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The krill herd (KH) approach is proposed in this article for tackling the dynamic
economic dispatch (DED) problemwith the integration of wind power generation,
including constraints such as valve-point loadings and prohibited operating zones
(PoZs). The purpose of resolving the DED problem is to determine the optimum
feasible combination of power outputs for all allocated generating units within a
given period while simultaneously meeting dynamic operational constraints and
power demand. Due to the addition of valve points and PoZs to the cost
characteristics of the generating unit, the DED issue becomes a highly non-
linear and non-convex optimization issue.When transmission losses are taken into
account, the DED problem becomes significantly more complex to solve. KH is a
swarm-inspired algorithm based on krill individual herding behavior. KH employs
two global and two local tactics, and these work in parallel, making KH a powerful
algorithm. The effectiveness of the KH method is investigated and validated
through extensive testing on various test systems, including 5-, 6-, 10-, 16-,
and 30-unit test systems. Extensive studies are conducted to evaluate the efficacy
of the proposed KH algorithm; the present research work compares the
convergence properties of the suggested approach with those of the other
recently published methods. In addition to reduced generation costs
compared to other results published in recent literature, the numerical findings
of the KH approach reveal that it has strong convergence qualities.

KEYWORDS

dynamic economic dispatch, krill herd, valve-point loading effect, prohibited operating
zones, transmission loss, wind power

1 Introduction

Coal and gas, which are nonrenewable resources, are responsible for the generation of
more than three-fourth of the world’s electricity. Because of their scarcity, these resources
must be used wisely. As a result, optimizing the generating unit problem is critical.
Supply–demand balancing is the equivalent constraint in this issue, which aims to
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reduce fuel costs. This issue is called the economic dispatch problem
(Happ, 1977). In the 1920s, this issue was considered static because
demand is constant for a specific period of time. Currently, the
situation is more complicated because demand changes over time,
necessitating the adjustment of the supply of each power plant in
order to meet that change. In order to overcome the above issue,
dynamic economic dispatch (DED) is implemented by taking into
consideration the dynamic costs associated with switching from one
generating level to the next. In addition to maintaining the thermal
stress on the generating equipment, such as turbines and boilers,
inside the permissible limits, the DED issue takes into account the
generator valve-point loading effects and prohibited operating zones
(PoZs) (Zaman et al., 2016).

In recent decades, conventional power generation plants such as
thermal, gas, and oil facilities have traditionally served as the
primary sources of electricity production, despite being
significant contributors to environmental pollution. The
increasing demand for power, the depletion of traditional energy
resources, and the urgent need to curtail greenhouse gas emissions
(such as CO2, NOx, and SOx) have encouraged scientists to focus on
renewable energy sources (RESs) (Ullah et al., 2019). Within the
context of national energy conservation efforts and emissions
reduction, RESs have demonstrated immense potential for
reducing fuel consumption and emissions of pollutants. In this
context, wind and solar energy production has experienced
consistent growth over the past two decades due to its cost-
effectiveness, environmental friendliness, and widespread
availability, among other RES options (Perera, 2017).

DED is a dynamic issue because of the constantly shifting
electrical grid and the wide range of possible load conditions. To
address this issue, the whole dispatch period may discretize into a

series of shorter periods, during each of which the load is believed to
remain constant, and the system is observed as being under a
condition of temporal steady state. However, some of the
researchers have assumed that the cost functions are linear in
order to simplify the mathematical formulation of the issue and
make use of many of the standard optimization methods (Zaman
et al., 2016). Several optimization strategies and processes have been
utilized to solve the ED and DED issues with complicated objective
functions or limitations since the 1980s when they were first
described. This topic has been addressed using a variety of
traditional approaches such as the gradient method (Granelli
et al., 1989), linear programming (Somuah and Khunaizi, 1990),
and dynamic programming (DP) (Xia and Elaiw, 2010). Although
they provide certain advantages such as tremendous computation
efficiency and being theoretically optimum (Xia and Elaiw, 2010),
they have numerous downsides. For example, Ullah et al. (2019) did
not take into account the basic constraints such as line flow limits
and load voltage levels. Perera (2017) considered the line flows, but
the main drawbacks of the LP method are the piece-wise linear cost
approximation and algorithm complexity. DP (Somuah and
Khunaizi, 1990) has a drawback that the computing needs of this
method vary with the size of the discrete capacity step. Therefore, as
the alternative for conventional approaches, evolutionary methods
have gained great attention and demonstrated their usefulness as
powerful optimizers for the DED problem in the last few decades,
such as genetic algorithm (Li et al., 1997; Li and Aggarwal, 2000;
Zhang et al., 2006; Basu, 2008; Preeti et al., 2022), simulated
annealing (SA) (Panigrahi et al., 2006), evolutionary
programming (EP) (Basu, 2007), particle swarm optimization
(PSO) (Gaing, 2004; Yuan et al., 2009; Zhang et al., 2014), fuzzy
optimization (Attaviriyanupap et al., 2004), the artificial immune

FIGURE 1
Representation of neighboring krill of a krill.
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system (Hemamalini and Simon, 2011), harmony search (Pandi and
Panigrahi, 2011; Sahoo et al., 2021), and biography-based
optimization (BBO) (Xiong and Shi, 2018).

Zhang et al. (2006) developed a novel hybrid real-coded genetic
algorithm with quasi-simplex approaches for solving the constructed
DEDmodel. In the current work, a new strategy for generating the first
population is proposed to enhance the search process. The economic
scheduling of electric power production over a defined time period
under different systems and operational limitations was presented by Li
et al. (1997), using the hybrid genetic algorithm (HGA). The suggested
hybrid system is designed such that a basic GA is used as the first level of
search, making a rapid choice to focus the search on the best area, and
then, a local search approach (gradient technique) is used to fine-tune
the results. Li and Aggarwal (2000) developed a relaxed hybrid genetic

algorithm and gradient method (RHGAGM) to allocate the generated
power economically, rapidly, precisely, and without stress. The
suggested hybrid method is built such that a GA conducts a
preliminary search and makes fast judgments to guide the local GT
in its ascent of the possible hill. By permitting a loose match between
power production and load demand at the base search and
compensating for any mismatch at the beginning of the local search,
the suggested technique further assures the dispatch quality, as well as
speed. Thus, a GA may devote the same amount of time and resources
to finding the optimal cost/power trade-off as it does to finding the best
possible answers. The strategy’s goal was to achieve cost savings in a
sensible amount of time. A non-dominated sorting genetic algorithm II
for the DED issue was solved by Basu (2008). To enhance the
exploration capability of the GA, a three-parent crossover

FIGURE 2
Flowchart of the proposed KH algorithm.
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mechanism was implemented by Preeti et al. (2022) to solve the DED
problem. The proposed technique achieved better results than the GA
with a two-parent crossover mechanism. The suggested method
performs well in terms of both identifying a broad range of options
and landing on a set that is close to the genuine Pareto optimality.

Panigrahi et al. (2006) used DED with a SA approach to find the
optimal dispatch strategy for a given region. In this scenario, network
losses are included through loss coefficients, load-balance limitations,
operational limits, valve-point loading, and ramp constraints. The
effectiveness and versatility of the suggested technique have been
shown using numerical results for a model test system. The novel
hybrid approach was developed by combining EPwith sequential QP to
solve the DED issue by Basu (2007). Here, initially, a simple EP is
employed as a basis level search in the suggested technique, which may
provide a good direction to the optimumglobal area, and SQP is utilized
for fine tuning in the local search to provide the best feasible solutions.
PSOwas utilized byGaing (2004) to address a constrainedDED issue in
a power system management. Both the solution quality and the

computational efficiency of the proposed PSO approach are
compared to those of the other stochastic methods to exhibit the
quality of the PSO method. However, when solving complicated
optimization problems, sometimes, the g-best particle, which PSO
uses as its optimum solution, may be found at a local minimum,
which might cause the algorithm to converge too soon. Therefore, to
overcome the above issue, the authors developed (Yuan et al., 2009) an
improved PSO (IPSO) method to solve dynamic load dispatch with
valve-point effects. For efficiently dealingwith restrictions, the suggested
IPSO technique uses rules based on feasibility and heuristic tactics with
a probability-based priority list. The population may be swiftly directed
to the viable area by using the constraint-handling approach rather than
the penalty function method, which requires penalty factors and other
parameters. In particular, DED’s equality restrictions may be met
accurately. An improved bare-bones PSO (IBBPSO) method (Zhang
et al., 2014) to solve DED with valve points was developed. In BBPSO,
most of the particles in the swarm stop updating in the early stages,
which leads to being stuck at a local optima solution. To enhance the

TABLE 1 Optimal solution of the five-unit system with TL and with TL and PoZs obtained using the KH technique.

t (h) P1 P2 P3 P4 P5 Cost ($/h) P1 P2 P3 P4 P5 Cost ($/h)

1 229.5 10 20 30 120.5 1,243.85 139.76 16.83 98.54 30 124.91 1,226.09

2 229.5 30.625 20 30 124.9 1,348.8 139.76 41.83 98.54 30 124.91 1,356.82

3 139.8 10 87.71 112.67 124.9 1,403.67 229.52 10.63 80 30 124.91 1,449.23

4 139.8 51.948 98.54 30 209.8 1,583.77 229.52 47.1 98.54 30 124.91 1,585.1

5 229.5 10 20 88.744 209.8 1,680.87 139.76 10 90 108.5 209.82 1,610.79

6 229.5 42.443 98.54 112.67 124.9 1,758.06 229.52 42.44 98.54 112.7 124.91 1,758.06

7 139.8 65.294 98.54 112.67 209.8 1,785.63 139.76 65.29 98.54 112.7 209.82 1,785.63

8 229.5 10 92.09 112.67 209.8 1,800.38 229.52 10 92.09 112.7 209.82 1,800.38

9 229.5 39.558 98.54 112.67 209.8 1,945.42 229.52 13.1 125 112.7 209.82 1,987.1

10 229.5 27.101 125 112.67 209.8 2,072.44 229.52 53.56 98.54 112.7 209.82 1,985.9

11 229.5 10 98.54 172.24 209.8 2,048.53 229.52 10 98.54 172.2 209.82 2,048.53

12 229.5 75 113.1 112.67 209.8 2,106.7 229.52 25 100.79 175 209.82 2,155.17

13 229.5 53.562 98.54 112.67 209.8 1,985.9 229.52 53.56 98.54 112.7 209.82 1,985.9

14 229.5 39.558 98.54 112.67 209.8 1,945.42 229.52 39.56 98.54 112.7 209.82 1,945.42

15 229.5 10 92.09 112.67 209.8 1,800.38 229.52 10 92.09 112.7 209.82 1,800.38

16 139.8 19.283 98.54 112.67 209.8 1,627.42 229.52 75 35.749 30 209.82 1,750.55

17 229.5 15.015 98.54 175 40 1,693.99 229.52 10 78.743 30 209.82 1,645.66

18 229.5 36.082 20 112.67 209.8 1,761.35 139.76 47.29 98.54 112.7 209.82 1,760.34

19 229.5 10 92.09 112.67 209.8 1,800.38 229.52 75 109.76 30 209.82 1,894.38

20 229.5 53.562 98.54 112.67 209.8 1,985.9 229.52 53.56 98.54 112.7 209.82 1,985.9

21 229.5 29.556 98.54 112.67 209.8 1,898.47 229.52 75 53.097 112.7 209.82 2,027.45

22 139.8 44.289 98.54 112.67 209.8 1,751.29 229.52 12.98 125 112.7 124.91 1,788.12

23 139.8 44.815 20 112.67 209.8 1,583.68 229.52 44.1 98.54 30 124.91 1,575.96

24 139.8 10 75.71 112.67 124.9 1,428.22 229.52 10 68.629 30 124.91 1,455.42

Total cost ($/h) 42,040.5 Total cost ($/h) 42,364.3

All power values are mentioned in MW. The bold values indicate the results achieved by the proposed method.
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TABLE 2 Statistical analysis of KH compared with other methods.

Method Lowest cost ($/h) Average cost ($/h) Highest cost ($/h) ET (sec)

Five-unit system including TL

AIS (Hemamalini and Simon, 2011) 4,385.4300 44,758.8363 -

BBPSO-DCS (Zhang et al., 2014) 43,223 43,732 -

ICA (Mohammadi-Ivatloo et al., 2012a) 43,117.055 43,144.472 43,209.533 -

EAPSO (Niknam and Golestaneh, 2012) 43,784 43,794 44,041 -

IPSO (Mohammadi-Ivatloo et al., 2012b) 43,136.561 43,185.664 43,302.233 -

IGA Mohammadi-Ivatloo et al. (2013) 43,125.365 43,162.243 43,259.352 -

MBGDE (Zou et al., 2018) 43,008.104,912 43,084.904,876 43,403.280,777 -

IWO (Zhi-xin et al., 2019) 43,073.852,516 43,138.610,385 43,226.295,496 -

CMIWO (Zhi-xin et al., 2019) 42,986.022781 42,986.022781 42,986.022781 -

KH 42,040.5 42,080.2093 42,267.9273 92

Five-unit system including TL

LDISS (Faisal et al., 2020) 43,213 - - -

BBPSO (Zhang et al., 2014) 43,222.7 - - -

MBGDE (Zou et al., 2018) 43,184.465,450 - - -

CMIWO (Zhi-xin et al., 2019) 43,136.787,824 - - -

HIGA (Mohammadi-Ivatloo et al., 2013) 43,125.365 - - -

MILP-IPM (Granelli et al., 1989) 43,084 - - -

BBOSB (Yuan et al., 2009) 43,017.9597 - - -

KH 42,364.3 42,381.433 42,496.4039 94

The bold values indicate the results achieved by the proposed method.

FIGURE 3
Convergence curve of five-unit system test scenario 1.

FIGURE 4
Convergence curve of five-unit test scenario 2.
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search toward a global direction, a directionally chaotic search (DCS) is
added with BBPSO and developed IBBPSO. Attaviriyanupap et al.
(2004) suggested a fuzzy optimization technique to solve DED, taking
into account uncertainty in deregulated energymarkets. The systemwas
created with the goal of maximizing profit and hedging risks as a
participant in the energy market and the 10-min spinning reserve
market in mind. The uncertainties in the current paper are represented
by fuzzy numbers and include the demand and reserves necessary in
each market, the prices cleared in each market, and the likelihood that
reserves are relied upon in real operations.

A clonal selection-relied artificial immune algorithmwas developed
by Hemamalini and Simon (2011) to solve the DED issue with valve
points and the inclusion of ramp rate constraints. However, the
algorithm has a large number of parameters, and identifying the
right values of the respective parameter is a difficult task; otherwise,
it leads to a suboptimal solution. A derivative-free evolutionary
technique harmony search (HS) was applied to solve the DED

problem by Sahoo et al. (2021), and the correlation in music can be
likened to the solution vector, while the process of a musician’s
improvisation bears resemblance to both local and global search
strategies. However, the proper adjustment of tuning parameters
such as the pitch adjustment rate (PAR) is a difficult task.
Therefore, Pandi and Panigrahi (2011) implemented a hybrid HS by
dynamically varying the PAR value, which is more efficient than a
classical HS technique. A hybrid technique named BBOSB was
developed by Xiong and Shi (2018) by combining the good
exploiting capability of BBO and exploring the capability of
brain storm optimization (BSO) to solve DED issues with valve effects.

A reference point technique was incorporated in the original TLBO
and a many-objective TLBO was developed to solve OPF by Pradeep
et al. (2012). A new hybrid moth flame technique is developed to solve
the OPF issue with the inclusion of wind power, along with FACTS
devices (Sundaram et al., 2022a). Sunilkumar et al. (2023) solved the
OPF issuewith the integration of hybrid power systems such as thermal,
solar, and wind power systems and addressed the issues related to the
integration of RESs. A techno-economic investigation coordinating
with RESs solved OPF by using an equilibrium optimizer technique
(Sundaram et al., 2022b). The wind power in the current work was
predicted with the probability distribution function of Weibull. These
swarm intelligence-based evolutionary algorithms (EAs) are very
effective and adaptable to include different RESs in the existing
power system for resolving DED problems. However, the dispatched
solutions these EAs produce may not be the most cost-effective if the
complexity of the problem is enhanced while adding more constraints.

Gandomi and Alavi (2012) created the krill herd (KH) method, a
novel creature-based evolutionary method inspired by the process of
increasing individual density and achieving large concentrations of food
following predation. There are three primary movements in the KH
algorithm: motions that are triggered by other krill, foraging motions,
and physical diffusion. To solve DED, krill must be placed in such a way
that they can get to the food supply, and each krill’s fitness is determined
by how far away the food source and its greatest density are from it.
Individuals that are closer in proximity to greater krill density and food
concentration have the greatest fitness value. The KH algorithm has two
local and global searches, whichmakes it efficient and useful in solving a
wide range of real-world problems, including numerical optimization
(Hu et al., 2016), economic dispatch (Harish et al., 2019), and optimal
power flow (Harish et al., 2016; Harish et al., 2017).

This paper introduces several significant contributions.

1 It focuses on the DED problem rather than the conventional ED
problem. This shift allows for the consideration of dynamic
constraints, valve-point loading effects, and prohibited
operating zones, which enhances the complexity of the
optimization process.
2. The problem formulation presents the conventional DED issue

with the inclusion of an RES (wind power).
3. The DED issue is solved with the novel krill herd algorithm.

The effectiveness of the KH method is verified by considering
five different test systems.

This paper is organized as follows: amathematicalmodel of theDED
issue including valve points is given in Section 2, after which the KH
technique is discussed in Section 3. Section 4 shows the results attained
with the proposed technique, and conclusions are given in Section 5.

TABLE 3 Optimal solution of the six-unit system with VPL obtained using KH.

t (h) P1 P2 P3 P4 P5 P6 Cost
(S/h)

1 404.025 66.24 179.733 50 50 50 9,625.74

2 302.683 50.00 129.867 99.867 99.87 97.717 9,390.66

3 302.683 50.00 147.584 50 99.87 99.867 9,113.19

4 302.683 117.58 129.867 99.867 50 50 9,004.67

5 302.683 50.00 217.317 50 50 50 8,667.17

6 201.342 119.06 80 99.867 149.7 50 8,632.37

7 302.683 50.00 97.5835 99.867 99.87 50 8,538.65

8 302.683 67.58 179.733 50 50 50 8,438.69

9 302.683 67.85 179.733 99.867 99.87 50 9,642.52

10 404.025 116.38 179.733 50 99.87 50 10,740.6

11 404.025 124.82 229.6 141.58 50 50 12,038

12 404.025 199.61 246.909 99.867 149.7 99.867 14,608.8

13 500.00 199.61 229.6 99.867 149.7 81.201 15,472.4

14 500.00 134.07 279.466 99.867 149.7 99.867 15,448.4

15 404.025 199.61 279.466 149.73 199.6 67.576 15,936.4

16 404.025 199.62 279.466 149.73 199.6 117.58 16,606.4

17 404.025 124.81 229.6 99.867 149.7 91.976 13,241.4

18 302.683 124.83 229.6 99.867 50 93.051 10,829.4

19 302.683 117.85 229.6 50 99.87 50 10,143.8

20 404.025 116.11 129.867 50 50 50 9,593.29

21 302.683 124.81 202.517 50 50 50 9,401.45

22 404.025 50.00 145.975 50 50 50 9,060.8

23 302.683 50.00 197.317 50 50 50 8,451.91

24 302.683 117.72 229.6 50 50 50 9,559.83

TC ($) 262,186.5

All power values are in MW.
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2 Mathematical model

There must be DED for all thermal generators that are subjected to
various constraints on a regular basis over an extended period of time.
The next sections go further deep into the integration of thermal cost
characteristics with solar PV and wind energy units and related
constraints.

2.1 Optimization of total cost

In general, the DED problem reduces the overall
manufacturing cost for committed units over the course of an
operational horizon, which is obtained using Eq. 1 as follows
(Behnam et al., 2012):

min f � ∑T

t�1∑NG

m�1am + bmPGm,t + CmP
2
Gm,t, (1)

where f indicates the total cost (TC) of all thermal units, PGm,t

represents the real power of the mth unit at the tth hour, and NG
indicates the number of generators.

2.2 Optimization of TC with valve points

Modern large power-producing units that use multi-valve
steam turbines exhibit non-convexity in the input–output
characteristic functions, demonstrating a substantial variance
in the characteristic curves. Valve-point effects and mixing of
various fuels cause the former to be non-convex. When each
steam valve starts to open, ripples appear at the valve point.
When valve-point effects are included, the ED cost objective
function is often characterized as a superposition of a sinusoidal
function and a quadratic function as shown in Eq. 2. In the
current research, a non-convex function is used to evaluate the
influence of the valve points (Behnam et al., 2012).

minf � ∑T

t�1∑NG

m�1am + bmPGm,t + CmP
2
Gm,t

+ dm × sin em PGm,t
min − PGm,t( )( )∣∣∣∣ ∣∣∣∣, (2)

FIGURE 5
Power production and load demand schedule throughout 24 h in a day for a six-unit system.

TABLE 4 Statistical analysis of the six-unit system compared with other methods.

Method Lowest cost ($/h) Average cost ($/h) Highest cost ($/h) ET (sec)

BA (Faisal et al., 2020) 263,734.7 - - -

DBA (Faisal et al., 2020) 262,196.7 - - -

KH 262,186.5 262,257.76 262,767.2 102

The bold values indicate the results achieved by the proposed method.

FIGURE 6
Convergence curve of a six-unit system.
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where am, bm, cm, dm&em refer to the cost characteristics of the mth
generator and PGm,t

min indicates the minimum values of the real
power of the mth unit at the tth hour.

2.3 Wind energy

The cost function of wind generation is subject to the
investment cost of the equipment and the operation and
maintenance (O&M) cost of the generated energy (Behnam
et al., 2012) and is given using Eq. 3 as follows:

F Pwp( ) � aIpPwp + GEPwp, (3)

where PwP denotes the wind power generation (kW), a indicates
the annuitization coefficient, and Ip and GE represent the
investment costs and O&M cost per unit generated ($/kW),
respectively. However, the investment cost of land will be
considered as constant. Only the O&M cost is considered in

the current work (Behnam et al., 2012). It is assumed that the
investment costs and O&M cost are considered as $1,400 and
1.6 cents per kW, respectively. In the current research
work, the wind generation data on a location in the east
coast of the United States of America are considered. It
gives constant wind power at each and every hour
(Augustine et al., 2020).

2.4 Total cost including renewable energy
sources

The comprehensive cost function is obtained using Eq. 4 as
follows:

TC � minf + F Pwp( ), (4)

where TC indicates the total cost.

TABLE 5 Optimal solution of the 10-unit system obtained using KH.

t (h) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Cost ($/h)

1 379.87 135 79.54 60 73 57 129.59 47 20 55 28,577.4

2 303.25 222.3 77.44 60 73 122.45 129.59 47 20 55 29,870.39

3 226.62 135 301.9 60 122.87 160 129.59 47 20 55 33,110.94

4 379.87 396.8 83.98 60 73 122.45 129.59 85.31 20 55 36,397.69

5 226.62 309.5 287.2 60 222.6 122.45 129.59 47 20 55 37,778.62

6 226.62 396.8 309.6 60 222.6 122.45 129.59 85.31 20 55 41,057.83

7 456.5 135 312.5 181 172.73 122.45 129.59 85.31 52.06 55 43,271.5

8 379.87 396.8 303.4 60 222.6 160 93.06 85.31 20 55 44,580.14

9 379.87 396.8 299.5 181 222.6 122.45 129.59 85.31 52.06 55 47,893.79

10 456.5 396.8 340 241 222.6 124.96 129.59 85.31 20 55 51,372.74

11 456.5 396.8 320.2 300 222.6 160 129.59 85.31 20 55 53,194.2

12 456.5 396.8 327.5 300 222.6 160 129.59 120 52.06 55 55,214.12

13 456.5 396.8 312.3 241 222.6 122.45 93.06 120 52.06 55 51,737.84

14 456.5 396.8 340 60 222.6 123.51 129.59 120 20 55 47,894.95

15 379.87 396.8 305.1 60 222.6 160 129.59 47 20 55 44,339.27

16 379.87 222.3 295.2 60 222.6 122.45 129.59 47 20 55 39,360.62

17 226.62 309.5 287.2 60 222.6 122.45 129.59 47 20 55 37,778.62

18 379.87 309.5 299.8 60 172.73 122.45 129.59 47 52.06 55 41,110.03

19 456.5 396.8 297.4 60 122.87 152.54 129.59 85.31 20 55 44,392.22

20 456.5 460 279.3 241 222.6 122.45 129.59 85.31 20 55 51,692.24

21 456.5 396.8 293.2 181 222.6 122.45 129.59 47 20 55 47,669.38

22 379.87 396.8 306.7 60 73 160 129.59 47 20 55 41,117.59

23 379.87 309.5 75.14 120 73 122.45 129.59 47 20 55 34,797.04

24 303.25 135 89.11 60 222.6 122.45 129.59 47 20 55 31,626.4

Total cost ($/h) 1,015,836

All power values are in MW. The bold values indicate the results achieved by the proposed method.
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2.5 Constraints

The constraints considered in the current work are described in
brief below (Faisal et al., 2020).

2.5.1 Equality constraints
The active power balance constraint in this case is a crucial factor

and can be expressed using Eq. 5 as follows:

∑NG

n�1PGnt � PD t( ) t � 1, 2, ...T. (5)

2.5.2 Inequality constraints
The expression of these limits is provided below using Eq. 6,

encompassing both their low and high values:

PGn
min ≤PGnt ≤PGn

max n � 1, 2, . . . , NG t � 1, 2, . . . , T. (6)
Here, PGn

min&PGk
max are the low and high real power limits of the

nth generator, respectively.

2.5.3 Prohibited operating zones
A prohibited operating zone defines the area of the real power

output of a generator that is impacted by the technical functioning of
the shaft. Modification of electricity is often not permitted within the
forbidden spans of time. The operational range of the generator is
specified using Eq. 7 as follows (Harish et al., 2016):

PGn
min ≤PGn,t ≤Plower

Gn,1 n � 1, 2, . . . , NG

Pupper
Gn,m−1 ≤PGn,t ≤Plower

Gn,m t � 1, 2, . . . , T
Pupper
Gn,Mn

≤PGn,t ≤PGn
max m � 2, 3, . . .Mn

, (7)

where Plower
Gn,1 &Pupper

Gn,m−1 indicate the lower and upper boundaries of the
jth PoZ of the nth unit, respectively.Mn denotes the number of PoZs of
the nth unit. m indicates the number of PoZs. The main aim of the
current work is to determine the optimum generation schedule (Pi,t) as
in 1 and 2, which leads to minimizing the cost of power production, by
satisfying the constraints mentioned in 3–9 used with various
combinations in different cases.

3 Krill herd algorithm

Krill become divided individually when attacked by predators
including seals, penguins, and seagulls. This reduces the density of
the krill. Later, the formation of the krill herd relies on numerous
parameters. The process of increasing the krill density is adopted in
the current work (Gandomi and Alavi, 2012). The krill herd
eventually forms around the global minima because of the
density-dependent attraction of krill and food availability. It is
feasible to find a solution by measuring the distance from each
individual krill to the source of food with the maximum density. The
fittest krill is the one that is closest to a density population of krill
and a greater concentration of food. Foraging motion, physical
diffusion, and motion generated by other individual krill all

TABLE 6 Comparison of the statistical analysis of the KH technique with other methods for the 10-unit system without TLs and PoZs.

Method Lowest cost ($/h) Average cost ($/h) Highest cost ($/h) ET (sec)

AIS (Hemamalini and Simon, 2011) 1,021,980 1,023,156 1,024,973 -

BBPSO-DCS (Zhang et al., 2014) 1,018,159 1,019,850 1,021,813 -

ICA (Mohammadi-Ivatloo et al., 2012a) 1,018,467.49 1,019,291.358 1,021,795.773 -

TVAC-IPSO (Mohammadi-Ivatloo et al., 2012b) 1,018,217.224 1,018,965.355 1,020,417.821 -

CDBCO (Mohammadi-Ivatloo et al., 2013) 1.0215 × 106 1.0243 × 106 - -

CSO Meng et al. (2015) 1,017,660 1,018,120 1,019,286 -

EAPSO Niknam and Golestaneh, (2012) 1,018,510 1,018,701 1,019,302 -

IGA (Mohammadi-Ivatloo et al., 2013) 1,018,473.380 1,019,328.460 1,022,283.542 -

MBGDE (Zou et al., 2018) 1,017,235.307,311 1,017,782.554,367 1,018,218.631,746 -

IWO (Zhi-xin et al., 2019) 1,018,462.040392 1,019,944.197,846 1,020,928.408,406 -

CMIWO (Zhi-xin et al., 2019) 1,016,544.197,298 1,017,111.687,374 1,017,692.979,368 -

KH 1,015,835.57 1,015,977.906 1,016,821.7352 156

The bold values indicate the results achieved by the proposed method.

FIGURE 7
Convergence characteristics of a 10-unit system.
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contribute to the krill’s rotation in a multi-dimensional search space,
which is discussed below (Gandomi and Alavi, 2012).

3.1 Motion induced by other individual krill

Individual krill constantly travel in an n-dimensional search area
with a specific velocity to attain high krill density, and their
orientation is controlled by the local impact supplied by
neighboring krill and the goal effect. The ith krill velocity is
given as follows (Gandomi and Alavi, 2012):

Ni
k+1 � N max ∑NN

j�1
F̂ijX̂ij + 2 rand + I/I max( )X̂i,bestF̂i,best

⎛⎝ ⎞⎠ + ωnN
k
i ,

(8)
whereNk+1

i &Nk
i indicate the motion induced by other krill to the

ith krill in the (k + 1)th and kth generations, respectively, Nmax

denotes the maximum induced speed, F̂ij indicates the

normalized fitness difference between the ith&jth krill, X̂ij

indicates the normalized position variation between the
ith&jth krill; Fworst, Fbest are the worst and best fitness values,
respectively, andNN denotes the number of neighbors. Different
methods may be used to choose a neighbor. It is easy to calculate
the number of krill that are within a certain distance of each other
using the neighborhood ratio. The sensing distance (ds)
surrounding an individual krill, as given in Figure 1, should
be computed using the actual behavior of the individual krill, and
the neighbors should be located. The sensing distance is
calculated as follows:

dsi � 1
5N

∑N

k�1 Xi −Xk‖ ‖, (9)

where ds,i denotes the sensing distance of the ith krill. N indicates
the number of krill. If the sensing distance between two krill is
less than a certain value, then the two krill are considered
neighbors.

TABLE 7 Optimal solution of the 15-unit system obtained using the proposed KH technique without wind power.

T (h) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Cost ($/h)

1 206 150 130 130 150 204.7 465 60 25 25 20 29.3 25 15 15 22,132.74

2 221 150 130 130 150 219.3 465 60 25 25 20 30.14 25 15 15 22,439.57

3 221 150 130 130 150 219.2 465 60 25 25 20 30.08 25 15 15 22,439.57

4 229 150 130 130 150 234.3 465 60 25 25 20.07 26.24 25 15 15 22,644.4

5 231 150 130 130 150 228.8 465 60 25 25 20 30.68 25 15 15 22,644.27

6 231 150 130 130 150 228.6 465 60 25 25 20 30.53 25 15 15 22,644.27

7 325 258 130 130 150 322.2 465 60 25 25 20 35.73 25 15 15 25,724.97

8 325 257 130 130 150 322.5 465 60 25 25 20 35.75 25 15 15 25,724.97

9 455 455 130 130 157 460 465 60 25 25 33.92 49.41 25 15 15 30,893.51

10 455 455 130 130 150 459.9 465 60 25 25.01 37.6 52.52 25 15 15 30,893.5

11 455 453 130 130 342 460 465 60.02 25 25.18 44.73 55.63 25 15 15 32,994.07

12 455 455 130 130 436 460 464.5 60 25.03 25 50.07 55.14 25 15 15 34,049.6

13 455 455 130 130 470 459.4 465 60.39 25 39.74 77.97 78.13 25 15 15 35,114.29

14 454 454 130 130 470 460 464.9 70.55 26.59 126.4 77.95 80 25 15.1 15.6 36,210.26

15 455 454 130 130 470 460 464.9 60.11 25.13 136.1 79.79 79.95 25 15 15 36,204.89

16 454 454 130 130 470 459.7 465 60 36.12 134.3 76.39 75.92 25 15.1 15 36,210.59

17 455 455 130 130 470 459.2 465 60.65 25.39 146.9 68.83 79.36 25 15 15 36,208.6

18 453 455 130 130 427 460 465 60 25 25 53.9 60.52 25 15.1 15.1 34,049.72

19 455 454 130 130 152 460 465 60 25 25 37.76 50.8 25 15 15.1 30,893.65

20 325 257 130 130 150 322.5 465 60 25 25 20 35.74 25 15 15 25,724.97

21 270 168 130 130 150 268.5 465 60 25 25 20 32.8 25 15 15 23,669.4

22 255 150 130 130 150 253.2 465 60 25 25 20 31.97 25 15 15 23,156.52

23 233 150 130 130 150 226.8 464.9 60 25 25 20 29.88 25 15 15 22,644.29

24 230 150 130 130 150 228.9 465 60 25 25 20 30.64 25 15 15 22,644.27

Total cost ($/h) 677,956.89

All power values are in MW. The bold values indicate the results achieved by the proposed method.
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TABLE 8 Optimal solution of the 15-unit system obtained using the proposed KH technique with wind power.

T(h) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Wind Cost ($/h)

1 205.2 150 130 130 150 203.8 465 60 25 25 20 29.26 25 15 15 1.7 22,115.36

2 216.5 150 130 130 150 215.1 465 60 25 25 20 29.88 25 15 15 8.5 22,352.61

3 216.2 150 130 130 150 214.7 465 60 25 25 20 29.86 25 15 15 9.27 22,344.73

4 222.3 150 130 130 150 220.8 465 60 25 25 20 30.19 25 15 15 16.7 22,473.34

5 226.9 150 130 130 150 225.4 465 60 25 25 20 30.44 25 15 15 7.22 22,570.36

6 228 150 130 130 150 226.5 465 60 25 25 20 30.49 25 15 15 4.91 22,593.7

7 319 247.7 130 130 150 316.8 465 60 25 25 20 35.46 25 15 15 14.7 25,509.14

8 312.7 237.9 130 130 150 310.7 465 60 25 25 20 35.10 25 15 15 26.6 25,276.3

9 445 451.4 130 130 150 454.1 465 60 25 25 22.8 41.76 25 15 15 20.9 30,425.61

10 443.9 452.2 130 130 150 441.3 465 60 25 25 23.1 42.21 25 15 15 17.9 30,298.06

11 455 455 130 130 299.95 459.6 465 60 25.06 25 45.1 74.96 25.02 15.04 15 12.8 32,782.61

12 455 455 130 130 405.88 460 465 60 25 25.86 51 60.02 25 15 15 18.7 33,813.03

13 453.9 455 130 130 449.92 459.8 465 60 25.25 25 72.3 72.43 25 15.16 15 14.4 34,619.88

14 454.9 455 130 130 470 459.8 465 60 55.18 68.86 79 80 25.01 15.03 15 10.4 35,806.98

15 454.1 455 130 129.9 470 460 465 60.2 25.01 118.6 79.1 79.32 25 15.4 15 8.26 36,003.56

16 455 455 130 130 470 460 465 60.3 25 118.8 79.7 77.30 25 15 15 13.7 35,995.79

17 454.7 454.9 130 130 470 460 465 72.1 25.02 113.1 79.7 77.41 25.07 15 15 3.44 36,065.11

18 455 454.8 130 130 427.78 460 465 60 25 25 47.3 60.88 25 15 15 1.87 34,005

19 455 455 130 130 152.42 460 465 60 25 25.01 35.9 50.89 25 15 15 0.75 30,885.63

20 323.6 257.1 130 130 150 322.9 465 60 25 25 20 36.13 25 15 15 0.17 25,723.23

21 270.3 168.3 130 130 150 268.4 465 60 25 25 20 32.80 25 15 15 0.15 23,667.86

22 254.7 150 130 130 150 253 465 60 25 25 20 31.95 25 15 15 0.31 23,153.34

23 229.9 150 130 130 150 228.4 465 60 25 25 20 30.61 25 15 15 1.07 22,633.31

24 230.2 150 130 130 150 228.6 465 60 25 25 20 30.62 25 15 15 0.58 22,638.33

Total Cost ($/h) 673,752.87

TABLE 9 Statistical analysis comparison for the 15-unit system with other algorithms.

Method Lowest cost ($/h) Average cost ($/h) Highest cost ($/h) ET (sec)

Without wind power

BA (Faisal et al., 2020) 679,336 - - -

DBA (Faisal et al., 2020) 678,037 - -

KH 677,956.89 678,035.37 678,532.1 182

With wind power

BA (Harish et al., 2017) 674,878.1

DBA (Harish et al., 2017) 673,821.7

KH 673,752.87 674,151.72 674,823.21 176
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3.2 Foraging motion

It is divided into two sections, one for the present iteration
and the other for prior versions. A good food location is a mix of
food attraction and the local best food placement that is utilized
to attract individual krill to the global ideal solution. The
foraging action of the krill is given as follows (Gandomi and
Alavi, 2012):

Fi
k+1 � Vf 2 1 − I/I max( )F̂i,bestX̂i,best + F̂i,foodX̂i,food( ) + ωfF

k
i , (10)

where Fk+1
i &Fk

i denote the foraging motion of the ith krill, Vf

indicates the foraging speed, ωf indicates the inertia weight,
F̂i,best&X̂i,best are the normalized fitness and position variation
between the ith and best individual krill, respectively, and
F̂i,food&X̂i,food are the normalized fitness and position
variation between the ith krill and the center of food,
respectively.

3.3 Physical diffusion

The physical spread of individual krill is considered a
random phenomenon. This movement can be characterized
by utilizing a random directional vector and a maximum
diffusion speed. It is possible to put it this way using Eq. 11
(Gandomi and Alavi, 2012) as follows:

Di � D maxδ. (11)
Di indicates the physical diffusion of the ith krill in the kth

generation, Dmax denotes the maximum diffusion speed, and δ

indicates a random directional vector.
When a krill approaches closer to the global optimum

solution, less random orientation is required. To account for
this, a new term is introduced to the physical diffusion formula.

Foraging motion and motion caused by other individual krill
have a diminishing influence with time (iterations). A random
vector of physical diffusion is shown in Eq. 8 and does not
steadily decrease with the increase in the number of iterations.
This results in the addition of an additional term Eq. 9 to Eq.
8. Random speed is reduced linearly with time and is given
below:

Di � 1 − I/I max( )D maxδ. (12)

3.4 Update krill position

Each krill’s position is revised as given below:

Xi t + Δt( ) � Xi t( ) + Ct ∑CV
k�1

ULk − LLk( ) Ni + Fi +Di( ). (13)

3.5 The procedure of KH to solve the DED
problem

Step 1: KH variables and max generations (Gmax) are initialized.

Step 2: The unknown variable of this ED problem is generator-
active power output. In the KH, all these variables constitute the
individual position of several chromosomes that indicate a
complete solution set. The position of any chromosome, Xk, is
represented using Eq. 14 as follows:

Xk � Pm
g1,1,k, P

m
g1,2,k, . . . . . . , P

g
g1,t,k,[ ]. (14)

The complete search space for population NP is expressed using
Eq. 15 as follows:

Xm
k �

Pm
g1,1,k Pm

g1,2,k / Pg
g1,t,k

Pm
g2,1,k Pm

g2,2,k / Pm
g2,t,k

..

. ..
.

1 ..
.

Pm
gNg,1,k Pm

gNg,2,k / Pm
gNg,t,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k � 1, 2 . . .NP
g � 1, 2 . . .Gmax

. (15)

Step 3: The fitness of each krill can be evaluated by applying Eq. 12.

F| | � f + wP PG1 − PG
lim
1

∣∣∣∣ ∣∣∣∣( )2. (16)

Step 4: The three movements mentioned in Eqs 8, 10, 12 are
applied, and the newly created individual krill are updated using
Eq. 13.

Step 5: If the current limitations of a variable are exceeded, it will be
set to an explicit low or high value.

Step 6: If utmost generations have been reached, the process
is stopped, and the optimum result from the previous
generation is used as the best solution. Otherwise, we
proceed to step 3.

FIGURE 8
Convergence characteristics of a 15-unit system.
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TABLE 10 Optimal solution of the 30-unit system obtained using the proposed KH technique.

T (h) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

1 2.27 1.35 0.73 0.6 1.23 0.57 1.3 0.47 0.2 0.55 1.5 3.97 1.04 0.6 1.229 1.23

2 2.27 1.35 0.73 0.6 2.23 1.23 1.3 0.47 0.2 0.55 1.5 3.1 1.85 0.601 0.73 1.23

3 3.8 2.22 2.98 0.6 1.73 1.6 1.3 0.47 0.2 0.55 1.5 1.35 2.96 0.6 2.226 1.23

4 4.57 3.97 2.98 0.6 1.73 1.22 1.3 0.47 0.2 0.55 1.5 1.35 1.85 1.199 2.226 1.51

5 3.03 1.35 3.04 0.6 2.23 1.23 1.3 0.47 0.2 0.55 3.034 3.97 3.01 0.6 0.73 1.23

6 3.8 3.97 2.97 0.6 2.22 1.22 1.3 0.47 0.2 0.55 1.5 3.97 1.85 0.6 2.225 1.6

7 4.56 3.97 2.98 0.6 1.73 1.23 1.3 0.47 0.2 0.55 4.565 3.97 2.97 0.6 2.226 1.6

8 3.03 3.97 2.98 2.999 2.23 1.22 1.3 0.47 0.2 0.55 3.802 3.1 2.97 2.413 2.231 1.22

9 4.57 3.97 3.14 1.211 2.22 1.6 1.3 0.47 0.2 0.55 4.565 3.97 3.13 0.6 2.226 1.23

10 4.57 3.97 3 0.601 2.23 1.6 1.3 1.2 0.2 0.55 4.565 3.97 3.04 2.412 2.226 1.6

11 4.57 3.97 3.4 3 2.23 1.6 1.3 1.2 0.52 0.55 4.566 4.6 2.98 3 2.223 1.6

12 4.57 4.6 2.99 2.413 1.73 1.6 1.3 1.2 0.52 0.55 4.565 4.6 3.04 3 2.226 1.6

13 4.57 3.97 3.15 1.204 2.23 1.6 1.3 1.2 0.2 0.55 4.565 3.97 3 3 2.228 1.23

14 4.57 3.97 3.08 3 2.23 1.23 0.93 0.47 0.2 0.55 4.564 3.97 3.05 2.414 0.731 1.6

15 4.57 3.97 2.99 0.601 2.23 0.57 1.3 0.85 0.2 0.55 3.798 3.97 3.03 0.6 1.727 1.23

16 3.03 3.97 3 0.613 1.73 1.23 1.3 0.85 0.2 0.55 2.268 3.97 3.05 0.604 1.232 1.23

17 2.27 3.97 3 0.6 0.73 0.57 1.3 0.47 0.2 0.55 3.798 3.97 3 0.6 0.73 1.23

18 3.8 1.35 3.03 0.601 1.73 1.24 1.3 0.47 0.2 0.55 3.799 3.97 3.01 0.601 1.729 1.6

19 4.57 3.97 3.01 1.809 2.23 0.6 1.3 0.47 0.2 0.55 2.267 3.97 2.98 0.604 2.227 1.6

20 4.57 3.97 3.4 1.809 2.23 1.23 1.3 0.47 0.2 0.55 4.566 3.97 2.98 3 2.226 1.6

21 4.56 3.97 2.97 0.6 2.23 1.55 1.3 0.85 0.2 0.55 3.798 3.97 2.97 3 2.226 1.22

22 3.8 3.97 3.01 0.6 1.73 1.25 1.3 0.47 0.2 0.55 3.805 1.35 3.04 0.601 1.73 1.6

23 3.03 1.35 3.02 0.6 2.23 1.23 1.3 0.47 0.2 0.55 1.5 3.97 2.98 0.6 0.73 1.23

24 3.8 1.35 0.77 0.6 0.73 1.23 1.3 1.2 0.2 0.55 1.5 1.35 0.73 0.6 0.73 1.35

T (h) P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 Cost ($/h)

1 1.3 0.47 0.2 0.55 1.5 3.1 0.73 0.6 0.73 0.6 1.3 0.47 0.2 0.55 85,330.14

2 1.3 0.47 0.2 0.55 1.5 1.35 2.05 0.6 1.23 1.2 1.3 0.85 0.2 0.55 89,624.12

3 1.3 0.47 0.2 0.55 2.27 1.35 0.73 0.6 1.23 1.2 1.3 0.47 0.2 0.55 99,106.91

4 1.3 0.85 0.2 0.55 3.8 1.35 1.84 0.6 0.73 1.2 1.3 0.47 0.2 0.55 108,973.7

5 1.3 0.47 0.2 0.55 2.27 3.97 3.01 0.6 1.73 1.2 1.3 0.47 0.2 0.55 113,200.6

6 1.3 0.47 0.2 0.55 4.56 3.97 1.85 0.6 2.23 1.6 1.3 0.47 0.2 0.55 123,231.7

7 1.3 0.47 0.2 0.55 3.03 3.97 1.85 0.6 0.73 1.6 1.3 1.2 0.2 0.55 128,202.1

8 1.3 0.47 0.201 0.55 3.8 3.1 1.85 0.6 2.22 1.6 1.3 0.85 0.2 0.55 133,785.8

9 1.3 0.47 0.201 0.55 4.57 3.97 3.02 2.41 2.23 1.2 1.3 0.47 0.5 0.55 143,312.7

10 1.3 1.2 0.2 0.55 4.56 4.6 2.99 3 2.23 1.6 1.3 0.85 0.2 0.55 154,391

11 0.93 0.85 0.2 0.55 4.57 3.97 3.4 3 2.23 1.2 0.57 0.85 0.2 0.55 160,808.8

12 1.3 1.2 0.52 0.55 4.57 4.6 2.98 3 2.23 1.6 1.3 1.2 0.5 0.55 166,231.2

13 1.3 0.85 0.2 0.55 4.57 3.97 3.4 3 2.23 1.2 1.3 0.85 0.2 0.55 154,111.6

(Continued on following page)
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The flowchart of the proposed algorithm is given in Figure 2.

4 Simulation results

To examine the scalability and effectiveness of the KH approach
described in the solution to the DED problem, various modules are
explored here to prove the efficiency of the KH algorithm. In all
modules, the number of krill and maximum iterations are taken as
30 and 500, respectively, and the schedule time is set to 24 h. A

Pentium IV Computer with a clock speed of 2.33 GHz and a
memory capacity of 3.25 GB with MATLAB 2016a was used to
run all simulations.

4.1 Selection of control parameters

The quality of the answer and the pace at which the algorithm
converges are both heavily influenced by the choice of appropriate
algorithmic parameters. In order to achieve the optimal population

TABLE 10 (Continued) Optimal solution of the 30-unit system obtained using the proposed KH technique.

T (h) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

14 1.3 0.85 0.2 0.55 4.57 3.97 3.05 1.81 0.73 1.2 1.3 0.85 0.2 0.55 144,096.6

15 1.3 1.2 0.2 0.55 4.56 3.97 3.06 0.6 1.23 1.6 1.3 0.47 0.5 0.55 133,445.6

16 1.3 0.47 0.2 0.55 4.56 3.97 0.74 0.6 1.23 1.3 1.3 0.85 0.2 0.55 118,364

17 1.3 0.47 0.519 0.55 3.04 3.1 2.98 0.6 0.73 1.2 1.3 0.85 0.2 0.55 113,584.1

18 1.3 1.2 0.2 0.55 3.04 3.97 3.05 0.6 2.23 1.2 1.3 0.47 0.2 0.55 123,360.3

19 1.3 0.85 0.2 0.55 4.57 3.97 2.99 1.2 1.23 1.2 0.93 0.85 0.5 0.55 133,802.9

20 1.3 0.47 0.2 0.55 4.57 4.6 2.98 2.41 2.23 1.6 1.3 0.85 0.5 0.55 154,323.9

21 1.3 0.47 0.2 0.55 3.8 3.97 2.97 1.81 2.23 1.2 1.3 1.2 0.2 0.55 143,456.6

22 1.29 0.47 0.201 0.55 4.57 3.97 2.98 0.6 0.73 1.2 1.3 1.2 0.2 0.55 123,361.3

23 1.3 0.47 0.2 0.55 1.5 1.35 3.05 0.6 2.23 1.2 1.3 0.47 0.2 0.55 103,617.7

24 1.3 0.85 0.2 0.55 3.8 1.35 3.04 0.6 1.73 1.6 1.3 0.47 0.2 0.55 95,036.6

Total cost ($/h) 3,046,760.05

The bold values indicate the results achieved by the proposed method.

TABLE 11 Statistical analysis comparison of the 30-unit system with other algorithms.

Method Lowest cost ($/h) Average cost ($/h) Highest cost ($/h) ET (min)

DGPSO (Meng et al., 2015) 3,148,992 3,154,438 - 22.81

ECE (Meng et al., 2015) 3,084,649 3,087,847 - 1.3

BBPSO (Meng et al., 2015) 3,062,144 3,067,277 - 6.3

HHS (Meng et al., 2015) 3,057,313 - - 23.0

HIGA (Meng et al., 2015) 3,055,435 3,055,435 3,066,755 -

CSO (Meng et al., 2015) 3,051,260 3,053,465 3,054,960 1.79

CDBCO (Meng et al., 2015) 3.0814 × 106 3.0885 × 106 - -

BBPSO-DCS (Zhi-xin et al., 2019) 3,062,144 3,067,277 - -

IGA (Zhi-xin et al., 2019) 3,055,435.068 3,058,126.233 3,066,754.92 -

CSO (Zhi-xin et al., 2019) 3,051,260 3,053,465 3,054,960 -

EAPSO (Zhi-xin et al., 2019) 3,054,961 3,055,257 3,055,641 -

MGDE (Zhi-xin et al., 2019) 3,050,374.3 3,051,368.29 3,052,078.53 -

IWO (Zhi-xin et al., 2019) 3,058,720.47 3,059,859.81 3,061,347.41 -

CMIWO (Zhi-xin et al., 2019) 3,049,231.097 3,050,436.52 3,052,036.73 -

KH 3,046,760.05 3,047,154.90 3,049,642.024 1.6

The bold values indicate the results achieved by the proposed method.
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size for various tests, the minimal cost for various populations was
computed. The best value for the population size achieved for all the
test cases is 30. In addition, multiple trials have been conducted to
identify an appropriate number of maximum iterations. The
associated test cases indicate that the best value for the
maximum number of iterations is 500. A total of 20 independent
trials were conducted for each system to verify the reliability and
efficacy of the proposed KH method. The KH method input
variables used in this simulation research are considered from
the study by Gandomi and Alavi (2012), which are follows:
maximum induced speed Nmax = 0.01; foraging speed (Vf) = 0.05;
and maximum diffusion speed Dmax = 0.01. It is important to note
that the inertia weights (wn, wf) are initially set at 0.9 to highlight the
capacity of the search process to explore the search space, but these
values are gradually decreased to 0.1 at the conclusion of the search
process to maximize the amount of space that can be explored.

4.2 Five-unit system

It contains five generators, and the full data on the system are
obtained from the study by Faisal et al. (2020), which consist of the
cost coefficients of generators and their limits, PoZ limits, and load
in every period. For a five-unit system, two test scenarios were
considered. In scenario 1, only transmission loss (TL) was

considered. In scenario 2, TL with PoZ was considered. In the
above two scenarios, the best combination of real powers
obtained with the proposed KH method is given in Table 1.
Table 2 represents statistical values obtained for the two test
scenarios with the KH method compared with the artificial
immune system (AIS) (Hemamalini and Simon, 2011), bare-
bones PSO (Zhang et al., 2014), imperialist competitive algorithm
(ICA) (Mohammadi-Ivatloo et al., 2012a), enhanced adaptive PSO
(Niknam and Golestaneh, 2012), time-varying acceleration-
improved PSO TVA-IPSO (Mohammadi-Ivatloo et al., 2012b),
immunity GA (IGA) (Mohammadi-Ivatloo et al., 2013), HIGA
(Mohammadi-Ivatloo et al., 2013), memory-based global DE
(MBGDE) (Zou et al., 2018), IWO (Zhi-xin et al., 2019),
CMIWO (Zhi-xin et al., 2019), MILP-IPM (Granelli et al., 1989),
and BBOSB (Pandi and Panigrahi, 2011). These results proved that
the KH method achieved the best results in the two scenarios
compared to other methods. The convergence curves obtained
with the proposed KH algorithm are given in Figure 3 and
Figure 4, respectively, and it is shown that the KH technique
converged quickly to the optimal solution.

4.3 Six-unit system

It contains six generators, and the whole data for this system are
obtained from the study by Faisal et al. (2020), which include the
cost characteristics of generators, generator limitations, and load
demand in each period. Table 3 shows the optimum set of real
powers found for this system using the KH algorithm, and a
graphical illustration is given in Figure 5. Table 4 compares these
findings with those of BA (Faisal et al., 2020) and DBA (Faisal et al.,
2020), and these results show that the proposed technique is a better
procedure to identify the best solutions to such complicated DED
challenges, with the lowest, average, and highest costs, as shown in
the table. Using the formulation of KH, a minimum value of
262,186.5 ($/day) was attained, demonstrating the extraordinary
nature of the KH technique. In addition, the KH cost characteristics
are given in Figure 6. This graph shows that the proposed KH
converged very quickly, which indicates that it achieved optimum
results in less time.

4.4 M2: 10-unit system

It this test case, the valve-point loading effect and generation limits
were considered. The complete test data on this system are obtained
from the study by Harish et al. (2016), which include the cost
coefficients of thermal limits and their limits and the load in every
period. Table 5 presents the optimum combination of real powers found
for this system using the KH method. The statistical values achieved
with the present method are compared with those obtained by the AIS
(Zhang et al., 2014), BBPSO-DCS (Zhang et al., 2014), ICA
(Mohammadi-Ivatloo et al., 2012a), TVAC-IPSO (Mohammadi-
Ivatloo et al., 2012b), chaotic differential bee colony optimization
(CDBCO) (Lu et al., 2014), crisscross optimization algorithm (CSO)
(Meng et al., 2015), EAPSO (Niknam and Golestaneh, 2012), IGA
(Mohammadi-Ivatloo et al., 2013), MBGDE (Zou et al., 2018), IWO
(Zhi-xin et al., 2019), and CMIWO (Zhi-xin et al., 2019) and are given

FIGURE 9
Convergence characteristics of a 30-unit system.

TABLE 12 Statistical analysis of all the systems.

S. no. Test system t-statistic p-value

1 Five-unit system 1.84 0.086

2 Six-unit system 2.01 0.064

3 10-unit system 2.05 0.06

4 15-unit system (without wind) 2.04 0.061

5 30-unit system 2 0.066
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in Table 6. It is observed that the proposed method provided a superior
strategy for identifying solutions. In addition, the KH cost
characteristics are given in Figure 7, and it is shown that the
proposed KH converged very quickly, which indicates that it
achieved optimum results in less execution time (ET).

4.5 15-unit system

The efficiency of the KH algorithm is determined by examining
15-unit systems while addressing the DED issue with the inclusion
of wind power. This system obtained complete data from the study
by Hu et al. (2016). Table 7 shows the optimum set of real powers
derived using the KH algorithm for this system in the first scenario
(without wind power). In the second scenario involving renewables,
the KH algorithm was employed in the same unit system
incorporating one wind farm for a 24-h period. The best
combination of real power values obtained in this case is given in
Table 8. Table 9 presents the statistical results obtained for this
system with and without the inclusion of wind power, compared
with other methods published in the literature. This includes the
lowest, average, and highest cost, along with the corresponding ET,
and it is proven that the suggested technique produced better
optimal results than the BA (Faisal et al., 2020) and DBA
methods (Faisal et al., 2020). The cost characteristics of the KH
technique are given in Figure 8. Overall, these results show that the
KH algorithm is effective in the presence of renewable energy
sources as well.

4.6 30-unit system

This research simulated the scheduling of a 30-unit system
without taking into account TL and PoZs to demonstrate the
dispatch performance of the KH technique on large-scale
systems. The data for the 30-unit system are obtained by
multiplying the information for a 10-unit system by 3, and the
data of a 10-unit system are obtained from the study by Zhi-xin et al.
(2019). Table 10 displays the most cost-effective dispatch solution
produced by the KH algorithm and also displays the ideal solution of
the KH algorithm, which confirms that the self-adaptive repair
approach is effective since it fulfills the power demand balance,
generating capacity restrictions. Table 11 compares the optimum
dispatch results obtained by the KH algorithm with those obtained
by other techniques from the literature. The suggested KH technique
achieves the lowest generation costs compared to state-of-the-art
approaches. The KH cost characteristics are given in Figure 9. The
graph shows that the proposed KH converged very quickly, which
shows that the KH technique achieved optimum results in less time.
As a result, the suggested KH algorithm provides superior
performance in terms of lowering generating costs during the
dispatch of large-scale systems.

4.7 Statistical assessment

A well-known one-sample t-test (Mowafaq, 2022) is performed
on all the test systems to evaluate the stability of the suggested

KH technique for solving the DED issue. The significance level
used in this test is 0.05. Statistical analysis provides us the data
to keep or discard any hypothesis. The comparison of statistical
data using significance analysis may be used to reject or retain
any hypothesis. If the statistical value is larger than the
threshold of significance, the hypothesis is accepted;
otherwise, it is rejected. The results of the all-sample t-test
are shown in Table 12 to demonstrate the validity of the null
hypothesis.

5 Conclusion

In this work, the KH technique is utilized to solve dynamic
economic dispatch issues during a 24-h time span by including
various constraints such as valve-point loading effects and
prohibited operating zones, as well as wind power generation.
In KH, the initial search space is reduced through motion
induced by other krill and foraging motion. Later, random
diffusion is utilized to pick good-quality solutions to improve
the system accuracy and dependability while dealing with
optimization issues. In the current work, the KH algorithm is
applied on five different systems to solve the optimization of the
total cost with and without valve-point loading effects. The
results of the test scenarios show that the KH technique is
reliable, resilient, and capable of consistently providing high-
quality DED solutions with actual operating restrictions such as
transmission loss, valve-point effects, and prohibited operating
zones. Compared to other methods, KH performance in terms of
cost reduction and dispatch schedule optimization is found to be
fairly competitive, and it can be securely employed as an effective
algorithm for small-to-medium-sized, simple-to-complicated
DED situations. Furthermore, KH is applied to solve multi-
objective DED issues in hybrid power systems, and combined
heat and power dispatch, stochastic DED, and power state
estimation would be a possible extension of the present work.
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