Subsequently, an equivalent wind turbine cluster is integrated
into the frequency regulation architecture of thermal power units,
thereby facilitating the analysis of frequency performance. The
frequency performance of the power system, considering the
uncertain operation conditions and random faults of generating
units, is then quantitatively examined. A model for the frequency-
dependent reliability parameters of generators is derived.
Furthermore, a multi-time scale co-evaluation framework is
proposed to enable the simultaneous evaluation of frequency
performance and operational reliability. The proposed
methodology is applied to case studies involving the modified
IEEE RTS-79 system and a provincial power system. The results
demonstrate that the proposed approach achieves efficient
determination of frequency performance and reliability outcomes,
surpassing the capabilities of existing research in this domain.

Furthermore, the suggested evaluation method can be integrated
into the framework of power system optimal dispatching and
planning. Given the imperative coordination of economic
considerations, reliability requirements, and frequency stability, it
becomes essential to establish an effective long-term capacity
planning approach for the power system. This methodology
ensures the optimal arrangement of generating units and
guarantees the system’s sustained capacity adequacy over the
long term. By incorporating the proposed evaluation method into
the planning process, power system operators can make informed
decisions regarding the configuration of generating units, striking a
balance between economic efficiency, operational reliability, and the
safeguarding of frequency stability.
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