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Due to the problems such as fuzzy state assessment grading boundaries, the
recognition accuracy is low when using traditional fuzzy techniques to grade the
switchgear state. To address this problem, this paper proposes a switchgear state
assessment and grading method based on deep belief network (DBN) and
improved fuzzy C-means clustering (IFCM). Firstly, the switchgear state
information data are processed by normalization method; then the feature
parameters are extracted from the switchgear state information data by using
DBN, and finally the extracted feature parameters are categorised according to the
condition of switchgear equipment through clustering using IFCM. The
experimental results show that the accuracy of the method in assessing the
switchgear state under small sample conditions reaches 94, which exceeds the
accuracy of other switchgear state assessment grading methods currently in use.
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1 Introduction

Switchgear is a critical component in power systems, playing a vital role in the control,
protection, and other aspects of line operations. Safe and dependable operation of the power
system is dependent on operational condition of switchgear. (Subramaniam et al., 2021;
Montanari et al., 2022). The current periodic maintenance approach involves blind
inspection and maintenance without knowing the operational status of the switchgear,
often leading to the wastage of maintenance resources. Online monitoring and status
evaluation of the switchgear are significant for ensuring its normal operation, reducing
maintenance frequency, and further bolstering the dependability of the power grid. (Zhong
et al., 2015; Wang et al., 2017).

At present, the status assessment of switchgear primarily relies on signals detected from
partial discharges, temperature, humidity, voltage, current, etc. Among them, the analysis of
partial discharge signals has become a crucial basis for switchgear status assessment (Yumbe
et al., 2013; Janssen et al., 2014). Based on this, scholars from both China and abroad have
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successively proposed classic switchgear status assessment methods
such as the Key Gas Method (KGM) (Razi-Kazemi and Niayesh,
2021), IEC Ratio Method (IRM) (Zhou et al., 2023), and Duval
Triangle Method (DTM) (Liang et al., 2009). However, these
methods are based on knowledge accumulated over a long period
and have inherent limitations, making it difficult to guarantee the
accuracy of status assessment. As machine learning continues to
advance, intelligent techniques such as the Support Vector Machine
(SVM) (Zhong et al., 2018), Bayesian Networks (Ding et al., 2014),
and Extreme Learning Machine (ELM) (Chang et al., 2013) have
been widely applied to switchgear status assessment and have
achieved certain diagnostic effects. However, they also have some
shortcomings. SVM performs admirably when applied to problems
involving small samples; however, its nature restricts it to binary
classification, rendering it suboptimal when applied to complex
problems involving multiple classes and data, such as switchgear
status assessment. (Kim et al., 2019). Bayesian Networks require the
satisfaction of many conditional attributes for use, which is not
conducive to practical engineering applications (Chen et al., 2020).
ELM has fast training speed, but its robustness is poor (Faiz and
Soleimani, 2017; Fang et al., 2023), which cannot meet the
requirements for long-term stable diagnosis. In addition, the
multi-source data collected on-site often lack data labels,
restricting the further development of the above methods in
switchgear status assessment.

Given these issues, some unsupervised learning methods have
been introduced into switchgear status assessment, such as Fuzzy
C-means Clustering (FCM) (Dai et al., 2017; Qiu et al., 2022), which
can effectively classify unlabeled samples and provide a good
interpretation of DGA data (Dehghani et al., 2020). However,
due to the presence of local minima in its membership function,
the diagnostic accuracy of this method is affected. In order to tackle
this issue, LI Enwen and others introduced a method for evaluating
the status of switchgear that utilises Improved Fuzzy C-means
Clustering (IFCM). (Wang et al., 2015; de Assis et al., 2019),
which expand the conventional membership function by
incorporating an exponential form. This method effectively
solved the local minima problem present in the traditional
membership function, resulting in further improvements in
diagnostic accuracy compared to FCM. However, this method
has difficulties in ensuring the proportion of low-level signals in
the distance calculation, affecting the further improvement of
diagnostic accuracy (Hinow and Mevissen, 2011). Additionally,
both FCM and IFCM base their classifications on the similarity
between fault data, without uncovering the differences between
different fault types, making it difficult for their diagnostic results
to fulfil the requirements of operational engineering applications.

To address the above issues, this paper proposes a switchgear
status assessment method based on Deep Belief Network (DBN) and
Improved Fuzzy C-means Clustering (DBN-IFCM). By leveraging
the DBN’s ability to extract abstract features from data, this method
performs feature extraction on the original fault data. While
ensuring the retention of important information from each
feature, it avoids the loss of small signal features during direct
distance calculation. Additionally, the features extracted are more
representative of the essence of each fault than the original data.
Using these feature data in place of the original data for clustering
further improves the accuracy of switchgear status assessment. By

establishing Cluster Validity Indicators (CVI) based on a weighted
ensemble, which assess the validity of the clustering results, the
proposed evaluation method is ultimately validated using actual
detection data from a switchgear. By conducting a comparative
analysis of the clustering outcomes produced by various algorithms,
the evaluation method’s superiority is confirmed.

2 Improved fuzzy c-means clustering
based on DBN

2.1 Improved fuzzy clustering algorithm

The process of dividing a set of physical or abstract objects into
multiple clusters comprised of similar objects is known as clustering.
This process aims to discover the natural groupings of data samples,
ensuring high similarity within each cluster while keeping the
similarity between different clusters as low as possible. In
contrast to the supervised learning process of classification,
clustering operates without the need for pre-defined classes or
labelled samples. In order to facilitate data comprehension and
analysis, clustering assigns similar data points to the same segment
according to predetermined criteria. In the sample space R
containing various sample points, there is a data set X = {x1, x2,
. . . , xn} consisting of n data points, where xi∈R. The data setX is then
divided into several disjoint data sets Cm through a specific method,
which can be represented as:

X � C1 ∪ C2 ∪/∪ Cm

Ci ∩ Cj � ∅ i ≠ j( ){ (1)

The conventional Fuzzy C-means (FCM) algorithm integrates
fuzzy and clustering theories, recognising that equipment states are
not binary and that a fuzzy region of similarity exists between
various defect states. Fuzzy comprehensive evaluation is a method
used to make a reasonable comprehensive evaluation of things that
are influenced by multiple attributes or factors. Through fuzzy
comprehensive evaluation, a clear conclusion can be derived,
reflecting the cat-egory of an object’s attributes at a certain
membership level, following the “maximum membership degree”
principle. Based on the basic idea of fuzzy criteria, membership
relations are used as the partitioning condition, and the maximum
membership degree principle is applied to segment samples,
transitioning from “non-membership” to “membership” and
breaking the restrictions of absolute partitioning. After
introducing membership functions, samples no longer belong
directly to a specific category, but instead reflect their degree of
membership through their membership degrees to each category.
This not only allows for the classification of sample information but
also provides a more intuitive reflection of the degree of membership
of each sample.

The concept underlying the FCM clustering method is outlined
in the algorithm. The clustering sample set X = {x1, x2, . . . , xn} is
partitioned into c classes, 2 < c < n, in the sample space R; x1, x2, . . . ,
xn denote the clustering samples; n is the number of samples; and the
clustering centre matrix is denoted by V=(v1, v2, . . . , vc)

T. The
calculation of the objective function of FCM is represented by
formula (2):

Frontiers in Energy Research frontiersin.org02

Xiao et al. 10.3389/fenrg.2023.1335184

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1335184


min J X,V, v1, v2,/, vk,/, vc( ) � ∑c
k�1

∑n
i�1
um0
ki d

2
ki (2)

s.t.0< uki < 1,

∑c
k�1

uki � 1, (3)

Where uki represents membership degree correlation among the
points in the sample xi (i = 1,2, . . . ,N) and the clustering center vk,
m0 represents the fuzzy index, with the value range [1.5, 2.5], and dki
signifies the Euclidean separation between the sample point and xi
and each clustering center vk.

The Lagrange multiplier method is employed to minimise the
objective function of the FCM algorithm, and defining it as a
Lagrangian function with the constraint conditions, the iterative
formulas for the membership degree matrix and clustering centers
can be finally obtained.

The update formula for membership degree and clustering
centre is as follows:

uik � 1

∑f
k�1

dij/dik( )2, (4)

vk �
∑n
i�1
uik

2 · xi

∑n
i�1
uik

2

. (5)

Where dij signifies the Euclidean separation between the sample
point and xi and each clustering center vk. When the clustering
objective function satisfies the convergence condition, or the
algorithm iterates to the maximum number of times required,
the clustering ends.

FCM is an effective clustering method; however, the selection of
initial centroids has a substantial influence on the clustering results
due to the local search-based updates of the clustering centres and
membership functions during the iteration process. The utilisation
of arbitrary initial centroids facilitates the objective function’s
descent into local optimal values, which substantially
compromises the precision of state evaluation. FCM is
additionally extremely susceptible to anomalies, noise data, and
initialization conditions. The utilisation of the Euclidean distance as
a distance metric introduces susceptibility to aberrant influence,
thereby impeding the attainment of superior
classification outcomes.

Therefore, firstly, the idea of point density is introduced. Starting
from the perspective of information granularity, the clustering
effectiveness function is constructed using the principle of
granularity analysis. This function can evaluate the effectiveness
of clustering results based on the cohesion and coupling of
information granularity. In this function, the density of points
around is used to reflect the density of sample distribution, and
to determine the degree of influence of sample points on clustering.
By using the effectiveness function to evaluate the clustering results,
the best clustering results and the most appropriate number of
clustering categories can be selected, thereby improving the
deficiency of traditional FCM in randomly selecting initial
clustering centers. The density function is defined as follows,
with respect to each sample point xi:

Zi � ∑n
j�1,j ≠ i

1
dij

, dij ≤ e, 1≤ i≤ n, (6)

dij � xi − xj





 



, 1≤ i≤ n, 1≤ j≤ n, (7)
Where, e signifies the range limit value of the density, satisfying min
(dij)<e <max (dij). Based on empirical judgment, selecting the most
dense area in dij yields better results. The larger Zi is, the more
sample points there are around sample point xi.

The clustering results are immediately influenced by the centre
selection in the conventional FCM algorithm, which requires each
iteration update to initialise the clustering centre. It becomes
challenging to ascertain the optimal number of clustering
categories when the selected number fails to correspond with the
characteristics of the data distribution. Calculating the utmost
number of clustering categories for the sample set is the initial
step in resolving this issue. Subsequently, the point density function
is employed to determine the point density of each sample point.
The initial clustering centres are determined by the function value
size of the first points. The optimal number of clustering categories is
then determined by comparing the effectiveness function values of
clustering results across all clustering category numbers.

In clustering algorithms, the clustering standard of “highest
similarity within classes, highest distinction between classes” has
always been upheld. This can also be expressed as the distance within
the same category being the smallest, and the distance between
different categories being the largest. According to this clustering
standard, the clustering centers between categories are merged
successively, that is, merging the two categories with the smallest
distance and closest to each other. Two clustering centres must be
measured in order to determine the distance between two categories.
By means of several consolidations, one can acquire an additional
classification and a clustering hub. This constitutes the
fusion procedure:

1) Determine the separation between any two clustering centres
using the Euclidean distance formula.

2) Compare the values and merge the clustering centers that are
closer than the set merge threshold;

3) Update the clustering center.

The range of clustering category is c ∈ (5, �
n

√ ). The clustering
iteration start from c =

�
n

√
. Then, the process merge the center

FIGURE 1
DBN network structure.
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points with close distance. Also, the number of clustering centers
continues to decrease, and finally loop decrement until the lower
limit of the number of categories.

2.2 Deep belief network

The Deep Belief Network is constructed by layering multiple
restricted Boltzmann machines (RBMs), upon which it is built. The
Boltzmann machine consists of two entirely connected layers, each of
which is a two-layer neural network comprising a visible and concealed
layer. In Figure 1, the DBN network architecture is illustrated.

A complete connection exists between neurons in adjacent
layers, but none between neurons in the same layer. This
principle is adhered to by every individual neuron. An inherent
property of neurons is that their activation conditions are
independent of one another; the state of a single neuron will
influence other neurons with a specific probability. hj denotes the
jth neuron in the hidden layer, which was obtained via the weight
matrix from the previous layer RBM. vi signifies the ith visible layer
neuron and simultaneously functions as the input to the subsequent
RBM. Denoted as follows is the RBM energy function:

E v, h( ) � −∑
i

aivi −∑
j

bjhj −∑
i

∑
j

viωijhij

� −aTv − bTh − vTWh,
(8)

Where, ai represents the bias amount of vi in the visible layer, bi
represents the bias amount of hi in the visible layer; ωij represents the
weight coefficient between the neuron vi in the visible layer and the
neuron hj in the hidden layer. And the joint probability distribution
function is as follow:

p v, h( ) � 1
Z
exp −E v, h( )( )

� 1
Z
exp aTv( ) exp bTh( ) exp vTWh( ) (9)

Where, Z is the normalization factor. Consequently, it is possible to
express the conditional probabilities of the visible and concealed
layers of RBM as:

p vi � 1|h( ) � σ ai +∑
j

ωijhj⎛⎝ ⎞⎠ (10)

p hj � 1
∣∣∣∣v( ) � σ bi +∑

i

ωijhi⎛⎝ ⎞⎠ (11)

Where, σ(x) � 1/1 + e−x is the nonlinear Sigmoid function,
giving the network non-linear mapping capabilities and
enhancing the network’s representation ability. The joint
distribution of (v,h) corresponds to the likelihood function
as follows:

p v( ) � ∑
h

p v, h( ) � 1
Z

∑
h

e−E v,h( )

p h( ) � ∑
v

p v, h( ) � 1
Z

∑
v

e−E v,h( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (12)

Through network training, the model is fitted to the training
dataset, so that the output distribution can represent the key
features of the samples as much as possible. Therefore, given the
training sample X = {x1, x2, . . . , xn}, the log likelihood function
expression of the training dataset is as follows:

L D;W, a, b( ) � 1
N

∑N
n�1

logp v̂ n( );W,a, b( ) (13)

The process of network training is illustrated in Figure 2.
Unsupervised layer-by-layer training is implemented initially as
shown in Figure 2A. The forward propagation technique is
employed to efficiently extract state features from the initial
sample data in order to diagnose the switchgear equipment. The
initial sample data is utilised as the input for the RBM in the first
stratum as shown in Figure 2B. The output of each subsequent layer
RBM is then utilised as the input for the subsequent layer RBM. By
spatially mapping the samples across multiple RBM layers,
additional feature information is preserved. The output of the
final layer RBM is classified by the BP network, and the weight
parameters in the network are subsequently modified via the
backward propagation method in multiple iterations as shown
in Figure 2C.

FIGURE 2
Training process of three RBMs in DBN model.
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3 Switchgear state assessment based
on DBN-FCM

3.1 Selection of equipment evaluation
state variable

Switchgears in different conditions will inevitably exhibit unique
differences in certain characteristic parameters. Some features with
significant variations can be directly assessed by humans through visual
or auditory means for a preliminary evaluation of the equipment’s
health status. However, there is still a substantial amount of feature
information in the equipment that cannot be perceived, and the health
status judged based on intuitive information is not sufficient, making it
difficult to accurately represent the equipment’s condition. Therefore,
when using multi-source data for assessment, the selection of
characteristic parameters for evaluating the switchgear will greatly
affect the results of the equipment state assessment. The state of the
switchgear is influenced by multiple characteristic factors, which are
interrelated yet diverse, exhibiting different health capabilities under
different conditions. When selecting characteristic parameters, it is
necessary to ensure that all necessary information is covered while
avoiding redundancy and omission of information.

The parameters of the switchgear state mainly come from grid
information, cabinet information, power outage test information,
live detection information, and online monitoring information.
Considering the practical field testing and modeling needs, this
paper has selected five types of state quantities as the feature
information of the samples based on the existing distribution
network equipment state evaluation guidelines, as shown in Table 1.

3.2 Selection of equipment evaluation
state variable

By utilising the existing distribution network equipment state
evaluation guidelines and observing the equipment’s health status, it
is possible to classify the current health condition of the switchgear into
one of five categories: severe, attention, good, or very good. The
correspondence between the health status grades and the current
operating status of the switchgear is shown in Table 2.

Based on the state results and operating status table, and
referring to the measured key characteristic parameters of the
equipment and routine equipment state analysis, the
correspondence between the characteristic parameter values and
the equipment state is determined, with reference to relevant
technical specifications, as shown in Table 3.

Given the significant variations in the numerical ranges of
different features, which may lead to the model being overly
sensitive to certain features or ignoring others, there is a
potential impact on the model’s accuracy and stability. In this
paper, the selected features undergo normalization based on their
upper and lower limits, converting data of various scales or ranges
into a unified standard range. This ensures that all feature values fall
between [0, 1], eliminating dimensional differences between data
and enabling a fairer comparison and balance of the impact of
different features on the model.

TABLE 1 State quantities and corresponding feature information.

State variable Corresponding feature information

v1 Partial discharge amplitude measured by TEV

v2 Partial discharge pulse number measured by TEV

v3 Partial discharge amplitude measured by Ultrasonic method

v4 Equipment information score

v5 Pre-test inspection score

TABLE 2 Switchgear operation state evaluation standards.

Evaluation result Operation state

Very good Switchgear operates in normal condition

Good Switchgear operates in basically normal condition

Attention There are hidden dangers of insulation in the switchgear, but it can still continue to operate

Abnormal There are hidden dangers of accidents in the switchgear, which can run for a short time

Severe There is a major accident hidden danger in the switch cabinet, and the operation should be stopped immediately

TABLE 3 State quantity evaluation standard range.

State variable Very good Good Attention Abnormal Severe

v1/dB 0–5 5–10 10–20 20–30 30–50

v2 0–50 50–100 100–200 200–300 300–400

v3/dB −6~-3 −3~0 0–6 6–250 25–68

v4 90–100 80–90 70–80 60–70 0–60

v5 90–100 80–90 70–80 60–70 0–60
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3.3 Switchgear state analysis process based
on DBN and improved FCM

The switchgear state analysis process based on DBN feature
extraction and improved FCM clustering method is illustrated in
Figure 3, with specific steps as follows:

1) Data Preprocessing: Process the collected sample data for data
anomalies, divide them into labeled and unlabeled training sets,
as well as test sets, and normalize them based on Table 3.

2) DBN Network Training: Use the unlabeled training set for layer-
by-layer unsupervised training of the entire DBN network until
the number of RBMs equals the preset number of hidden layers.
Then, use the labeled samples in conjunction with the BP
algorithm to perform classification training on the model after
unsupervised training, updating the network’s weight parameters
through the backpropagation algorithm.

3) DBN Feature Extracting: Following the completion of training,
determine the quantity of nodes to be included in each concealed
layer of the DBN and execute feature extraction in accordance
with this quantity.

4) Improved FCM Clustering Analysing: Build a multi-source data
state detection model, set initial values, and initialize the
membership degree matrix; input the extracted features into
the improved FCM clustering model; continuously iterate and
solve based on the cluster centers and membership degree
functions until convergence conditions are met.

5) The belonging State Calculating:Calculate the belonging state of
the sample points in the test set based on the above methods,
compute the distance to the cluster centers, and determine the
sample points’ state of affiliation based on the principle of
maximum membership degree.

4 Case study

4.1 Experimental preparation

To validate the feasibility of the method proposed in this
research, we selected a dataset of 44 groups of switchgear live
detection data from a 10 kV distribution room. The live detection
operation was carried out on 6 May 2022, with an ambient
temperature of 25°C and a relative humidity of 53%. The partial
discharge detector used was the portable online partial discharge
detector produced by Nanjing Zhongda Intelligent Technology Co.,
Ltd., with the model PDSwitch3.0 and a sampling rate set at
100MSa/s. Switchgear model is HXGN17-12, is a three-phase AC
rated voltage 10 kV, rated frequency 50 Hz indoor box-type AC
metal-enclosed switchgear. The field experiment is shown
in Figure 4.

In addition to background noise data, environmental condition
data, and operational years of the switchgear, the detection data for
each switchgear comprises TEV and ultrasonic data from six
detection points on the switchgear. Following the process of
denoising and standardising the detection data of the switchgear,
a dataset comprising the switchgear’s multi-dimensional features
was constructed.

Through data screening, this experiment determined to use
1000 groups of experimental data as the entire experiment’s
samples, with 700 training samples (including 200 unlabeled
samples and 500 labeled samples) and 300 test samples (all
labeled and arranged by different statuses). In these data, the

FIGURE 3
Switchgear state analysis process.

FIGURE 4
Field experiment.
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data of TEV amplitude, TEV pulse number, ultrasonic amplitude,
equipment information score, and pre-test inspection score
obtained from the live test are displayed in Figure 5. To enhance
the accuracy of the evaluation results and avoid significant
discrepancies between the evaluation results and reality, when the
values of different parts of the switchgear differ, the worst value of
the important parts of the switchgear is taken as the measurement
value of that feature.

4.2 Result analysis

The number of nodes in each layer of DBN is 5-6-9-10-5, the
number of trainings in the unsupervised pre-training phase is
256 and the learning rate is 0.1, the number of trainings in the
fine-tuning phase is 64 and the learning rate is 0.05. The specific
error curve is shown in Figure 6.

The aggregate training error of the network decreases
progressively as the number of training iterations increases, as
illustrated in Figure 6. The error drops quickly at the beginning
of training, and after the training error reaches 0.2, its rate of
decrease gradually slows down. The error meets the requirements
after 2000 training iterations. After the training of the DBN was
completed, the well-trained DBN network was used to extract

features from a test set of 300 samples. Some of the extracted
features are shown in Figure 7.

The final features derived by the DBN from a luminance image
are displayed in Figure 7. A brightness value that is less than one
signifies a value of the matrix near zero, whereas a brightness value
that is greater than one signifies a value near one. As shown in
Figure 7, the distribution of the same fault across various dimensions
is generally consistent, whereas the distributions of distinct faults
vary across these dimensions. Different types of faults exhibit
distinct distributions, which facilitates the differentiation of
switchgear states.

In order to cluster the fault-free data attributes of the daily
inspection dataset, the K-means algorithm was implemented.
Unknown is the number of clusters utilised in K-means
clustering. A subjective artificial setting for the number of
clusters devoid of any theoretical foundation is incapable of
producing effective clustering outcomes. In order to determine
the optimal number of categories, we compute the sum of
squared errors and determine the number of clusters in
accordance with the actual circumstance. The loss function J
(c,u) for the current K value is obtained by summing the squared
errors of all clusters:

J c, u( ) � ∑n
i�1

xi − uci‖ ‖2, (14)

Where, xi denotes the ith sample, ci signifies the cluster to which xi is
assigned, uci signifies the cluster’s centre point, and n signifies the
total number of samples.

Commonly used clustering effectiveness analysis often adopts a
single internal effectiveness index, which lacks an analysis and
research on the characteristics of the switchgear dataset, resulting
in certain one-sidedness. Internal effectiveness indexes are sensitive
to background noise and are suitable for datasets with clear
classifications, evaluating clustering results from aspects such as
separability, compactness, and overlapping. However, the
switchgear dataset has characteristics like strong adhe-siveness,

FIGURE 5
Detection data of various parameters for the switchgear in the
distribution room.

FIGURE 6
Training error curve.
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unclear geometric classification, and vague distribution properties.
Using a single internal effectiveness index cannot fully reflect the
effectiveness of clustering results. In order to assess the quality of
clustering on an unidentified dataset with unknown structure and
properties, this study develops the CVI index by weighted
integration of four indexes: silhouette coefficient, Davies-Bouldin
index, Calinski-Harabasz index, and silhouette coefficient. These
indices reflect geometric structural features and take into account
the inherent characteristics of the switchgear dataset. The criteria of
CVI is defined as:

CVI � ∑4
i�1
ωifi x( ) � ω1f1 + ω2f2 + ω3f3 + ω4f4 (15)

Where, ωi is the weight of the ith effectiveness index, and fi is the ith
effectiveness index. f1 is the silhouette coefficient, an index used to
measure the density and dispersion of clustering categories. f2 is the
Calinski-Harabasz index, an index used to measure the tightness
within categories. Its advantage lies in its simplicity, directness, and
fast calculation speed, with a larger value indicating better clustering
results. f3 is the Davies-Bouldin Index (DBI), also known as the
classification appropriateness index, used to measure the degree of

rationality in classification. A smaller DBI value indicates better
clustering results. f4 is also the Davies-Bouldin Index.

The switchgear multidimensional feature dataset was classified
using the K-means clustering algorithm; the CVI line relationship
for various K values is depicted in Figure 8. As shown in Figure 8, the
clustering structure effectiveness index indicates that when K = 5,
i.e., when the switchgear states are divided into five categories, there
is a significant clustering effect.

At the same time, the clustering results obtained for K = 3, K =
4, and K = 5 were visualized using the t-SNE dimensionality
reduction algorithm, as shown in Figure 9. The effect of the
clustering procedure proposed in this paper is favourable, as
distinct boundaries exist between groupings. Comparing the
t-SNE visualizations for K = 3 and K = 4, K = 5 is verified to
be the optimal number of categories. When K = 3, it represents
that the healthy operating states of the switchgear will be divided
into three categories, lacking more detailed classification, making
it difficult for maintenance personnel to make good decisions
about the switchgear. When K = 4, the number of data labeled
“good” is roughly equal to the “general” data, which does not
conform to the evaluation results of daily live maintenance,
indicating an over-partitioning phenomenon at this time.

FIGURE 7
TEV, ultrasonic, equipment information and pre-test inspection features extracted by the DBN.
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When K = 5, this scheme clearly and reasonably divides the health
status of partial discharge in the live detection of switchgear. The
number of switchgears that need immediate inspection and
troubleshooting is small, followed by the switchgears that need
more attention, while most of the data shows that the switchgears
are still operating stably, conforming to the evaluation criteria of
general on-site operation and maintenance.

Using the above fuzzy clustering method, the state of the
switchgear in this distribution room was assessed, and the
assessment outcomes are illustrated in Figure 10. The
abnormality of the state assessment result for switchgear 32 is
evident, switchgears 35 and 39 are marked as needing attention,
and the assessment results of the other switchgears are all very
good. Among them, the TEV amplitude of the live electrical test
data of switchgears 35 and 39 was found to be excessively high.
Also, the ultra-sonic amplitude of the live electrical test data of
switchgear 32 was found to be excessively high. It is evident from
the clustering outcomes that the approach suggested in this
article aligns with the results of the state evaluation carried
out in adherence to the protocols for assessing the condition of
distribution network equipment. The health evaluation method
suggested in this article has the capability to provide an unbiased
reflection of the switchgear’s operational condition.
Maintenance strategies for the switchgear’s future operation

and upkeep can be devised using the results of the state
assessment.

4.3 Comparison

Finally, the state of the switchgear was assessed using the
above sample features, and the results were compared with other
diagnostic methods, as shown in Table 4. Compared with
traditional FCM and IFCM methods, this method has
achieved a significant improvement in state assessment
accuracy. Compared with traditional FCM and IFCM
clustering methods, the accuracy has increased by 36% and
22%, respectively, using the proposed method. Compared with
the switchgear state assessment methods of DBN-FCM, DBN-
IFCM improves on the membership degree function of FCM,
solving the problem of local minima in membership degrees and
further enhancing diagnostic performance. Compared with deep
learning methods based on DBN and ReLU-DBN, the
classification effect of the proposed method is also
significantly improved.

From Table 4, it can be seen that the switchgear state assessment
method based on deep belief networks and fuzzy clustering
proposed in this paper has a good state assessment effect and

FIGURE 8
Loss function, contour coefficient, calinski-harabasz index and davies-bouldin index under different K values.
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high assessment accuracy. It solves the problem of lack of depth in
feature extraction and insufficient assessment accuracy in traditional
state assessment methods, providing a new method for switchgear
state assessment and fault diagnosis.

The following discussion focuses on the impact of the signal-to-
noise ratio (SNR) on the accuracy of switchgear state assessment.
Keeping other parameters constant, we consider scenarios with
SNRs of −10dB, -5dB, 0dB, 5dB, and 10 dB. We compare the
diagnostic results of four different switchgear state assessment
methods under various SNR conditions, as shown in Figure 11.

As shown in Figure 11, at lower SNRs (−10 dB), the diagnostic
accuracy and robustness of the switchgear state assessment technique
based on DBN are comparatively inferior to those of the other three
methods. To address the issue of strong noise interference, this paper
utilizes fuzzy clustering, which better interprets the scenarios where the
physical boundaries between state gradations are not very clear. Under
the condition of an SNR of −10dB, the diagnostic relative error is able to
be maintained at 5.65%. The proposed method meets the accuracy
requirements for switchgear state assessment under low SNR
conditions.

FIGURE 9
Visualization of clustering effect in unclustered as well as different clustering K values.

FIGURE 10
State evaluation results of switchgears in the distribution room.
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5 Conclusion

Aiming at the problems of fuzzy boundary delineation and
low accuracy of state assessment grading in traditional fuzzy
methods for state assessment, the paper proposes a switchgear
state assessment framework based on DBN and IFCM (DBN-
IFCM). The method uses DBN to extract feature parameters from
normalized switchgear condition data, and adopts IFCM c to
cluster the extracted feature parameters to appropriately assess
switchgear condition. The main conclusions of this paper are
as follows:

1) The DBN-IFCM-based switchgear state assessment method is
able to accurately classify the state of the switchgear with
satisfactory results, and the state assessment classification
accuracy rate is up to 94%. Compared with traditional
clustering methods such as FCM and IFCM, the accuracy of
the proposed method is improved by 36% and 22%, respectively;
compared with deep learning methods based on DBN-FCM,
DBN and ReLU-DBN, the grading accuracy of the proposed
method is improved by 0.9%, 1.8% and 1%, respectively.

2) The switchgear state assessment method based on DBN-IFCM
is capable of learning the characteristics of various graded

states from a large amount of state data, overcoming the
disadvantage of traditional clustering methods that cannot
learn autonomously.

3) Compared with other deep neural network switchgear state
assessment methods, using fuzzy clustering better explains
situations where the physical boundaries between state grades
are not very clear. Additionally, this method provides a new
perspective for addressing state grading issues when
label samples are scarce or label information is difficult
to obtain.
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