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Load balancing and topology
dynamic adjustment strategy for
power information system
network: a deep reinforcement
learning-based approach

Xiao Liao, Beifang Bao, Wei Cui* and Di Liu

State Grid Information and Telecommunication Group Co., LTD., Beijing, China

As power information systems play an increasingly critical role in modern
society, higher requirements are placed on the performance and reliability of
their network infrastructure. In order to cope with the growing data traffic
and network attack threats in the power information system, we select the
power information system data center network as the research object and
design an overall system solution based on software defined network, including
the application layer, control layer and infrastructure layer. A typical fat tree
network topology is simulated and analyzed. We define the load balancing and
network topology dynamic adjustment problem as a Markov decision process,
and design a data flow path acquisition method based on breadth-first search
to construct the action space of each host. Then, a deep reinforcement learning
algorithm based on deep Q-network, priority experience replay and target
network is introduced to provide solutions for optimizing the performance
of power information systems and responding to network attacks. Simulation
results show that the proposed method is better than the traditional equal-cost
multi-path algorithm in terms of average bandwidth utilization, average jitter
and average packet loss, and can reduce the probability of network nodes being
attacked by more than 11%.

KEYWORDS

power information systems, load balancing, flood attack,Markov decision process, deep
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1 Introduction

The smart grid (Fanlin and Wei, 2020; Gunduz and Das, 2020; Tufail et al., 2021) is the
core of power grid modernization. The burgeoning evolution of power systems necessitates
advanced capabilities in data acquisition, transmission, and processing. This evolution
fosters a mutually beneficial relationship between information systems and power systems,
marking their integration as a key feature of smart grid development.Thepower information
system (PIS) exemplifies this trend by enhancing the interconnectedness of various power
system components. This integration facilitates a seamless operational harmony across the
spectrum of power generation, transmission, distribution, and consumption.

Alongside these power system developments, the expansion of the Internet has
also occurred, which has precipitated an exponential increase in network devices and,
correspondingly, network traffic. Such growth imposes substantial demands on network

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1342854
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1342854&domain=pdf&date_stamp=2024-01-24
mailto:abcuiglad@139.com
mailto:abcuiglad@139.com
https://doi.org/10.3389/fenrg.2023.1342854
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1342854/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1342854/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1342854/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1342854/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1342854/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liao et al. 10.3389/fenrg.2023.1342854

resource allocation and management. As a new type of network
architecture (Hamdan et al., 2021), software defined network (SDN)
has amore flexible, dynamic, and frequent form of network resource
allocation compared to traditional networks. SDN, characterized
by its decoupled control and forwarding functions, centralized
management, programmability, and open interfaces, embodies
a stratified design. This idea of layered decoupling divides
the network into application, control and infrastructure layers.
OpenFlow, a standardized communication protocol (Nisar et al.,
2020; Wazirali et al., 2021), operates at the intersection of the
control and forwarding layers, enabling their disentanglement.
The demarcation of control and forwarding planes, alongside
features like resource virtualization and programmability, yields
multiple advantages. It allows network hardware to concentrate
on forwarding efficiency, thus diminishing costs; enables network
intelligence through programmable software; and empowers a
centralized controller to tailor network configurations in real-time,
thereby enhancing service adaptability.

Unbalanced distribution of network traffic not only leads to
congestion on a certain link of the network, but also leads to
the suboptimal use of available resources. In the context of smart
grids, load balancing technology is pivotal, as it allocates the
load across operational units, thereby leveraging finite resources
to accomplish a broader array of tasks. Using load balancing
technology can maximize the use of network resources and improve
the performance of the network. The problem of load balancing
in SDN is an important research direction for power information
systems. Deep reinforcement learning (DRL), a technique that has
recently gained traction in artificial intelligence, is increasingly being
employed to resolve various challenges in PIS due to its exceptional
learning and adaptive capabilities, making it a robust solution for
refining SDN load balancing.

However, potential attack risks pose great challenges to the
stable operation of power information systems (Dash et al., 2022).
External attackers can launch attacks through terminal nodes in
the network, such as common flooding attacks, which will have
a negative impact on network performance. Current research on
the resistance of power information systems to external attacks is
lacking. The application of deep reinforcement learning algorithms,
which devise optimal strategies through environmental interactions,
is significant.Their inherent intelligence and adaptability are critical
in identifying, mitigating, and safeguarding against malicious traffic
intrusions, thereby bolstering network robustness.

In short, using DRL to solve SDN load balancing and defense
attack problems is a very promising research direction. It can
maximize the utilization of network resources and improve network
performance, which has important practical significance for the
development of power information systems and SDN networks.
This paper proposes a load balancing and topology dynamic
adjustment strategy based on deep reinforcement learning for power
information systems. To the best of our knowledge, this is the first
work that considers both load balancing and defense against external
traffic attacks. The main contributions of this article are as follows:

(1) The problem of load balancing and network topology dynamic
adjustment is modeled as a Markov decision process, and both
traffic forwarding and defense against flooding attacks are paid
attention to under the SDN framework.

(2) This paper proposes a load balancing and network
topology dynamic adjustment method based on deep
reinforcement learning, and introduces deep Q network,
priority experience replay and target network to improve
the performance and anti-attack capabilities of the power
information system.

(3) Experimental simulations are conducted on the common
fat tree topology of power information system data center
networks to verify the effectiveness of the method proposed in
this article.

The remainder of this article is organized as follows. Section 2
briefly reviews the research efforts related to load balancing and
attack defense. In Section 3, we introduce the system architecture of
our study. Section 4 presents a detailed description of our proposed
method. In Section 5, we provide the simulation results. Finally, in
Section 6, we conclude this article.

2 Related work

The escalation of power system capacities inevitably leads to an
upsurge in data processing and transmission, thereby intensifying
the informational network’s transmission burden. To circumvent
network link congestion and enhance network performance,
the SDN load balancing algorithm has emerged as a pivotal
research area within the SDN domain. Scholars globally have
delved deeply into SDN load balancing research. The study in
Priyadarsini et al. (2019) introduces a self-adaptive load balancing
scheme that dynamically distributes load acrossmultiple controllers,
effectively managing high-load conditions while accounting for the
proximity between switches and target controllers. In Jamali et al.
(2019), Genetic Programming based Load Balancing (GPLB) is
proposed to select the most efficient path by integrating real-
time load data. The study by Chakravarthy and Amutha (2022)
presents an innovative algorithm for load balancing that proactively
computes the capacity of switches along a packet’s routing path.
Rupani et al. (2020) proposed a load balancing solution in SDN
that utilizes a global network view to select the optimal data
transmission path, significantly reducing latency through a neural
network model. In Ejaz et al. (2019), explored traffic load balancing
within SDN and NFV frameworks, achieving enhanced network
performance by deploying a virtual SDN controller as a VNF
that dynamically adds secondary controllers to distribute increased
traffic loads. The study by Xue et al. (2019) introduces the Genetic-
Ant Colony Optimization (G-ACO) scheme, which synergizes
Genetic Algorithm (GA) for a rapid global search with ACO
for efficient optimal solution finding, significantly enhancing
pathfinding efficiency and reducing round-trip times and packet loss
rates. Xu et al. (2019) demonstrated enhanced traffic management
efficiency through dynamic switch-to-controller mapping in SDN.
They introduced the ‘BalCon’ and ‘BalConPlus’ migration schemes
that balance loads across controllers with minimal migration costs.
In Fang et al. (2019), a reinforcement learning-based load balancing
algorithm is put forward, applying neural learning for SDN routing
and crafting a Q-learning based routing protocol. Nonetheless, such
algorithms face challenges like high computational demands and
limited scalability in extensive networks. How to design reliable
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algorithms with good real-time performance and strong robustness
is the focus of this article.

The stable operation of the power system can not be separated
from the network security protection. Beyond firewall applications,
real-time monitoring through intrusion detection is vital for
timely anomaly detection and power system protection. Literature
Haghnegahdar and Wang (2020) presents a novel intrusion
detectionmodel utilizing a whale optimization algorithm-enhanced
artificial neural network to effectively classify various levels of
cyber-attacks and incidents within power systems. Li et al. (2020)
introduced ‘DeepFed’, a novel federated deep learning approach
for detecting cyber threats in industrial CPSs, utilizing a unique
combination of CNNs and GRUs within a privacy-preserving
federated learning framework secured by Paillier cryptosystem
protocols. A study in Choi et al. (2019) showcases a network
intrusion detection system developed using an autoencoder, an
unsupervised learning algorithm, boasting a 91.70% accuracy
rate. Addressing DDoS attacks, Mendonça et al. (2021) proposes
an IDS based on a Tree-CNN with a Soft-Root-Sign (SRS)
activation function, enhancingmodel generalization and expediting
training through batch normalization. Literature Pontes et al. (2021)
presents the Energy-based Flow Classifier (EFC), an innovative
anomaly-based classifier using inverse statistics for flow-based
network intrusion detection. Khalid et al. (2019) proposed novel,
resource-efficient algorithms that integrate distributed and intrusion
detection systems to mitigate flood attacks. This paper innovatively
introduces deep reinforcement learning methods to defend against
external malicious traffic attacks from the perspective of dynamic
adjustment of network edge topology of power information systems.

3 System architecture

In this section, we elaborate on the system architecture of
our study. This section is divided into two subsections: the first
subsection provides an overview of the overall system architecture,
including the application layer, control layer, and infrastructure
layer, while the second subsection delves into the details of the
fat-tree topology commonly used in power information system
data centers.

3.1 Overall system architecture

Power information system plays a vital role in the emerging
landscape of smart grid, and its efficient operation relies heavily on
a well-constructed system architecture. The core concept of SDN
is to separate the control layer and data forwarding layer in the
network.The logically centralized control layer uses communication
interfaces to implement centralized control of network devices in
the data forwarding layer. The application layer can flexibly control
network devices in the data forwarding layer by writing software. It
requires its own control network to achieve programmable control.
Based on the current SDN research, this paper introduces deep
reinforcement learning to achieve load balancing and resist attacks
in PIS network.

The system architecture of the load balancing and dynamic
adjustment strategy studied in this article is shown in Figure 1,

which includes three main layers: application layer, control
layer and infrastructure layer. These layers work synergistically
to create an adaptive and efficient network infrastructure
tailored for the unique challenges posed by the PIS data
center environment.

Application Layer: The application layer resides at the top of
the entire architecture, running trained deep reinforcement learning
agents for real-time decision-making. The goal of this layer is
to generate load balancing and topology adjustment strategies,
ultimately deployed to the infrastructure layer to instruct the
underlying terminal devices, ensuring efficient data forwarding
and rapid responsiveness in the PIS. Each agent employs the
DQN algorithm, using network terminal node information as
state input, and leveraging deep Q-networks to select actions.
During interaction with the environment, they learn strategies that
maximize reward values.

Control Layer: The control layer serves as the central command
center for the entire network. It is mainly composed of SDN
controllers, bridging the application layer and the infrastructure
layer. SDN controllers are responsible for managing network
policies, traffic engineering, and routing. The control layer transfers
network information collected from the infrastructure layer and
terminal requests to the application layer via a northbound interface,
and forwards load balancing and topology adjustment strategies
received from the application layer to the infrastructure layer via a
southbound interface.

Infrastructure Layer: The infrastructure layer resides at the
bottom, responsible for data processing, forwarding, and state
collection. The infrastructure layer comprises network devices such
as switches, routers, etc., often referred to as the data plane. These
underlying network devices lack control capabilities and possess
only basic data processing functions, such as data forwarding
and state collection based on flow tables issued by the controller.
In the SDN environment, communication between switches and
controllers is facilitated through the OpenFlow protocol, allowing
the controller to instruct switches on where to forward data packets,
processing packets based on the combination of packet content and
switch configuration state.

3.2 Fat-tree topology in power information
system data centers

In the power information system, data centers play a critical
role. For many power distribution and power consumption end
equipment, the switches within the power information system
data centers need to process the traffic requests of each terminal
equipment in real time and select appropriate communication paths
for forwarding. The currently commonly used network architecture
in data centers is the fat-tree topology, which is the backbone of
network communication and data exchange. It is carefully designed
to meet the requirements of high performance, fault tolerance,
and scalability, and has become the cornerstone of modern data
center architecture. The fat tree topology is an improvement over
the traditional three-layer tree topology. Its essence is a three-layer
cascaded multi-root tree topology with a switch as the core (switch-
only).The entire topology can be described using a single parameter
k (k represents the number of ports on a single switch). A classic
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FIGURE 1
Overall system architecture.

quad-tree fat tree topology (k = 4) is shown in Figure 2. The three
switch layers from top to bottom are the core layer, the aggregation
layer and the edge layer.

Core Layer Switches: The core layer serves as the central
hub of the fat-tree topology, ensuring high-speed and low-latency
connections within the data center. Core layer switches aggregate
data from different parts of the data center and are responsible for
consolidating and forwarding network traffic. They play a crucial
role in facilitating efficient flow of critical information, such as
real-time grid monitoring data, between different segments of the
data center.

Aggregation Layer Switches: Aggregation layer switches act as
an intermediate layer, connecting core layer and edge layer switches.
They are pivotal in facilitating communication between various
edge switches and the core layer, enabling the efficient flow of data
between different sections of the data center. Aggregation switches
enhance network scalability and flexibility and are integral to load
balancing and redundancy, ensuring optimal data transmission.

Edge layer switches: At the edge layer, network switches are
directly connected to end-user devices, sensors, etc. in the power
information system. Edge layer switches handle the initial data
processing and routing, ensuring that data fromdifferent devices can
be efficiently transferred to the aggregation layer.These switches play
a vital role in managing diverse data sources within the data center,
ensuring that incoming data is efficiently directed to its appropriate
destination.

Hosts: Host devices include servers, workstations, sensors,
and other end-user devices. They are directly connected
to edge layer switches and serve as the terminal devices
responsible for generating, processing, and consuming data
within the power information system. Hosts constitute
both the ultimate source and destination of data flows,
making them an essential component of the power
information system.

As shown in Figure 2, the fat-tree network topology
systematically allocates edge layer switches and aggregation layer
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FIGURE 2
Quadruple fat tree topology.

switches to different arrays, referred to as “Pods.” A k-fork fat-
tree topology consists of k pods, with each pod capable of
accommodating (k/2)2 host devices. Each pod’s aggregation layer
and edge layer contain k/2 switches with k interfaces. Each edge
layer switch is connected to k/2 hosts and k/2 aggregation layer
switches, while each aggregation layer switch is connected to k/2
edge layer switches and k/2 core layer switches. Consequently,
a k-fork fat-tree structured network can accommodate k3/4
host devices.

Due to its excellent scalability, connectivity, and cost-
effectiveness, the fat-tree topology finds widespread application
in large-scale system-level network centers, providing high-
throughput transmission services for data center networks. This
paper focuses on load balancing and flood attack mitigation
in the fat-tree topology of data center networks within the
power information system, and experimental investigations
are conducted using a 4-fork fat-tree topology on a network
simulation platform.

4 Proposed method

In this section, we provide a detailed description of our
proposed load balancing and dynamic network topology adjustment
methodology. Initially, based on the characteristics of the
system architecture, a Markov Decision Process is constructed.
Subsequently, to determine the action space of each agent, we
designed a data flow path acquisition method based on BFS
(Breadth-First Search). Following that, we employ Deep Q-Network
and Priority Experience Replay techniques to establish the load
balancing and topology adjustment algorithm. Lastly, we elaborate
on the training process and application details of the introduced
algorithms.

4.1 MDP model

Existing SDN routing methods struggle with low efficiency and
high computational complexity. Reinforcement learning, known for
optimizing strategies, could solve these problems. In reinforcement

learning, an agent interacts with an environment over discrete time
steps. Reinforcement learning problems are commonly modeled
as a Markov Decision Process (MDP), which typically comprises
four main components: state, action, transition probability, and a
reward function. The state provides a holistic description of the
agent’s current situation within the environment. An action refers
to the decision made by the agent. Transition probability denotes
the likelihood of the agent transitioning into a new state after taking
a specific action in the current state. The reward function reflects
the environment’s feedback based on the outcome resulting from an
action taken by the agent.

During the interaction with the environment, the expected
cumulative reward obtained by the agent in state st after taking action
at according to policy π can be represented by the state-action value
function Qπ (st,at):

Qπ (st,at) = Eπ[
T

∑
t=t0

γt−1rt|st,at] (1)

where t0 denotes the starting time, T represents the ending time, γ
is the reward discount factor satisfying the range [0,1], and rt is the
immediate reward obtained at time t.

The primary objective of reinforcement learning is to
adjust strategies based on feedback from interactions with the
environment, aiming to derive an optimal policy that maps states to
the best corresponding actions. This ensures that the value function
V (s) for each state s is maximized under this policy. The value
function for state s can be represented as:

Vπ (s) = E[
T

∑
t=t0

γt−1rt|s0 = s] (2)

Traditional Q-Learning method utilizes tables to store Q-
values for state-action pairs. However, such tabular methods are
infeasible for problems with large scales, especially for continuous
state and action spaces, due to the curse of dimensionality.
Integrating with deep learning and using deep neural networks to
approximate the Q-value function offers an effective solution to
this challenge.

For the fat-tree network in the power information system
studied in this paper, our goal is to formulate the optimal traffic
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forwarding strategy based on real-time flow requests from each
terminal host and to defend against potential flooding attacks.
For regular flow requests, the optimal strategy trained using
reinforcement learning is used to select forwarding paths. For
abnormally high traffic requests (considered as external attacks),
communication links between the edge-layer switch and the host
should be promptly severed, adjusting the end network topology to
prevent attack traffic from entering the power information system.
We consider each terminal host as an agent and accordingly train
a deep Q-network to guide the flow table policy. For each agent,
we construct a Markov decision process, represented by the tuple
{S,A,P,R}, with each element defined as follows:

(1) S represents the state space, with st denoting the environment
state of the agent at time step t. In the system studied in this
paper, considering that each host can access the traffic request
information of all hosts. Their acquired state at each moment
is identical. The environment state comprises two pieces of
information: the target host of each source host and the traffic
request. If the target host of the ith host is denoted as ui and the
traffic request aswi, then the environment state at time t can be
represented as st = [u1,…,u16,w1,…,w16].

(2) A denotes the action space, with at representing the action
taken by the agent at time step t. For each agent, its action space
can be represented as A = [A0,A1,…,Am], where A0 indicates
cutting off the communication link with the edge-layer switch
(topology adjustment), and A1,… ,Am represent all shortest
paths for forwarding traffic to other hosts.

(3) P indicates the state transition probability. The probability
of transitioning from state st to st+1 can be represented as
pt:st × at→ st+1.

(4) R signifies the reward function. Through the design of the
reward function in this study, we aim to guide agents to
achieve load balancing and defend against flooding attacks.
Our designed reward function consists of four parts. During
the training process, if a host launches a flooding attack,
producing an exceptionally high bandwidth request at the
current moment, we decide the value of the first part of the
reward r1, based on whether the agent severs the link to
adjust the topology. If it successfully adjusts the topology to
defend against the attack, then r1 is 5; otherwise, it is −5.
That is:

r1 =
{
{
{

5, i f resist attacks success fully

−5, else
(3)

The value of r1 is designed to incentivize the network’s defensive
mechanism against flooding attacks. In our model, when a host
is under a flooding attack, exhibiting abnormally high bandwidth
requests, the network needs to respond effectively. If the network
successfully adjusts its topology to mitigate the attack, r1 is set to a
positive value (+5) to reward this effective response. Conversely, if
the network fails to adjust and resist the attack, r1 is set to a negative
value (−5) to penalize this failure.This binary reward structure helps
in reinforcing the desired behavior of the network in the face of
potential threats.

To achieve a regular load balancing effect, we introduce the
second part of the reward r2. Let the designated traffic bandwidth

of the host be denoted as wapplied, and the actual bandwidth of this
data stream be wactual. Based on whether the endpoint of the path
selected by the agent is the target host, r2 can be designed as follows:

r2 =
{
{
{

1+wactual/wapplied, i f the path ends at destination host

−3, else
(4)

The value of r2 is aligned with the goal of achieving optimal load
balancing. It is structured to reward actions that lead to efficient
traffic distribution across the network. When the endpoint of the
path selected by the agent matches the target host (indicating
efficient routing), a positive reward (1) is given. This reward is
proportionate to the ratio of actual bandwidth to the designated
traffic bandwidth, encouraging not only accurate but also efficient
bandwidth utilization. In cases where the selected path does not
end at the destination host, a negative reward (−3) is assigned to
discourage inefficient routing decisions.

Let the data transmission delay be dj and the packet loss rate
be lp, then the reward for the agent during time interval t can be
represented as:

rt = r1 + r2 − β1dj − β2lp (5)

where β1,β2 are the weight coefficients.

4.2 Data flow path acquisition method

Based on the MDP model established above, determining the
action space for each host is the first issue to address. Specifically,
the shortest transmission path from a host to all other hosts
needs to be defined. Considering the characteristics of the Fat-Tree
topology, this paper designs a data flow path acquisition method
based on Breadth-First Search (BFS) to construct the action space
for each host.

By analyzing the Fat-Tree topology structure, a notable feature
emerges: once the data flow reaches the highest node of the
transmission path, the downstream path becomes unique. Referring
to the Fat-Tree topology in Figure 2, the shortest forwarding paths
for different target hosts can be categorized into three types: (1)
There is only one shortest path for traffic exchange between two
terminal hosts on the same edge switch in the same pod, that
is, through the edge switch. (2) For traffic interchange between
terminal devices under different edge switches within the same
pod, it is only necessary to identify the aggregation switch within
that pod, resulting in two shortest paths. (3) For traffic interchange
between terminal devices across different pods, identification is
needed up to the core switch, leading to four shortest paths.
Thus, in the quad-tree Fat-Tree topology shown in Figure 2,
we identify 53 shortest paths to all hosts, making the action
space dimension 54.

Breadth-First Search (BFS) is an algorithm used for
traversing or searching tree structures. We employ BFS to
find all potential shortest paths from a source host to other
target hosts. When searching within a tree, BFS visits the
current node first and then accesses all nodes adjacent to the
current node. This approach ensures that during the search
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Algorithm 1. The data flow path acquisitionmethod based on BFS.

process, nodes closest to the source node are visited first. The
rationality behind employing BFS in our context stems from
its efficiency in identifying all possible shortest paths within a
tree-like structure. Given the Fat-Tree topology’s hierarchical
and layered nature, BFS is particularly adept at systematically
exploring this network and identifying optimal paths for
data transmission.

The data flow path acquisition method based on BFS proposed
in this paper is illustrated as Algorithm 1. Firstly, we define the
adjacency matrix MA for the Fat-Tree network topology. We
initialize a queue where each element contains a current node
and a path list from the source host to that node. A set is
created to keep track of nodes that have already been visited. An
empty dictionary is also established to store the shortest paths
from target hosts to the source host. Next, the source host is
selected as the starting point. In each iteration, a node is popped
from the queue, marked as visited, and all its adjacent nodes are
traversed. For each adjacent node, if it has not been visited and
a connection exists, a new path is appended to the queue. If the
adjacent node is not the source host, the found path is added
to the shortest path dictionary. This process is repeated until the
queue is empty.

We store all discovered paths to construct the action space from
the source host to other target hosts. This action space will serve as
the foundation for our deep reinforcement learningmodel, enabling
it to efficiently select paths to achieve the objectives of load balancing
and network topology adjustment.

4.3 Load balancing and topology
adjustment strategies

In electric power information systems, due to the uncertainty
of user traffic requests and the potential threat of flooding
attacks, network congestion can easily arise, affecting user
experience and even system stability. To this end, building
upon the established MDP model, we have enhanced the
classic DQN algorithm and proposed a strategy based on
deep reinforcement learning for load balancing and dynamic
network topology adjustment. This strategy dynamically adjusts
the data flow forwarding path and network terminal topology
in real-time, thereby achieving adaptive and attack-resistant
network performance.

Deep neural networks possess powerful representational
capabilities. We employ a deep neural network to approximate
the Q-function, using the current state of the agent during a
given time period as input, and the state-action value Q (s,a) ≈
Q (s,a,θ) as the output, where θ represents the neural network
parameters. In each decision-making step, the agent chooses an
action based on the current network state, aiming to maximize
the expected cumulative reward. By fitting the Q-function using
a deep neural network, the agent can handle large-scale and
continuous state spaces.

During the training process of the deep Q-network, each
interaction with the environment results in an experience transition
consisting of the state, action, reward, and next state. The classical
DQN algorithm employs a replay buffer to store these transitions.
During training, mini-batches of samples are randomly drawn
from this buffer to learn, which breaks the temporal correlation
between data and stabilizes the learning process. In this paper, we
introduce an enhancement by adopting the prioritized experience
replay technique, where experiences are drawn based on their
importance rather than at random. When storing experience
transitions, the temporal difference (TD) error is calculated
concurrently. Each experience is assigned a priority based on
the magnitude of the TD error, with experiences having larger
errors receiving higher priorities. Consequently, when drawing
from the replay buffer, experiences with higher priorities are more
likely to be chosen. Since priority sampling introduces a bias,
importance sampling weights are employed to correct this bias,
ensuring that the learning process remains unbiased. Through
the prioritized experience replay technique, those experiences
that are “challenging” or “unexpected” can be reviewed and
learned more frequently, thereby accelerating the learning process
and potentially enhancing the network’s convergence rate and
overall performance.

In addition, we introduce a target network with the same
structure as the deepQ-network to solve the correlation and stability
problems. Initially, both the deep Q-network and the target network
share the same parameters. Throughout the training process, every
C steps, the parameters θ′ of the target network are updated to θ.
After sampling a minibatch of size B from the prioritized experience
replay buffer, we can compute the estimated Q-value:

Qevel = Q(St,At,θ) (6)

The target Q-value is:

Qtar = rt + γ*Q(st+1,arg
a′

Q(st+1,a
′,θ) ,θ′) (7)

The loss function is calculated based on the difference between
the target Q-value and the estimated Q-value. Gradient descent is
then applied to update the main network parameters θ. The loss
function is defined as:

L (t) =
B

∑
i=1
(Qtar −Qevel)

2 (8)

Through the aforementioned techniques, the agent can
more effectively learn the mapping between network states
and actions, thereby identifying the optimal strategies for
load balancing and topology adjustments. With adequate
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Algorithm 2. Training Process of the DeepQ-Network.

training, the deep Q-network can provide real-time, dynamic,
adaptive, and attack-resistant strategies for load balancing and
network topology adjustments in the electric power information
system network.

4.4 Training procedure and application

The pseudocode for the training process of the Deep Q-
Network is presented in Algorithm 2, which primarily outlines the
procedure to update neural network parameters using experience
tuples acquired from interactions. We set the total number of
training episodes to E. In each episode, interactions are carried
out over T discrete time steps. Initially, the target hosts and
bandwidth requests of each host are initialized, forming the current
state st. Subsequently, each agent selects an action at from its
action space based on the ɛ-greedy rule. The SDN controller
issues commands to update the flow table based on this action,
yielding the immediate reward rt and the subsequent state st+1.
After computing the priority, the transition {priority, (st,at, rt, st+1)}
is stored in the prioritized experience replay buffer. Then, a
minibatch of tuples is sampled from the prioritized experience
replay buffer for updating the parameters of the deep Q-network.
Finally, the greedy coefficient is updated. Every C steps, the
parameters of the target network are synchronized with those of the
deep Q-network.

After training, each host can make real-time routing planning
and topology adjustment decisions based on its own deep Q-
network. The application process of the proposed method in this
paper is shown in Algorithm 3. In each time interval, the target
hosts and bandwidth requests of each host are initialized first,
forming the current state st. Then, each host selects the optimal
action at based on the deep Q-network. The SDN controller issues
instructions according to at to update the flow table, followed by
a state transition. Relying on a well-trained deep Q-network, each
host can make real-time optimal decisions for load balancing and
topology adjustments.

5 Case studies and analysis

In this section, we evaluate the performance of the proposed
load balancing and topology adjustment strategy. We first show
the experimental settings and metrics. Then, the convergence
process of deep Q-networks is present. Finally, we carry out

Initialize the well-trained deep Q-networks for

each host.

Receive the target hosts and bandwidth requests of

each host.

Input the state st to respective deep Q-network

and get the output at with the largest Q-value.

The SDN controller sends instructions to update

the flow table. Load balancing and dynamic network

topology adjustment are completed.

Algorithm 3. The application process of the proposedmethod.

TABLE 1 The hyperparameters for training the deep Q-networks.

Parameter Value

Number of training episodes 3,000

Time steps in one episode 3

Learning rate 0.001

Discount factor 0.9

Replay buffer size 5,000

Minibatch size 16

simulation experiments under different traffic loads and analyze
the results.

5.1 Experimental settings

In the experiments, the computer operating system used is
Ubuntu 22.04. The experimental simulation environment utilizes
the Mininet simulation software, the Ryu controller, and the
OpenFlow 1.3 protocol. We construct a four-fork fat-tree network
structure for experimentation, as shown in Figure 2. The number of
hosts is 16, with 20 switches, and all link bandwidths are set to 100
Mbps/sec. The simulations were completed by a PC with an Intel
Core (TM) i5-12500 CPU @ 3.0 GHz with 16.00 GB RAM, RTX
GeForce 2060 SUPER.

During the training of each deepQ-network, we set each episode
to consist of three discrete time steps, with a total of 3,000 training
episodes. The deep Q-network adopts a uniform fully connected
deep neural network.Thenumber of neurons in the input and output
layers are 32 and 54, respectively, while the middle layer is a hidden
layer with 128 neurons. The learning rate of the deep Q-network is
set to 0.001.The reward discount factor is set to 0.9.The exploration
coefficient is initially set to 1 and is reduced by 0.0006 after each
time step. After decreasing to 0.01, it remains constant. Every 10
steps, the parameters of the target network are synchronized with
the deep Q-network. Furthermore, the capacity of the priority
experience replay buffer is set to 5,000 with the minibatch size is set
to 16. The hyperparameters for training the deep Q-networks are
presented in Table 1.
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FIGURE 3
The convergence of the DNN training. A–P represent the convergence curves of Host1 to 16 respectively.

5.2 Neural network training convergence

First, we evaluate the convergence of the DNN training, with
results presented in Figure 3. We have plotted the cumulative
rewards for each of the 16 hosts using the deep Q-network
over the course of the training episodes. As shown in Figure 3,
during the initial phase of training, the cumulative rewards
are relatively low, with agents predominantly adopting random
strategies for extensive exploration. As training progresses and
agents accumulate more experience, the cumulative rewards
gradually increase. Notably, after 2,000 episodes, the rewards
attained by each agent begin to stabilize and converge.This indicates
that during the training process, the agents have learned the optimal
strategy. The trained deep Q-networks can thus provide decision-
making guidance for load balancing and topology adjustment
for each host.

5.3 Load balancing effect analysis

To best restore the actual traffic conditions in the data center
network of the power information system, this paper selects the
random traffic pattern for simulation experiments. Specifically,
each host injects a UDP data stream into any target host in the

network with an equal probability. In Mininet, we set the traffic
load ratio of each host to the link bandwidth between 0.1 and
0.9 to evaluate network performance under different traffic stress
levels. The Iperf tool is used to obtain network testing metrics.
Experiments are conducted multiple times under the premise of
regular network link allocation, and the average measurement
values are taken.

Equal-cost multi-path (ECMP) is a classic routing technique
used to forward data traffic along multiple equivalent paths. The
path selection strategy of ECMP has various methods such as
hashing, polling, and based on path weights. The shortest path
for traffic forwarding is usually set with the same routing priority,
and each switch makes independent decisions for each hop.
To comprehensively evaluate the performance of the algorithm
proposed in this paper, we use three metrics: average bandwidth
utilization, average jitter, and average packet loss. These metrics
are then compared between ECMP and the algorithm proposed in
this paper.

(1) Average Bandwidth Utilization: The average bandwidth
utilization refers to the ratio of the data volume actually
received by the target host to the data volume sent by the
source host. The data volume received by the target host
varies depending on the network conditions, reflecting the
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FIGURE 4
Average bandwidth utilization.

actual bandwidth resources enjoyed by the data stream during
network transmission. The data volume sent by the source
host corresponds to the designated sending bandwidth. The
formula for calculating the average bandwidth utilization is
as follows:

η = 1
16

16

∑
i=1

wi,actual

wi,applied
(9)

Where η represents the average bandwidth utilization, wi,actual
denotes the actual bandwidth value of the data transmission for the
ith host, and wi,applied represents the bandwidth request value of the
ith host.The average bandwidth utilization is compared to assess the
quality of network performance; the larger its value, the better the
network performance and the more effective the load balancing.

(2) Average Jitter:The average jitter refers to the average time taken
for all data streams in the network to travel from the sender to
the receiver. The formula for its calculation is as follows:

φ = 1
16

16

∑
i=1
(ti,r − ti,s) (10)

Where φ is the average jitter, ti,r denotes the reception time
of the data stream for the ith host, and ti,s represents the starting
transmission time of the data stream for the ith host. The average
transmission delay can be used to measure the degree of link
congestion. The smaller its value, the less likely it is for network
congestion to occur, indicating a more effective load balancing.

(3) Average Packet Loss: The average packet loss is the ratio of the
volume of data that failed to transmit within a unit of time
to the volume of data sent. The formula for its calculation is
as follows:

δ = 1
16

16

∑
i=1

di,l
di,s

(11)

FIGURE 5
The variation of average jitter.

Where δ is the average packet loss, di,l denotes the volume of
data that failed to transmit for the ith host, and di,s represents the
volume of data sent by the ith host. Serving as a crucial metric for
evaluating network performance, the average packet loss rate reflects
the system’s processing capability.The smaller its value, the better the
load balancing effect.

Experiments are conducted at different traffic intensities and the
variation of average bandwidth utilization is obtained as shown in
Figure 4. As can be seen from the figure, the average bandwidth
utilization is close to 1 when the traffic intensity is lower than
0.3. This is due to the relatively low network traffic during this
phase, resulting in a minimal probability of link congestion. As
the traffic intensity increases, the average bandwidth utilization
gradually decreases, indicating a high-load state in the links. Under
these circumstances, the method proposed in this paper achieves a
higher average bandwidth utilization rate compared to the ECMP
algorithm, signifying superior load balancing performance of our
method over ECMP.

The variation of average jitter are shown in Figure 5. The
graph reveals that at low traffic intensities, both the traditional
ECMP algorithm and the method proposed in this paper deliver
commendable data transmission outcomes, with the transmission
jitter nearly being zero. As the traffic intensity surges, the overall
network load increases, potentially leading to link congestion and
consequently a general rise in the average transmission jitter.
Compared to the ECMP algorithm, our proposedmethod is adept at
selecting the optimal transmission path, effectively minimizing the
rate of delay escalation.

Changes in the average packet loss are portrayed in Figure 6. As
evident from the graph, in comparison with the ECMP algorithm,
the proposed approach effectively reduces the packet loss. This is
because the ECMP algorithm evenly distributes the traffic load on
each link, overlooking the demands of individual hosts and the
network’s condition, which can easily lead to network congestion. In
contrast, our proposed approach dynamically selects routing paths
by comprehensively considering the traffic requests of each host,
thereby reducing the probability of link congestion. Summing up
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FIGURE 6
The convergence of the DNN training.

FIGURE 7
The attack rate of the ECMP algorithm.

the analysis, it is evident that the method proposed in this paper
achieves superior load balancing results compared to the traditional
ECMP algorithm.

5.4 Topology adjustment effect analysis

In addition to load balancing, another significant objective of
the method proposed in this paper is to defend against potential
attacks by dynamically adjusting network topology. To assess its
defense capabilities against flood attacks, we conduct experiments
under various traffic intensities.We select a single host as the attacker
and adjust the topology using our method, subsequently comparing
the success rates of flood attacks before and after the topological
adjustments. The success rate of a flood attack is defined as the
ratio of the number of other hosts experiencing a decline in average
bandwidth utilization to the total number of other hosts. Each

FIGURE 8
The attack rate of the proposed method.

host is selected in turn as an attacker for the experiments under
different traffic intensities. Experiments were conducted using both
the ECMP algorithm and the method proposed in this paper, with
results depicted in Figures 7, 8.

In Figures 7, 8, the circularmarkers represent the average success
rate of flood attacks at that particular traffic intensity, while the
box area indicates the 95% confidence interval for the flood attack
success rate. Comparing the results from Figures 7, 8, it becomes
apparent that, at identical traffic intensities, our proposed method
effectively reduces the flood attack success rate. This is because our
study employs a topology dynamic adjustment strategy based on
deep reinforcement learning, which allows for real-time decision-
making in accordancewith the current network traffic request status.
This timely cuts off links connected to terminal nodes that might
be under attack, preventing flood attacks from affecting other hosts
in the network at the source. Calculations revealed that the average
probability of being affected by a flood attack using the ECMP
algorithm is 43.244%, while it is 32.159% when employing our
method. In comparison to the conventional ECMP algorithm, our
method reduces the probability of being attacked by over 11%. This
result validates the effectiveness of the approach proposed in this
paper in defending against flood attacks.

6 Conclusion

This paper models the problem of load balancing and network
topology dynamic adjustment as a Markov decision process, and
proposes a method based on deep reinforcement learning to
improve the performance, availability and attack resistance of
power information systems. According to the characteristics of
fat tree topology, we design a data flow path acquisition method
based on breadth-first search to construct the action space of
each host. Subsequently, we introduce deep Q-network to provide
guidance for the optimal strategy of each host. In addition, we
also introduce priority experience replay and target network to
improve the convergence speed and overall performance of deep
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Q-network training. In order to verify the effectiveness of our
proposed strategy, we used Mininet to build a typical power
information system fat-tree network topology, and conduct a
series of case studies and analyses. Experimental results show
that our strategy can significantly improve system performance
and quickly adjust network topology in the face of network
attacks to maintain system stability and availability. The proposed
method holds significant promise for broader application in various
network infrastructures, particularly in sectors demanding high
levels of reliability and attack resilience, thus paving the way
for its future adoption in more complex and dynamic network
environments.
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