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Research has identified volatility transmission from the oil market to the tanker
freight market through external shocks. However, in the presence of intricate
nonlinear structures, the academic literature often encounters difficulties in
identifying cycles and their correlations across various timescales. This paper
provides a multi-market analysis to comprehend the information from shock
effects on different tanker routes and multi-peak fitting. Under different shock
regimes, crude oil market and tanker freight rate shocks could transit bi-
directly. When events occur, the crude oil market prices the expectations.
However, when the actual performance of the future market differs from the
traders’ predictions of the future market, a price gap exists. Generally, the trade
opportunity is tough to catch up on because only partial information can be
found. In this study, we investigate the volatility connection of multi-markets
and shock effects to clarify previously undisclosed information using multi-peak
analysis. The information gathered and double-checked by cargomarkets, crude
oil supply-demand balance, and tanker freight prices of various tanker types
could assist us in identifying prospective trends and investment opportunities.
The volatility of each market, as well as the correlation of multi-markets, gives
insights to crude oil dealers, tanker market participants, and energy regulators.
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1 Introduction

Oil price volatility has been a subject of significant interest due to its profound impact on
the global economy, financial markets, and geopolitical landscape (Hamilton, 2003; Barsky
and Kilian, 2004; Kilian et al., 2009; Kristjanpoller and Minutolo, 2016; Khan et al., 2021a).
Supply and demand serve as the primary drivers of crude oil prices, causing them to rise
or fall in response to changes in either of these factors (Hamilton, 2010; Zhang and Zhang,
2015; Khan et al., 2022a; Li et al., 2023). Geopolitical events, including wars, sanctions, and
natural disasters, can create supply disruptions and exert a considerable influence on crude
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oil prices (Hamilton, 2014; Sun et al., 2017; Ross and Schinas,
2019; Michail and Melas, 2021; Zhang et al., 2022; Monge et al.,
2023). Additionally, economic conditions such as inflation, interest
rates, and currency exchange rates can also impact crude oil prices
(Wang and Zhang, 2014; Zhang and Zhang, 2015; An et al., 2018;
Caldara et al., 2019). The inherent volatility in crude oil prices
exposes stakeholders to significant and potentially conflicting
financial risks. To mitigate these risks, major traders engage in
futures trading and physical oil markets. Successfully executing this
mixed-trading strategy necessitates a comprehensive understanding
of oil price behaviour and its determinants. Given the intricate
nature of oil market volatility, researchers have been devoted
to studying its nonlinear and non-stationary characteristics for
decades (Yousefi and Wirjanto, 2004; Bigio and Schneider, 2017;
Lahmiri, 2017; Zhang et al., 2019; Kilian, 2022; Liu et al., 2022).
Tanker transportation plays a pivotal role in global oil trade, with
the tanker freight market representing the balance between carrier
supply and demand, including pertinent information about crude
oil supply (Alizadeh et al., 2015; Chen et al., 2017; Lim et al., 2019;
Regli and Nomikos, 2019; Ke et al., 2023; Kumar NM et al., 2023).
Analyzing the tanker freight market can provide valuable insights
into future crude oil trading. Conversely, the crude oil market
encompasses information about carrier demand, which aids in the
analysis of future tanker freight rates (Li et al., 2018; Khan et al.,
2021b). This manuscript aims to examine the shock effect
of various markets under different regimes, specifically
during the COVID-2019 pandemic and the Russia-Ukraine
conflict in 2022.

Studying the correlation between the crude oil market
and the tanker freight market presents a challenging task
that requires considering economic, energy, geopolitical, and
maritime transportation factors. Existing research has explored
this relationship, but reaching definitive conclusions has proven
difficult due to variations across different empirical time zones
(Kavussanos and Dimitrakopoulos, 2011; Baumeister et al., 2015;
Yu et al., 2019; Michail and Melas, 2020a; Siddiqui and Basu, 2021;
Kilian, 2022). Nevertheless, some progress has been made. Crude
oil price shocks can exert a significant impact on tanker freight
rates (Yang et al., 2015; Gavriilidis et al., 2018; Hofmann et al.,
2018; Li et al., 2018). However, the correlation between crude
oil price shocks and tanker freight rates is nonlinear, implying
that the relationship between these variables is not consistent.
For instance, when crude oil prices rise, tanker freight rates may
increase, but the magnitude of the increase can vary depending on
the size of the price shock (Zhang et al., 2022; Saracco et al., 2016;
sheng Ouyang et al., 2022). Moreover, the demand for tankers may
increase or decrease in response to rising crude oil prices, leading
to corresponding fluctuations in freight rates (Dinwoodie et al.,
2013; Gong and Lin, 2018; Chen et al., 2019). Crude oil trade
networks can also influence tanker freight rates in various ways
(Saracco et al., 2016; Shao et al., 2017). For example, an expanding
crude oil trade networkmay requiremore tankers for transportation,
resulting in higher freight rates (Xue et al., 2021; Michail and
Melas, 2022). Conversely, a shrinking crude oil trade network
may reduce the demand for tankers, leading to lower freight rates
(Hamilton, 2009; Kilian et al., 2009; Siddiqui and Basu, 2021).
Additionally, changes in the geopolitical landscape, such as sanctions
or embargoes, can impact tanker freight rates (Monge et al., 2023;

Zhang et al., 2023). Furthermore, shifts in the global economy, such
as increased crude oil demand, can contribute to higher freight
rates. Events that alter worldwide crude oil trade networks may
stimulate freight rates on specific routes while shocking rates on
others (Chen et al., 2017). Investor sentiment (Melas et al., 2022)
and downside or upside markets (Theodossiou et al., 2020) are also
important influential factors. Therefore, investigating the effects of
different oil price shocks on freight rates requires a case-by-case
examination.

Researchers have examined the linkages between crude oil price
fluctuations, maritime network structure, and traffic flow changes
by analyzing various vessel types (Adland and Cullinane, 2006;
Tvedt, 2019; Siddiqui and Basu, 2020; Khan et al., 2022b). The
freight rate for a specific tanker size is influenced by several factors,
including vessel size, voyage distance, port availability, seasonality,
and market conditions (Kavussanos and Dimitrakopoulos, 2011;
sheng Ouyang et al., 2022; Xia and Chen, 2022). Generally, larger
tankers tend to command higher freight rates, especially for
routes that entail longer and more challenging journeys, such
as those involving multiple ports or hazardous waters. However,
there may be instances where Suezmax tankers have higher rates
than Very Large Crude Carriers (VLCCs), particularly during
periods when the tanker market is significantly affected by external
events (Sun et al., 2017; Regli and Nomikos, 2019). Market shocks,
such as geopolitical events, natural disasters, or fluctuations in
oil prices, can lead to volatility in freight rates (Kilian, 2008;
Poulakidas and Joutz, 2009; Dinwoodie et al., 2013; Li et al., 2022).
Therefore, this study aims to explore the bidirectional value of
multi-market information by investigating the relationship between
detailed tanker route volatility and changes in the oil trade network.
We analyze the impact of the COVID-19 pandemic and the
Russian-Ukrainian conflict on global crude oil trade networks
and the corresponding fluctuations in freight rates for different
vessel types. Furthermore, we examine the discrepancy between
oil futures market expectations and the actual market balance,
identifying potential trading opportunities in the oil market through
a deeper understanding of information derived from the tanker
freight markets.

The recognition of volatility clustering and leverage effects in oil
prices led to the adoption of more sophisticated models, including
the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) family of models. These models have been instrumental
in capturing the complex characteristics of oil price movements
(Xiong et al., 2015; Gavalas et al., 2022). In recent years, there has
been a shift towards integrating machine learning techniques, such
as Artificial Neural Networks (ANN), with traditional econometric
models to improve forecasting accuracy (Kristjanpoller and
Minutolo, 2016). However, in the presence of intricate nonlinear
structures, traditional econometric methods often encounter
significant difficulties in identifying cycles and their correlations
across various timescales, including short and long-term durations
(Kwapie et al., 2023). The complex characteristics of oil price
volatility often come from the commodity transportation market
which may give elasticity to or make limitations for the oil market
(Chen et al., 2017). To tackle these challenges, analogous models
have been effectively used to investigate issues such as stock market
volatility. For instance, Xiong et al.utilized Wavelet Multi-resolution
Analysis and the Multivariate BEKK-GARCH(1,1) Model to study
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the Spillover Effect between the Foreign Exchange Market and the
Stock Market, which resulted in insightful and valuable conclusions
(Xiong et al., 2015). Joutz’s research reflects a relationship between
spot and future crude oil prices (Poulakidas and Joutz, 2009), crude
oil inventories, and tanker rates. Empirical results from Sun et al.
found a significant long-term correlation between tanker freight
rates and oil prices (Sun et al., 2014). Subsequently, Ruan et al. used
the MF-DCCA method to study the degree of cross-correlations
between BDI and WTI (Ruan et al., 2016), and the results showed
that the degree of cross-correlations had strong persistence in
the short term. Our study proposes a muti-steps approach that
incorporates multi-peak analysis and correlation investigation. The
primary goal of this approach is to gain insights into the shock effects
between crude oil prices and tanker freight rates, thereby enhancing
our understanding of the underlying information dynamics. At
the same time, analogous models also have been used in the
field of energy. For instance, Yang et al. describe the development
of a discrete event simulation model for bunker supply chains,
emphasising how ammonia bunkering affects the operational and
economic performance of the system (Yang and Lam, 2023). You
et al. applied an integrated mathematical model to the investigation
for economic feasibility (You et al., 2023).

This research investigates how volatility moves from the oil
market to the freight rates market by examining the complex
patterns of oil prices and the time series of tanker freight rates. We
look into how information from the freight rates market could help
identify investment opportunities in the oil sector. The connection
between the cargo markets, the balance of crude oil supply and
demand, and the freight rates for different types of tankers to find
trends and investment opportunities are examined. We develop a
multi-peak fitting model that uses several Gaussian distribution
functions to precisely capture the characteristics of the peaks in
the data, such as their positions, heights, and widths. Our analysis
includes both the original data and its derivatives to understand the
relationships at different levels of detail, which helps us to identify
both short-term changes and long-term patterns. We also study
how multiple variables correlate with each other and how these
correlations change over time.This helps us to better understand the
dynamic relationship between oil prices and freight rates, allowing
us to make more accurate market predictions and support well-
informed decision-making.

The study’s contributions to the literature are multifaceted. (a)
Distinguishing Impacts of Different Shock Regimes: By discerning
the varied effects of distinct shock regimes such as the Russia-
Ukraine conflict and the COVID-19 pandemic on oil prices and
tanker freight rates, the study provides a nuanced understanding
of how global events can differentially influence these markets.
Recognizing that the magnitude and significance of these impacts
change over time and do not uniformly affect aggregate demand
is crucial for predicting market reactions to future events. This
granular analysis allows for more tailored risk assessments and
strategic planning. (b) Observing Specific Price Cycles: The
application of the multi-peak method has enabled the study to
identify specific price cycles within the data, revealing a more
intricate, timescale-based relationship between different freight
rates. This level of detail is instrumental in understanding the
rhythm of market prices and can inform more precise trading
strategies. By analyzing the flow of crude oil and the changing

correlations between tanker types, the study opens up new avenues
for innovation in crude oil trading and enhances the efficiency
of cross-border supply chains. Improved data transparency is
a key outcome, which is beneficial for all market participants.
(c) Unearthing Potential Trading Opportunities: Potential trading
opportunities may be identified, arising from the divergence
between traders’ expectations and the actual state of the oil market.
By utilizing information from tanker transportation, the study
sheds light on a relatively unexplored area—how crude demand
shocks can influence tanker freight rate volatility. This aspect is
particularly valuable as it provides actionable insights that could be
leveraged by market participants to make more informed trading
decisions, potentially leading to better risk management and profit
optimization.

Overall, the study’s methodical approach to analyzing the
interplay between crude oil prices, tanker freight rates, and the
impacts of global shocks provides a fresh perspective and valuable
insights that can guide decision-making in the energy and shipping
sectors. By highlighting the complex dynamics at play, the study
not only contributes to academic discourse but also has practical
implications formarket operations and strategic planning in the face
of global uncertainties.

The subsequent sections of this paper are structured as
follows. Section 2 provides an overview of the data utilized in
this study. Section 3 outlines the methodology employed. In
Section 4, we present the detailed application of the model and
conduct data analysis. Our findings are discussed in Section 5,
offering insights and interpretations. Finally, Section 6 concludes
the paper by summarizing the key findings and discussing their
implications.

2 Data

2.1 Crude oil price

Thespot price of theWest Texas Intermediate (WTI;US$/barrel)
is used to represent the crude oil market because it is a light and
sweet crude oil that serves as one of the main global oil benchmarks
and can better meet new sulfur regulations, which implements the
new global sulfur limit of 0.5% m/m on 1 January 2020 (Siddiqui
and Basu, 2020; Shi et al., 2022). A dataset consisting of daily WTI
prices is obtained from the US Energy Information Administration
(EIA) and the Clarksons Research between 2 January 1986 and 30
December 2022 (Figure 1).

2.2 Tanker freight rate

In the context of the tanker freight market, the Baltic Exchange
Dirty Tanker Index (BDTI), published by the Baltic Exchange, is
widely employed as a benchmark to capture the general trends in
crude tanker freight rates (Alizadeh et al., 2015; Chen et al., 2017;
Siddiqui and Basu, 2021; Shi et al., 2022). To analyze the dynamics
of freight rates, we collected a dataset comprising daily BDTI values
from Clarksons Research. The dataset covers the period from 27
January 1998 to 23 December 2022 (Figure 2).
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FIGURE 1
WTI crude oil price from the year 1986–2022.

FIGURE 2
BDTI index from the year 1998–2022.

In terms of the BDTI VLCC, we considered the TD3, the
case of Japan importing crude oil from the Middle East. Japan
is currently the fourth-largest oil importer behind China, the
US, and India while the Middle East is the largest oil exporter
with over 41% of market share in global exports. TD3 has the
earliest data from the date of 27th January 1998 while a similar
route, the TD15 standing for China importing crude oil from
the Middle East begins from the date of 20th June 2005. BDTI
VLCC, BDTI Suezmax and BDTI Aframax differ in terms of

distances and geographical locations. Classic routes and diverse
BDTI indexes between top world oil suppliers and major importers
contribute to the significance of our case study. Investigating
differences in oil price relationships across indexes further allowed
us to discuss the effects of different tanker types and oil
trade routes.

We conducted descriptive statistics on the data, and the
statistical results are presented in the following Table 1 (all data sets
have a total of 1,001 entries).
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TABLE 1 Statistics of WTI and BDTI freight rates.

Variable Mean SD Sum Min Median Max

WTI 65 22 64916.43 9 61 124

BDTI 903 429 903,406 403 725 2,496

BDTI VLCC 14407 39045 1.44E+07 −34845 3,399 264072

BDTI Suezmax 26001 31,344 2.60E+07 −5,078 12020 138,806

BDTI Aframax 22028 24942 2.21E+07 −3,683 10954 125722

3 Models

3.1 Correlation

3.1.1 Correlation coefficient
Correlation can be linear or circular and is expressed by

a correlation coefficient. In the data processing, we use the
Pearson correlation (ρ) coefficient to determine the linkage
relationship between two variables, such as WTI and BDTI VLCC.
Pearson’s product-moment correlation coefficient measures the
linear relations between two variables. Assuming X represents
WTI while Y represents BDTI VLCC, let σx and σy be the
standard deviations of two random variables X and Y respectively.
Then Pearson’s product-moment correlation coefficient between the
variables is in Eq. 1

ρx,y =
cov (X,Y)

σxσy
=

E ((X−E (X)) (Y−E (Y)))
σxσy

(1)

where E(⋅) denotes the expected value of the variable,and cov(⋅)
means covariance. To affect the result.

3.1.2 Algorithms (correlation)
Correlation is computed using a fast algorithm based on the

correlation theorem and the convolution theorem (Greitans, 2005).
Take the correlation calculation between WTI and BDTI VLCC as
an example. We assume that the numerical value corresponding to
WTI is f(n) while the numerical value corresponding to BDTIVLCC
is g(n). Let f(n) and g(n) be the input signals and y(m) denote the
output, then we have Eq. 2:

y (m) =
M−1

∑
n=0

f (n)g (n−m) = i f ft (FG∗) (2)

where F is the Fourier transform of f(n),G is the Fourier
transform of g(n) and∗means complex conjugation. Therefore the
computation of correlation is carried out as in Eqs 3, 4 (Schatzman,
1996; Frigo and Johnson, 2005; Smith, 2008):

a. The discrete Fourier transforms of f(n) and g(n) are
computed using FFT;

b. Multiply the Fourier coefficients of f(n) with the conjugated
coefficients of g(n);

c. Perform inverse discrete Fourier transform on the product. To
facilitate the determination of signal similarity. , the two input
signals are first normalized as follows before the correlation
is computed.

fnorm (n) =
f (n)

√∑M−1
i=0
( f (n))2

(3)

gnorm (n) =
g (n)

√∑M−1
i=0
(g (n))2

(4)

The normalized correlation can be computed as Eq. 5:

y (m) =
M−1

∑
i=0

fnorm (n)gnorm (n) = i f ft(FnormG∗norm ) (5)

where Fnorm is the Fourier transform of fnorm(n), Gnorm is the
Fourier transform of gnorm(n) and∗means complex conjugation.

Using the same method, we can calculate the correlation
between WTI and BDTI Suezmax, WTI and BDTI Aframax, BDTI
VLCC and BDTI Suezmax, BDTI VLCC, and BDTI Suezmax,
and BDTI Suezmax and BDTI Aframax. Finally, we will place
all calculated correlations into the same plot and adjust the
coordinate axes to make the plot more comprehensible and
amenable to analysis.

3.2 Multi-peaks fitting

Multi-peaks fitting is a robust approach for extracting
information fromdata featuringmultiple peaks, as acknowledged by
previous studies (Ledvij, 2003; Seber and Wild, 2003; Ranganathan,
2004). To address the influence of high-frequency fluctuations
and capture noteworthy temporal variations, we utilize Gaussian
multi-peaks analysis for fitting. Employing multiple Gaussian
distributions to fit the curve enables the extraction of time-related
information, including Peak time and MaxHeight, offering insights
into real-world events.

In this model, we adopt a three-step methodology: (1)
generating an initial function curve using the given initial values,
(2) iteratively adjusting parameter values to minimize the distance
between the obtained curve and the data points, and (3) terminating
the iteration when the minimum distance reaches a predetermined
stopping criteria to obtain the best fit.

Subsequently, the data or its derivative is fitted with a Gaussian
curve. Analysis of parameters such as Center, MaxHeight, and
FWHM (Figure 3) is then conducted to investigate the shock effects
between crude oil prices and tanker freight rates, as detailed in
Table 4. FWHM means full width at half maximum, measuring
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FIGURE 3
FWHM explanation.

the curve’s width at half its maximum amplitude. The results of
the multi-peak analysis demonstrate a high level of significance,
as corroborated by combined statistical analysis. The derivative of
a function is conventionally defined as the limit of the difference
quotient, representing the function’s instantaneous rate of change at
a specific point, see Eq. 6:

f′ (x) = lim
h→0

f (x+ h) − f (x)
h

(6)

To approximate the derivative when the value of h is sufficiently
small, a centred difference formula can be employed in Eq. 7:

f′ (xi) ≈
f (xi + h) − f (xi − h)

2h
(7)

In practice, Origin software utilizes the centred difference formula
to handle discrete data. It calculates the derivative at a data point
Pi by averaging the slopes between the point and its two closest
neighbours. Therefore, the derivative function applied to discrete
data points can be expressed as Eq. 8:

f′ (xi) =
1
2
(

yi+1 − yi

xi+1 − xi
+

yi − yi−1

xi − xi−1
) (8)

When the “smooth” option is selected for differentiation and the
X data is evenly spaced, Origin employs the Savitzky-Golay method
to calculate the derivatives.

3.2.1 Generate an initial function curve from the
initial values

To begin the multi-peaks analysis, an initial function curve is
generated based on the initial parameter values for the Gaussian
peaks in this project. The Gaussian function is defined as Eq. 9:

f (x) = A ⋅ e−
(x−μ)2

2σ2 (9)

where A is the peak amplitude, μ is the peak position, and σ is
the peak width. The initial parameters for each peak, including peak
position, peak height, and peak width, are estimated based on the
data characteristics.

Utilizing the initial parameters, a Gaussian function generates
an initial function curve with one or more peaks. Multiple initial
function curves can be created as required for multiple peaks. These
initial curves act as the starting point for the iterative process that
optimizes peak parameters, achieving the best fit for the data.

3.2.2 Iterate to adjust parameter values to make
data points closer to the curve

After generating the initial function curve, we use a nonlinear
least squares method to iteratively adjust the function parameter
values, aiming to minimize the sum of squared errors between the
function curve and the data points. Taking the multi-peak analysis
of WTI derivative peaks under different shock regimes (Figure 5) as
an illustrative example, we define the objective function as Eq. 10:

S =
n

∑
i=1
(yi − f (xi))

2 (10)

Here, yi represents the observed WTI derivative, while f(xi)
denotes the value of the function curve at the corresponding xi
point. The quantity n stands for the total number of calculated WTI
derivatives.

In each iteration, the model employs the Levenberg-Marquardt
algorithm (Ranganathan, 2004) to compute the gradient of the
objective function and update the parameter values. Specifically,
the algorithm adjusts the parameter values in the direction of the
steepest descent until the error function is minimized.

To mitigate the risk of convergence to local minima during
iteration, heuristic methods are integrated into the model. At
each iteration, the model introduces randomness by altering the
initial parameter values. Additionally, the parameters from the
preceding iteration serve as the initial values for the subsequent
iteration, broadening the exploration of the parameter space and
enhancing the likelihood of identifying the global optimal solution.
Furthermore, the model incorporates heuristic techniques such
as pruning and local search to enhance algorithmic efficiency
and accuracy.

3.2.3 Stop when minimum distance reaches the
stopping criteria to get the best fit

The model iteratively adjusts the parameter values until the
predetermined stopping criterion is met, indicating that the error
function has dropped below a specified threshold. Mathematically,
this can be expressed as Eq. 11:

min
θ

n

∑
i=1
(yi − f (xi,θ))

2 (11)

Here, θ denotes the vector of function parameters, and f(xi,θ)
denotes the value of the function curve at the corresponding xi point
with parameters θ. The quantity n stands for the total number of
variables, such as the calculated WTI or BDTI derivatives. Upon
reaching the stopping criterion, the model outputs the optimal
fitting result, including peak position, peak height, peak width,
and fitting error. These parameters provide valuable insights into
the research.
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FIGURE 4
Derivative of WTI crude oil price from the year 1986–2022.

4 Application and results

In contradistinction to traditionalmethodologies, the utilization
of multi-peak fitting demonstrates the ability to diminish noise
emanating from transient and rapid oscillations. Empirical
investigations have revealed that this methodology effectively
addresses market turbulence arising from substantial global
occurrences, thereby elucidating the manifestation and extent of
perturbations in the form of discernible peaks. Consequently, we
can derive the following analyses. The tables and graphics below are
created by the Origin Pro 2023 software.

4.1 Volatility of crude oil price and tanker
freight rate

The graphic below displays the residuals of the first derivative
data of WTI. Through the graphic, we get WTI derivative peaks
under different shock regimes.

The derivative of WTI crude oil price from 1986 to 2022 in
Figure 4 reveals that WTI fluctuates sharply in three periods: 2008
January 10 to 2009 10 January 2019 December 28 to 2020 May 27
and 2022 January 10 to 2022 November 10. Because there has been a
lot of research on the financial crisis, we can determine through time
comparison that these three eras correspond to the financial crisis,
the COVID-19 outbreak (Khan et al., 2022a; Li et al., 2023), and the
Russia-Ukraine conflict in 2022. This article will concentrate on the
outbreak of COVID-19 and the Russia-Ukraine conflict. Figure 5
displays the WTI derivative peaks in these two shock regimes.

Below are the analyses for WTI derivative peaks (5 peaks)
(Table 2) and the BDTI derivative peak figure (Table 3). Due to
the localized nature of the fitting in the multi-peaks model, the
MaxHeight of peaks may be a negative value, contingent upon the
localized position of their respective fittings. Additionally, analyses
for WTI derivative peaks (10 peaks) and BDTI derivative peaks for
VLCC, Suezmax, and Aframax are also included. These tables are
provided in Table 4. Simultaneously, corresponding statistical data
is presented in Table 5.

From the BDTI derivative peaks under different shock regimes
(Figure 6), we observe that the BDTI fluctuation changes for
different ship types vary when the same regime occurs. This can
be analyzed in connection with the transport routes of different
ship types in Section 4.2.

4.2 Time and spacial dimension analysis

4.2.1 Time dimension: COVID-19 and
Russia-Ukraine conflict

The impact of COVID-19 is primarily attributed to a significant
drop in global economic expectations.

Figure 7 illustrates the development of the crude oil market,
depicting a sharp decline in WTI from January to June 2020
following the COVID-19 epidemic in 2019. As the pandemic
subsided during the summer, oil prices recovered from July to
October 2020, with major importers like China quickly acquiring
substantial amounts of the commodity. Post-October 2020, oil
prices continued to rise due to advancements in COVID-19 vaccine
research and development. From the perspective of the shipping
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FIGURE 5
WTI derivative peaks under different shock regimes with 10 (A) and 5 (B) peaks labeled.

TABLE 2 Peak Analysis for WTI derivative peaks (5peaks).

Indicator Center MaxHeight FWHM

Peak1 2008/06/04 8.65454 1.58956

Peak2 2008/09/22 −18.44051 0.78446

Peak3 2020/04/16 −10.01212 1.09611

Peak4 2020/04/20 28.02 1.42976

Peak5 2022/03/08 −16.58816 0.89165

market, it is evident that early in the COVID-19 pandemic, BDTI
experienced a sharp decrease due to reduced trading demand
between nations. Researchers have noted that the pandemic has
adversely affected the dry bulk and dirty tanker segments more than
the decline in port calls would suggest (Michail and Melas, 2020b).
Subsequently, as importing nations like China swiftly purchased oil,
and themaritimemarket was encouraged to flourish, the freight rate
underwent significant fluctuations. Since then, the rate has stabilized
due to the oil storage strategies implemented by countries.

A shock in geopolitical risk significantly increases the cost of
spot charter rates for both LNG and LPG carriers (Michail and
Melas, 2021), and the same applies to crude oil transportation.
Global economic policy uncertainty makes the correlation between
oil prices and BDTI more visible (Khan et al., 2021a). The impact of
the Russia-Ukraine conflict is primarily attributable to the wave of
energy stress that futures markets have priced in.

The Russia-Ukraine conflict began in February 2022, and from
the perspective of the crude oil market, it impeded the flow of oil
from Russia to Western Europe. As a result of sanctions imposed by
the United States and Europe against Russia, and Russian counter-
sanctions, trade market expectations declined, impacting the global
oil market and contributing to a sharp increase in oil and freight
prices. Oil prices were high in March 2022 as the war intensified,

TABLE 3 Peak Analysis for BDTI derivative peaks.

Indicator Center MaxHeight FWHM

Peak1 2007/12/09 119.15507 6.11953

Peak2 2008/03/17 148.15692 2.28980

Peak3 2019/10/10 276.96478 4.07314

Peak4 2019/10/14 −127.55554 9.40236

Peak5 2020/03/11 187.60920 4.22178

Peak6 2020/03/17 −140.37276 2.54248

Peak7 2020/04/20 171.39867 2.11937

Peak8 2020/04/30 −124.47869 6.76175

Peak9 2022/02/23 216.93625 2.21247

Peak10 2022/11/16 151.84820 3.36050

severely affecting the shipping sector and causing a sharp decrease
in shipping rates. From the shipping market perspective, the Russia-
Ukraine conflict, particularly the collapse of the Crimean Bridge,
had a significant impact on land traffic. This also stimulated the
shipping market, causing it to rise quickly in a short period.

4.2.2 Spacial dimension: difference of tanker
types

Because the main routes of different tanker types are diverse,
the impact on different tanker types is different. This paper mainly
considers three tanker types: VLCC, which is mainly shipped to
Asia, and Suezmax & Aframax, which is mainly shipped to Europe
and the United States Gulf.
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TABLE 4 Results of multi-peak fitting.

Derivative peaks

Type WTI BDTI BDTI VLCC BDTI Suezmax BDTI Aframax

Data Max FW Max FW Max FW Max FW Max FW

2007/12 119.16 6.12

2008/03 148.16 2.29 −24552.36 0.79

2008/04 20816.48 0.86

2008/06 8.65 1.59 19051.68 0.92

2008/07 −5.53 2.95 −12174.72 1.66

2008/10 −6.09 1.87

2011/05 −6.17 1.58

2014/07 −12683.99 0.79

2014/11 −25354.66 0.83

2019/10 276.96 4.07 −43972.40 4.05 −21720.61 2.40

2020/03 31000.43 2.14

2020/04 28.02 1.43 171.40 2.12 −61416.20 0.77 −6229.43 1.80

2022/02 216.94 2.21 21982.75 1.34 13640.88 1.75

2022/03 −20.87 0.84 −14238.55 0.79

2022/11 151.85 3.36 −29600.43 3.76

Max represents maxweight and FW represents FWHM.
The result of the calculation is reserved for two decimal places.

TABLE 5 Statistical metrics for multi-peak fitting.

Derivative peaks WTI BDTI BDTI VLCC BDTI Suezmax BDTI Aframax

Reduced Chi-Sqr 0.56 319.30 986435.48 1279752.63 930506.84

R-Square (COD) 0.19 0.25 0.69 0.37 0.21

Adj. R-Square 0.19 0.24 0.68 0.33 0.2

Prob > F <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

The statistical data in Table 4 corresponds to the results in Table 3.

FromFigure 8, it is evident thatTD3 is strongly correlatedwith the
change amplitude of BDTI VLCC during the outbreaks of COVID-19
and the conflict between Russia and Ukraine. As mentioned earlier,
TD3 primarily transports goods imported by Japan from the Middle
East, andboth Japan and theMiddle East are significant importers and
exporters, respectively. Therefore, the index change of TD3 is highly
influenced by the variations in BDTI VLCC.

From the correlation between WTI and BDTI (Figure 9), we
can infer that, due to the diverse shipping destinations of different
ship types, BDTI volatility changes differently for each ship type

when events impact different regions. Since VLCC is predominantly
shipped to China, the correlation between VLCC and oil prices
peaked in January 2021, coinciding with the most severe impact
of the COVID-19 pandemic on China. Given that Suezmax and
Aframax are primarily shipped to Europe, the Russia-Ukraine
conflict in 2022 has had a profound effect on oil transportation
in Europe. Consequently, the correlation between the freight price
of Suezmax and the oil price significantly increased after the
outbreak of the Russia-Ukraine conflict, and this correlation further
intensified as the conflict escalated.
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FIGURE 6
BDTI derivative peaks under different shock regimes for different tanker types [Total (A), VLCC (B), Suezmax (C), Aframax (D)] with labeled peaks.

4.3 Potential information checked by
multi-markets multi-peaks analysis

In general, the crude oil market and shipping market are
investigated independently. Some researchers have identified the
one-way influence of the crude oil market on the shipping market,
but not vice versa. However, through the multi-peaks fitting analysis
in this paper, we find that the shipping market can also provide
information to the crude oil market from the supply side. It is
evident from Figure 8 that WTI is highly correlated with BDTI.
Additionally, Figure 7 illustrates that the interaction between WTI
and BDTI is also influenced by different ship types and events.

Simultaneously, from Table 4, we observe that there is typically
a lag between the crude oil market and the shipping market because
it takes time for changes in the crude oil market to impact ship
fuel costs and for the shipping market to respond. Specifically, the
possible lags between the two markets are as follows:

a. Changes in the crude oil market impact ship fuel costs, but the
impact is not immediate.

b. The shipping market takes time to respond.

This paper reveals the correlation and potential lag relationship
between the crude oil and shipping markets through multi-peak
fitting analysis. A comprehensive analysis of these relationships
can provide more appropriate suggestions for subsequent investor
decisions.

5 Discussion

The correlation between the crude oil market and the tanker
freight market is depicted in Figure 10. This figure represents the
information price between traders’ expectations and the actuality
of the cargo balance. Trading opportunities arise when there is
a gap between the expectations of the oil market and the actual
flow of cargo, considering the distinct liquidity of the oil future
market and the tanker freight market. The dynamics of these
two market time series exhibit non-linear and non-stationary
behaviors (Adland and Cullinane, 2006; Shao et al., 2017). These
findings are further supported by cycles with variable time scales
in tanker freight rates and a time-varying link between the oil and
freight markets (Chen et al., 2019).
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FIGURE 7
WTI and BDTI from the year 2019–2022.

FIGURE 8
WTI and BDTI VLCC shocks under different regimes.

Previous research has identified volatility transmission from the
oil market to the tanker freight market through external shocks.
Decision-making opportunities for maritime players were reported
by studying shifts in oil market demand (Siddiqui and Basu, 2021;
Shi et al., 2022). However, the consequences of the supply chain on
the oil market remain contested, denied, or refused (Alizadeh and
Nomikos, 2004; Kilian, 2022).

Our findings reveal the structural balance between oil
consumption and the accumulation of cargo through production,
transportation, and inventory levels, highlighting the necessity of
rebalancing as the gap widens. This potential trading opportunity

has not been identified in previous literature and may have been
overlooked by traders who typically focus solely on either the oil or
the tanker freight market. Differences across tanker routes provide
valuable signals for interpreting the details of shocks on oil trade
networks. Therefore, understanding the bidirectional information
of shock effects between the oil and freight markets offers deeper
insights for vessel acquisition, layoff, and chartering decisions, as
well as overall oil purchase and sales planning.

This paper presents a comprehensive analysis of the relationship
between crude oil prices and tanker freight rates, employing various
methodologies to enhance the model’s interpretative insights. The
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FIGURE 9
Correlations of WTI and BDTI from the year 2019–2022 with labeled trends.

FIGURE 10
Cargo and future market of the crude oil supply chain.

study utilizes a multi-market approach, examining the dynamics
of both the crude oil market and the tanker freight market. It
introduces a multi-peak fitting method to capture the multiple peak
phenomena present in the data. The model accounts for external
shocks, such as the COVID-19 pandemic and the Russia-Ukraine
conflict, which have significant impacts on both oil prices and
freight rates. Correlation analysis is used to quantify the strength

and direction of the association between differentmarket indicators,
providing a clear picture of their interdependence.

The paper goes beyond a general analysis by considering
different types of tankers (VLCC, Suezmax, and Aframax) and
their specific routes. This granular approach allows for a more
detailed understanding of how various segments of the shipping
market are affected by changes in oil prices. The study analyzes

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1289327
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Chen et al. 10.3389/fenrg.2024.1289327

not only the raw data but also the derivatives of the data, which
helps to identify short-term fluctuations and longer-term trends. In
summary, the models effectively handle complex market behaviors,
account for external shocks, and use advanced statistical and
computational methods.

Different regimes of crude oil price shocks lead to varying oil
demand elasticity, consequently affecting different transportation
routes and types. The distinct responses of these routes, coupled
with the accumulation of structural gaps between trade expectations
and the actual market, present opportunities for both the oil and
freight markets. This area warrants further research. Additionally,
monitoring crude oil price changes induced by global economic
policy uncertainty and conflicts is essential to mitigate potential
impacts on tanker freight rates.

The findings of this study offer practical decision-making
insights for the energy industry:

• Utilizing multi-peak analysis, oil companies can identify
multiple peaks and troughs in historical data, thereby
predicting future price trends. For instance, by analyzing past
oil price fluctuations triggered by political events, companies
can forecast the extent and duration of similar future events.
Understanding the bidirectional impacts between the oil and
freight markets enables companies to strategically time crude
oil purchases—accelerating procurement ahead of anticipated
price increases and decelerating purchases before expected
price drops, thus reducing procurement costs.
• Analyzing freight rate fluctuations across different routes

allows for optimized business decisions and strategic planning.
Shipping companies can select more stable and less risky
routes. For example, when geopolitical risks are expected to
cause significant freight rate volatility on a particular route,
an alternative route can be chosen for shipping. Additionally,
understanding the differential responses of various tanker
types to crude oil price shocks enables shipping companies to
make more informed decisions regarding tanker leasing.
• Investment firms can strategize their investments in the crude

oil and tanker freight markets by developing comprehensive
risk management strategies to address market volatility.
Employing multi-market analysis, investment firms can
construct diversified portfolios that include crude oil
futures and tanker freight futures, thereby mitigating the
risk associated with fluctuations in a single market. By
understanding the correlations between the crude oil and
freight markets, firms can hedge against high volatility
in one market by taking positions in the other. Event-
driven investment strategies can be developed based on the
anticipated impacts of external shocks on the market. For
example, in anticipation of geopolitical events likely to disrupt
crude oil supply, firms can invest preemptively in assets poised
to benefit from rising oil prices.

6 Conclusion

The study highlights the significance of shock effects between
crude oil prices and tanker freight rates, an underexplored area in the
literature, which covers several tanker types, including BDTI VLCC,

BDTI Suezmax, and BDTI Aframax, as well as TD3.The conclusions
go as follows:

• Oil prices and freight rates exhibit complex, non-linear, and
non-stationary behaviors.
• A multi-peak analysis method is employed to identify

constituent cycles with varying temporal features, which helps
segregate different timeframes and assess the correlation
within the time series.
• There is a shifting association between freight rate volatility,

with different routes being affected differently by oil
price shocks.
• Tanker freight rates, which include supply chain information,

can be used to evaluate the disparity between the existing oil
market and future expectations. And information from the
supply chain proves beneficial to the crude oil market.

The findings offer valuable insights to traders and decision-
makers in both the oil and tanker markets, and it is emphasized that
oil price shock regimes differ, and their effects must be assessed on
a case-by-case basis.
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