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In recent years, the integration of wind power into the grid has steadily increased,
but the volatility and uncertainty of wind power pose significant challenges to grid
planning, scheduling and operation. Ultra-short term wind power forecasting
technology as the basis of daily scheduling decision can accurately predict the
future hourly wind power output, and has important research significance for
ensuring the safe and stable operation of power grid. Although research on ultra-
short-term wind power forecasting technology has reached maturity, practical
engineering applications still face several challenges. These challenges include
the limited potential for improving the accuracy of numerical weather forecasts,
the issue of missing historical data from new wind farms, and the need to achieve
accurate power prediction under extreme weather scenarios. Therefore, this
paper aims to critically review the current proposed ultra-short-termwind power
forecasting methods. On this basis, analyze the combined power forecasting
method under extremeweather scenarios, and illustrate its effectiveness through
wind farm case studies. Finally, according to the development trend and demand
of future power systems, future research directions are proposed.
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1 Introduction

The transition towards a new power system centered around renewable energy sources
has necessitated the expansion of clean energy, particularly wind power, and the
establishment of a low-carbon, secure, and efficient energy system to achieve China’s
“dual carbon” target (Ren et al., 2022). Nowadays, the wind power industry has witnessed
rapid growth, and the wind power market continues to thrive (Hui et al., 2021). The
intermittency and variability of wind energy, combined with the fluctuating nature of wind
turbines, lead to fluctuations in wind power output (Li et al., 2023). Ultra-short-term wind
power forecasting involves predicting power levels for the next 15 min to 4 h, aiding power
dispatching departments in promptly adjusting their plans to accommodate changes in
wind power output (WEN, 2007). Furthermore, these prediction results serve as the basis
for optimizing peak regulation, frequency modulation, economic load dispatching, and
spinning reserve regulation within the power system (Yang et al., 2022a; Xu et al., 2023).
Consequently, researchers have devoted considerable attention to accurately predicting
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ultra-short-term wind power to enhance wind power integration
capacity and improve the operational efficiency of the power system.

Early methods for ultra-short-term wind power prediction
primarily relied on physical models and traditional time series
analysis. However, physical models necessitate extensive initial
information and involve complex calculations (Ma et al., 2020).
Traditional time series methods are limited in their ability to
consider various factors affecting wind power and exhibit poor
performance when analyzing high-dimensional data (Hanifi et al.,
2020). In recent years, with the advancement of big data and
artificial intelligence technologies, data-driven approaches,
particularly deep learning, have gained prominence in ultra-
short-term wind power prediction due to their superior nonlinear
fitting capabilities and high-dimensional data processing abilities.
Nan Yang et al. conducted pioneering research on SCUC problem
and proposed a data-driven SCUC expert system based on extended
sequence-to-sequence (E-Seq2Seq). The system can accommodate
dynamic multi-sequence mapping samples and comprehensively
consider various input factors that affect SCUC decision-making.
Compared with traditional methods, the system has stronger
generality, higher solution accuracy and efficiency (Yang et al.,
2022b). Nonetheless, statistical methods like deep learning exhibit
a ‘black box’ property, lacking interpretability and physical meaning
to support them (Hu et al., 2016). While some progress has been
made in ultra-short-term wind power prediction, several challenges
need to be addressed in light of the current status of wind power
generation in China. Frequent occurrence of extreme weather events
leading to abrupt and unpredictable changes in power output,
negatively impacting prediction accuracy (Wang et al., 2019).

The research team involved in this study has previously
conducted research on new energy power prediction and
achieved significant results (Yu et al., 2021; Zhou et al., 2021; Yu
et al., 2022a; Yu et al., 2022b; Yu et al., 2023). The paper is structured
as follows. Section 2 emphasizes the difference between ultra-short
term wind power forecast and short term wind power forecast,
compares and analyzes the current forecasting methods, and
analyzes the advantages and disadvantages of each method.
Section 3 takes wind farms as an example to show the research
results of ultra-short term wind power forecasting methods under
extreme weather conditions. These cases show that accurate
modeling during periods of extreme weather can significantly
improve overall forecast accuracy; Section 4 presents some
challenges in ultra-short term wind power forecasting, such as
the accuracy of Numerical Weather prediction (NWP), small
sample learning, time resolution of meteorological forecasting,
and extreme weather scenario forecasting. It also provides insight
into the prospects for future development.

2 Overview of ultra-short-term wind
power forecasting technology

The wind power prediction technology system consists of
numerical weather prediction, wind power prediction model,
error correction, and application of prediction results (QIAO
et al., 2017; Fu et al., 2023a), as illustrated in Figure 1. Initially,
historical data from wind farms are collected using the Supervisory
Control And Data Acquisition (SCADA) system, meteorological

measurement stations, and NWP system for feature analysis.
Subsequently, a prediction model is constructed based on the
nonlinear relationship between wind power characteristics and
wind power. The wind power prediction results are then
evaluated, and an error correction model is introduced to
optimize the prediction model by rectifying prediction errors.
Ultimately, the wind power prediction results are applied to
power grid dispatching, maintenance plan adjustments, auxiliary
power market trading, and other relevant applications.

The ultra-short-term wind power prediction encompasses a
rolling multi-step forecast of wind power output from wind
farms over the next 15 min to 4 h. This model adopts a 15-min
rolling prediction framework, comprising four steps within an hour.
Using historical data at each time point, the model predicts the
power value for the subsequent four steps, serving as the input for
forecasting the power value in the following moment. This enables
continuous rolling predictions.

In contrast to short-term wind power prediction, which only
requires providing NWP data for the next 3 days, ultra-short-term
prediction necessitates real-time updates of NWP data. Additionally,
the physical method employed in ultra-short-term prediction involves
modeling based on NWP information and geographical data such as
landform, surface roughness, and turbulence intensity of the wind farm.
It emphasizes the optimization of physical solution rules and the quality
of NWP data. However, due to the complexity of the numerical
simulation process and the extensive computational requirements,
the physical method often results in lower prediction accuracy for
ultra-short-term wind power forecasting (Chen et al., 2022).
Consequently, physical methods are generally unsuitable for ultra-
short-term prediction. In summary, this section provides a review of
the application of data-driven methods (Yang et al., 2022c) in ultra-
short-term wind power prediction, considering the current research
focus in this field.

2.1 Point prediction method

The point prediction outcome refers to the specific value
projected for a given future prediction time. Over the last decade,
a significant proportion of domestic and international studies have
focused on the point prediction research of ultra-short-term wind
power, leading to a wealth of research outcomes. Currently, research
on ultra-short-term wind power point prediction methods has
achieved significant maturity (See Appendix Table A1 for
details). However, point predictions only provide deterministic
values and cannot quantitatively represent the uncertainty of
wind power. Based on the point prediction model, data-driven
techniques used in ultra-short-term wind power prediction can
be categorized into statistical methods, artificial intelligence
methods, and combined prediction methods.

On the other hand, the fluctuation process-based modeling
method is a newly developed ultra-short-term prediction
technology that has emerged with the advent of big data in
recent years (Wang et al., 2016; Han and Alexander, 2022). This
approach takes advantage of the inherent persistence patterns within
wind power sequences at an ultra-short-term scale. By analyzing and
extracting the evolutionary patterns of historically similar
fluctuation states, it divides and combines the sequences to
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judiciously determine the future processing state (Ding et al., 2019;
Sun et al., 2022a; Zhu et al., 2023). The methodology entails several
technical steps, such as extracting the principal fluctuation
component of the power sequence, identifying local extreme
points, generating composite fluctuation sequences, mining
historical class fluctuation processes, and fusing future fluctuation
trends (Zhang et al., 2019a). The technique is intricate,
computationally demanding, and relies upon an ample
availability of historical power data.

Through an examination of wind power fluctuation
characteristics (Lin et al., 2012; Yang and Qi, 2015; Yang and
Dong, 2016; Zhou et al., 2017), it has been substantiated that
wind wave characteristics significantly impact prediction
accuracy. Additionally, our research group has conducted
extensive investigations into the division and fluctuation
characteristics of wind power fluctuation processes, affirming that
incorporating these inherent characteristics is an effective means of
enhancing wind power prediction accuracy.

2.2 Probabilistic prediction

The volatility of wind resources and the increasing proportion of
wind power lead to a significant rise in the uncertainty of wind

power prediction. Point prediction merely predicts the expected
value and cannot accurately depict the uncertainty of wind power
output. Moreover, wind power exhibits violent fluctuations when
weather patterns change abruptly. Thus, relying solely on point
prediction cannot effectively assess potential risks or provide a safe
power fluctuation range for power grid planning, operation,
security, and stability analysis as a dispatching reference (Yu
et al., 2023).

To address this issue, ultra-short-term probabilistic prediction
emerges as a new prediction form, providing more comprehensive
information and quantitatively reflecting the uncertainty of wind
power. This has the added benefit of reducing spinning reserve
capacity and cutting power grid operation costs (Yang et al., 2022d).
Probabilistic forecasting can be classified based on the form of the
prediction results, which includes interval prediction, quantile
prediction, and probability density prediction (YanTangDai et al.,
2021). Additionally, it can be divided into parametric and non-
parametric methods depending on whether the probability
distribution function needs to be assumed in advance (See
Appendix Table A2 for details).

The parametric method involves transforming probabilistic
prediction into a parameter estimation problem. It assumes that
wind power or its prediction error follows a known distribution
in advance, such as the Gaussian distribution function,

FIGURE 1
Wind power forecasting technology system.
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exponential distribution function (Zhu et al., 2019), beta
distribution function (Yuan et al., 2019), or a combination of
these probabilistic distributions. The Maximum Likelihood
Estimation (MLE) and Delta method are then employed to
estimate the parameters of the distribution function. However,
due to the subjective inclusion of prior knowledge in parametric
methods, it is often challenging to fit the model to the real
distribution (Ding et al., 2013). Consequently, the assumption
concerning the shape of the distribution is a key focus of current
research, with the Gaussian and Beta distributions being two
commonly used choices.

The non-parametric method does not make assumptions about
the distribution of wind power or prediction error in advance.
Instead, it fits the distribution based on the characteristics and
properties of the data itself. Common data analysis methods include
the empirical cumulative distribution method (Pinson and
Kariniotakis, 2010), Quantile Regression (QR) method (He et al.,
2021), Kernel Density Estimation (KDE) (Xu et al., 2021), and Lower
Upper Bound Estimation (LUBE) (Li et al., 2020).

3 Research on extreme value prediction
considering extreme weather scenarios

Despite the progress made in ultra-short-term wind power
prediction, current single-value prediction methods lack extreme
weather prediction models, resulting in poor prediction accuracy
and stability. Extreme weather events that significantly impact wind
turbines can be classified into two main categories. Firstly, severe
convective weather conditions like typhoons lead to significant and
rapid changes in wind speed, causing extreme power fluctuations
within a short period. Offshore wind power generation, in particular,
is highly susceptible to typhoons. As offshore wind power continues
to expand, the research on power prediction for offshore wind
generation becomes a crucial future development focus. Secondly,
extremely cold weather, including cold waves and freezes, has seen
three times faster growth in total installed wind power capacity in
cold climates across North America, Europe, and Asia compared to
the global average annual growth rate of offshore wind capacity.
Extremely low ambient temperatures trigger the shutdown of wind

FIGURE 2
Framework of sub-forecast method for ultra-short-term wind power under transition weather environment.
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turbines due to low-temperature protection mechanisms, resulting
in a sudden and substantial power deficit. Furthermore, despite the
overall accuracy level of existing research on ultra-short-term wind
power prediction meeting the required standards, there are
significant local errors, increasing the risks of wind abandonment
and peak load loss. Therefore, studying extreme value prediction
under extreme weather scenarios holds great significance.

The research team involved in this work has a solid research
foundation regarding ultra-short-term wind power forecasting
technology in extreme scenarios. They propose an ultra-short-
term segmented prediction method for offshore wind power
based on the adaptive division of extreme weather periods, the
technical flow chart is shown in Figure 2. To validate the algorithm’s
effectiveness and superiority under extreme weather scenarios, wind
farm data from Texas, United States was taken as the sample for
verification. The selected validation dataset covers 4 days (from
September 12 to 15, 2019), including extreme weather events.
Specific improvement methods include a hybrid model based on
the Convolutional Neural Network (CNN) and the Long and Short
Time Memory (LSTM) network in the stationary period, combined
with an Improved AttentionMechanism (IAM) for point prediction.
Meanwhile, during periods of power timing mutation, the
probabilistic prediction method based on variable bandwidth
kernel density estimation is adopted.

Among them, the evaluation indexes of point prediction
performance include Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE). The calculation formulas are
as follows:

RMSE �
������������
1
n
∑n
i�1

ŷi − yi( )2√
(1)

MAPE � 100%
n

∑n
i�1

ŷi − yi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (2)

Where, ŷi is the actual power at time i, yi is the predicted power
at time i.

And the evaluation indexes of probability prediction
performance include the prediction interval coverage index,
reliability index, and comprehensive performance index to
measure the overall performance of the forecast. The calculation
formulas are as follows:

RPICP � 1
W

∑W
w�1

kwa (3)

RPINAW � 1
T
∑T
t�1
δw xt( ) (4)

δw xt( ) � U xt( ) − L xt( ) (5)
Ra � RPICP − a � 1

W
kwa − a (6)

Where: W is the number of points to be predicted, kwa is the
Boolean value, and T is the prediction time interval, U(·) and L(·)
are respectively the upper and lower limits of power prediction, a is
the degree of confidence.

The Prediction Interval Coverage Percentage (PICP) reflects the
probability of the actual value falling within the upper and lower
bounds of the prediction interval. A PICP less than a renders the

prediction invalid, while a higher PICP indicates a greater
probability of the actual power falling within the prediction
limits, thereby enhancing the prediction efficacy. The Reliability
index Ra measures the deviation between the interval coverage rate
and the preset confidence level. A positive Ra implies a favorable
deviation with higher reliability than the given confidence level. The
Prediction Interval Average Width (PINAW) evaluates the clarity of
the prediction model. When the predicted results have the same
PICP, a smaller PINAW corresponds to better prediction accuracy.
Both the accuracy of point prediction and probability prediction
results for full-time periods and subsection prediction were
quantitatively analyzed and presented in Figure 3 and Table 1,
respectively.

Figure 4 displays the combined prediction results wherein the
actual power timing curve lies within the estimated confidence
interval. The point prediction period exhibits a high degree of
fitting between the predicted and actual power curves. During
the probabilistic prediction period, the lower confidence interval
surrounds the higher confidence interval, effectively avoiding
quantile crossovers. This demonstrates the proposed method’s
strong overall performance, especially its adaptability for
predicting offshore wind power in extreme weather conditions.
However, it is essential to focus on real-time detection and
identification of turning weather periods.

4 Conclusion and future trends

Due to the large proportion of wind power in the power
system, the inherent randomness, intermittency and uncertainty
of wind power pose major challenges to grid connection, power
system scheduling and consumption. In this paper, the literature
of ultra short term wind power forecasting is reviewed, and the
advantages and disadvantages and applicability of point
forecasting and probability forecasting are compared and
analyzed. In addition, taking a wind farm as an example, a
case study of ultra-short term wind power accurate forecasting
method under extreme scenarios is carried out to prove the

FIGURE 3
Comparison of single value prediction results in segmental
prediction.

Frontiers in Energy Research frontiersin.org05

Yu et al. 10.3389/fenrg.2023.1345004

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1345004


feasibility of the proposed combined forecasting method. In the
future, combining numerical weather forecasts with real-time
meteorological data warnings should be considered to establish
an advanced prediction model for such transitional periods. This
will further enhance the accuracy and timeliness of ultra-short-
term wind power prediction in extreme weather scenarios.

In addition, although China has made great progress in ultra-
short term wind power forecasting, there are still challenges in
dealing with the uncertainties of wind power, which are reflected
in the following aspects: 1) The improvement of the accuracy of
electric power forecasting is limited by the level of NWP, and the
progress is slow (Liu H. et al., 2020; Niu and Ji, 2020); 2) It is an
urgent task to solve the problem of missing sample data in data
processing (Zhang et al., 2021; Fu et al., 2023b; Tong et al.; Wang
et al., 2023); 3) Due to the limitations of the current time scale of
numerical weather forecasting, it is necessary to study short-term
and immediate forecasting with more practical applications
(Kumar et al., 2022); 4) With the explosive growth of newly
built new energy stations, it is particularly important to improve
the online adaptive learning ability (Li et al., 2021) of the model
due to the more complex operating conditions of the equipment
in these scenarios and the more changeable meteorological
conditions.
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FIGURE 4
Combined forecast results under transitional weather scenarios.

TABLE 1 Comparison of probability prediction results in segmented prediction.

Forecasting strategy Degree of confidence 90% 70% 50%

Full-time period forecasting PICP 91.00 71.89 51.16

PINAW 27.15 21.85 16.24

Ra 1.84 1.89 1.16

Subsection forecasting PICP 91.73 71.61 51.24

PINAW 27.67 23.51 17.81

Ra 1.73 1.61 1.24
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Appendix

TABLE A1 Comparison of the advantages and disadvantages of the point prediction method.

Category Advantage Limitations Method Literature

Physical method It does not need a lot of historical data
and is suitable for new power plants.

The calculation process is complex and
the requirements of initial information

quality are extremely high.

Takens’ theorem Ma et al. (2020)

Statistical method The modeling is simple, and the
accuracy is high when the data is

complete.

A large amount of historical data is
needed, and the consistency of historical

data change rule is required.

ARIMA-Kalman Liu et al. (2012)

An improved grey model based on
background value optimization

Zhang et al. (2019b)

ARIMA-GARCH Ding et al. (2017), Singh
and Mohapatra (2019)

RWT-ARIMA

Artificial
intelligence
method

Deep mining is the hiding law of
nonlinear wind power data, simple
modeling, and fast calculation speed.

Lack of physical support, the modeling
process has a ’ black box’ property and
has high requirements on the quantity

and quality of input data.

GA-SVM Liu et al. (2015)

KNN Yesilbudak et al. (2017)

LSTM Banik et al. (2020)

GRU (Yu et al., 2022b)、 (Yu
et al., 2023)

An improved AM combined with
the CRS algorithm

(Yu et al., 2022b)、 (Sun
et al., 2022b; Su et al., 2022;

Aslam et al., 2023)
Dual-attention Mechanism

Similar Day Attention Mechanism

BiLSTM (Yu et al., 2022a)、 (Liu
et al., 2020b)

Combination
forecast method

Integrate the advantages of each
prediction model, avoid the

shortcomings of a single prediction
method, and improve the prediction

accuracy.

It is easy to cause error accumulation,
and there is no theoretical basis for the
selection of methods and the distribution

of weights.

EEMD-LASSO-QRNN Lin and Liu (2011), He and
Wang (2021)

EMD-SVM

WD-LSTM Liu et al. (2020c)

CNN-LSTM Lu et al. (2022)

Combinatorial forecasting
methods for different time section

differentiation.

Wang et al. (2017)
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TABLE A2 Comparison of probabilistic forecasting methods.

Category Advantage Limitations Method Literature

Parametric
method

Gaussian
distribution

Data processing and the model’s
evaluation become simpler and

easier

There can be cases where assuming or
estimating the output distribution

shape is neither reasonable nor possible

KDE-Gaussian Niu et al. (2022)

Truncated Gaussian Pinson et al. (2006))

Exponential
distribution

Piecewise exponential error
distribution model

Zhu et al. (2019)

Beta distribution PSO-Beta Yuan et al. (2019)

Nonparametric
method

Empirical
cumulative
distribution

No parameter estimation
required

The calculation is complex and
requires a large amount of historical

data

Adaptive resampling PINSON and
KARINIOTAKIS

(2010)

QR Flexibility; Probability
distribution functions and

prediction intervals are easily
obtained

Computationally intensive CSI-SVQR He et al. (2021)

ELM-QR Wan et al. (2016)

Heteroscedastic spline
regression and robust spline

regression model

Wang et al. (2018)

LUBE Simplify the calculation process
and reduce the calculation cost

The model parameters need to be
obtained by combining the
optimization algorithm

CSS-LUBE Wu et al. (2018)

A new deep LUBE based on
root mean square back
propagation algorithm

Li et al. (2020)

KDE Easy to implement, good
flexibility

A large amount of historical data is
needed for fitting, which is vulnerable

to bad data interference

Variable bandwidth KDE (Yu et al., 2022b; Yu
et al., 2023)

Bootstrap-Kernel density
method

Xu et al. (2021)
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