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With the increasing prominence of environmental and energy issues, electric
vehicles (EVs) as representatives of clean energy vehicles have experienced rapid
development in recent years, and the charging load has also exhibited statistical
characteristics. Accurate prediction of EV charging load is crucial to improve grid
load dispatch and intelligent level. However, current research on EV charging load
prediction still faces challenges such as data reliability, complexity and variability
of charging behavior, uncertainty, and lack of standardization methods.
Therefore, this paper proposes an electric vehicle charging load prediction
method based on spectral clustering and deep learning network (SC-CNN-
LSTM). Firstly, to address the insufficient amount of EV charging load data, this
paper proposes to use Monte Carlo simulation to sample and simulate historical
load data. Then, in order to identify the internal structure and patterns of charging
load, the sampled and simulated dataset is clustered using spectral clustering,
dividing the data into different clusters, where each cluster represents samples
with similar charging load characteristics. Finally, based on the different sample
features of each cluster, corresponding CNN-LSTM models are constructed and
trained and predict using the respective data. By modifying the model
parameters, the prediction accuracy of the model is improved. Through
comparative experiments, the proposed method in this paper has significantly
improved prediction accuracy compared to traditional prediction methods
without clustering, thus validating the effectiveness and practicality of
the method.

electric vehicle, spectral clustering, Monte Carlo, CNN-LSTM, load prediction

1 Introduction

In the context of global warming, energy shortages, environmental protection demands,
and rapid technological advancements, electric vehicles (EVs) have been actively promoted
by governments and companies worldwide. During the “13th Five-Year Plan” period,
China’s electric vehicle charging infrastructure has experienced significant development,
with rapid improvement in charging technology, gradual improvement of standard systems,
steady formation of industrial ecology, and the establishment of the world’s largest and most
extensive charging infrastructure system, serving a wide range of vehicles. However, the
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rapid development has led to an increasing charging load, and
various factors such as different types of EV charging loads,
varying weather conditions, and differences in charging habits
among users have a significant impact on the grid. Therefore,
accurate prediction of EV charging load is crucial for the
sustainable development of the electric vehicle industry and
intelligent energy management.

In recent years, the prediction of electric vehicle (EV) charging
loads has garnered significant attention from researchers exploring
various forecasting methodologies. Presently, the predominant
approaches to EV load prediction encompass statistical models,
machine learning techniques, and hybrid deep learning strategies.
Statistical models leverage historical data coupled with statistical
analyses to forecast loads, employing methods such as time series
analysis and regression models (Peng et al., 2020), among others.
Machine learning approaches train on historical data to predict
future loads by identifying patterns and relationships within the
data, with common algorithms including support vector machines
(Liu et al,, 2014), random forests (Deng et al., 2021), and neural
networks. Hybrid models synergize the strengths of multiple
methodologies, integrating statistical models to capture long-term
trends and seasonal fluctuations, alongside machine learning
techniques to address complex, nonlinear dependencies.

In terms of short-term load prediction, an improved gate
recurrent unit (GRU)-based method (Shi et al, 2023) has been
proposed. This method utilizes a combination of convolutional
neural networks and gate recurrent units (Mohammed and
Mohammed, 2022) to extract important features with temporal
then mechanisms  to
automatically assign different weights to hidden layers,
distinguishing the importance of different time series. The final

characteristics. It uses attention

load prediction results are output through fully connected layers.
Addressing the impact of uncertainty in electric vehicle charging
loads on the grid, a method based on an improved Bass model (Ren
et al., 2023) has been proposed to predict EV ownership, and a
Monte Carlo-based model is constructed for urban EV charging load
prediction. Firstly, a combination prediction model is proposed to
analyze the number of conventional vehicles and establish the
connection between conventional vehicles and electric vehicles
using Analytic Hierarchy Process and Delphi method (Luo et al,
2014) to predict EV ownership. Secondly, the Monte Carlo method
(Liv and Qi, 2014) is used to simulate the travel habits of urban EV
users and predict the unordered charging behavior of EVs, thus
generating the daily load curve of EVs. Another method proposed is
the clustering analysis-based EV charging load prediction method
(Chen et al., 2022). It introduces a k-means clustering method based
on consistency theory (Zhou et al, 2023) to measure the
dissimilarity of charging load data between the current period
and adjacent periods, iteratively updating the clustering status
and accurately calculating the clustering centers. This enables the
fast calculation of the probability distribution functions for EV
charging probability and charging start time. Based on the
identified parameters of EV charging behavior characteristics, a
nonlinear programming function is solved to accurately predict the
load clustering model during peak charging periods.

While the aforementioned methods have achieved good
prediction results, they still have certain limitations. These
methods rely on reliable datasets, including historical load data,
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EV usage patterns, charging equipment statuses, etc., for accurate
prediction. Insufficient and inaccurate data can limit the accuracy
and reliability of the methods. Additionally, there is inherent
uncertainty in EV charging loads, such as sudden changes in
charging demand or uncertainties in user behavior. These
methods may have limitations in handling uncertainties and
further research is needed to improve the robustness and
reliability of predictions. Furthermore, these methods are often
developed and validated based on specific scenarios and datasets,
which may limit their applicability in different environments and
conditions (Guanyuan et al. 2023). In situations with significant
regional variations, different charging facilities, and diverse user
behaviors, the prediction accuracy of these methods may decrease.
In summary, while some progress has been made in the field of
short-term EV charging load prediction, further research and
improvement are needed to address limitations such as data
dependency, timeliness of prediction, uncertainty handling,
model complexity and interpretability, as well as adaptability to
real-world applications.

Therefore, this paper proposes a method for electric vehicle
charging load prediction based on spectral clustering (Wang et al.,
2023) and deep learning networks. Firstly, historical data of electric
vehicle loads in the target area is collected and cleaned. Then, Monte
Carlo sampling is used to generate a set of simulated electric vehicle
charging load data. Multiple simulated samples are generated using
random sampling based on the distribution and statistical
characteristics of the existing data. The generated data is then
subjected to spectral clustering analysis. Spectral clustering
divides the simulated data into different clusters, where each
with load
characteristics. Finally, for each cluster, a corresponding CNN-
LSTM model (Lu et al, 2019) is built and trained using the
clustered data. The input to the model is the time series of the

cluster represents samples similar ~ charging

clustered and sampled simulated charging load data, and the output
is the predicted charging load demand. The proposed method is
validated using data from an electric vehicle charging station in a
specific region of Nanjing, Jiangsu Province, China, demonstrating
its effectiveness.

2 Feature extraction for electric vehicle
charging load

Monte Carlo simulation and spectral clustering are widely used
in feature extraction for electric vehicle charging load. They provide
means to handle uncertainty and perform cluster analysis,
contributing to a better understanding of the characteristics and
patterns in the charging load data.

2.1 Monte Carlo

Monte Carlo simulation is a random simulation method based
on probability and statistical techniques. It uses random numbers to
assign a probability model to a complex problem, so that the solution
of the complex problem corresponds to certain characteristics of the
random variables in the model, thereby achieving the purpose of
solving the problem.
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Electric vehicle charging load is influenced by various stochastic
factors, such as user behavior, utilization of charging stations, etc.
Monte Carlo sampling can establish an uncertainty model of the
charging load by randomly sampling charging load data, simulating
the distribution of the charging load under different scenarios.
Through a large number of Monte Carlo samples, a broad and
comprehensive range of charging load samples can be obtained,
covering various possibilities of the charging load, which helps
improve the robustness and generalization ability of the model.

To process a historical dataset using Monte Carlo simulation,
the following steps are taken.

Step 1: Check the integrity of the dataset, ensuring that there are
no missing or abnormal values, and normalize or
standardize the data.

Step 2: Determine the parameters for simulation, i.e., determine
the time range for simulation and the number of
simulations for each time period.

Step 3: Build a simulation model, by assuming a probability

of the

charging load data, and estimating the parameters of
the distribution by fitting the selected probability
distribution to the actual data.

distribution to describe the characteristics

Step 4: Conduct Monte Carlo simulation, for each time period,
generate a specified number of random samples from the
selected probability distribution, and use the generated
random samples to calculate the predicted values of the
charging load.

In Monte Carlo simulation, the most critical part is the generation
of random samples, which depends on the selected probability
distribution. Taking the normal distribution as an example,
assuming that the charging load follows a normal distribution, the
formula for generating random samples is shown in formula 1:

xX=u+0Z (1)

Where x is the generated random sample, p is the mean of the normal
distribution, o is the standard deviation of the normal distribution, and
Z is a random number drawn from the standard normal distribution
(with a mean of 0 and a standard deviation of 1). Based on the actual
data, other suitable probability distributions and their corresponding
formulas for generating random samples can be chosen.

2.2 Spectral clustering

Spectral clustering is a clustering method based on graph theory
and algebraic graph theory, applicable for clustering problems with
temporal features. Since different charging loads are essentially
different time series, spectral clustering can construct a similarity
matrix by building data point relationships and convert it into a
Laplacian matrix to achieve clustering with good results.

Spectral clustering can cluster charging load data, identifying
internal structures and patterns, which helps discover relevant
subsets and features within the charging load. This provides
and data
representation. Through spectral clustering, important features

valuable information for feature selection

related to charging load prediction tasks can be identified. It
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helps determine subsets of highly correlated features in charging
load data, reducing the impact of redundant features and improving
the efficiency and accuracy of prediction models.

2.2.1 Similarity measurement based on
curve distance

Similarity measures based on curve distance are used to measure
spatial distances between individuals, where larger distances indicate
larger differences between individuals. This study uses Euclidean
distance (Yang and Wang, 2014) to measure whether curve
distances are similar. Euclidean distance measures absolute distances
between points in multi-dimensional space. The formula for distance
between i and j in the load curve is shown in Eq. 2:

T

Yl (6 - x;' (O )

t=1

In the formula, dij represents the Euclidean distance between the daily
charging load curves i and j. By using the Euclidean distance, a similarity
matrix D based on curve distance can be constructed, with formula 3:

dll . "dln
D=|: 3)
duy .. dn

In the formula, d11,d22,..., dnn are all 0.

2.2.2 Similarity measurement based on
morphological characteristics

Load curves can better reflect the similarity of load time series in
terms of their morphological characteristics or contours. In this study,
gray correlation analysis (Huang et al., 2021) is used to measure the
similarity of curve shapes. The correlation coefficient and correlation
degree between i and j in the load curve are shown in formulas 4 and 5:

m’in |x" (1) = x;" (1)| + pm’_?x |x." (1) = x;" (1)

(4)

fij (t) = |x,—'(t) _ x]-'(t)l +mejix 'x,—'(t) _ le(t)l

Yij = %Zilfz‘j(t) (5)

In the formula, Ejj(t) represents the correlation coefficient
between load curves i and j during time period t. p € (0, 1) is the
resolution coefficient. yij represents the correlation degree between
load curves i and j. This study selects correlation degree as the
measure of similarity for curve shapes.

By using correlation degree, a curve similarity matrix Y based on
morphological characteristics can be constructed as formula 6:

Y=|: (6)

2.2.3 Similarity of charging load curves

Based on the similarity measurement of curve distance and
morphological characteristics, this study calculates the similarity
matrix W for charging load curves as follows for charging load
curves as shown in Eq. 7:
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W =aD + Y
{a+ﬁ:1

2.2.4 Specific steps

Step 1: Input the nxT dimensional matrix X required for
clustering, weight coefficients o = a0, p = p0, and the
number of clusters K = KO0.

Step 2: Calculate the similarity matrices D and Y based on curve
distance and morphological characteristics. Determine the
similarity matrix W, which is an nxn symmetric matrix as
shown in formula 8:

Wi " Wip

Wyr " Wan dy

In the formula, wy, Wy, . . ., w,, are all 0.

Construct the degree matrix S as formula 9:

s 0 -0
0

S=1|. : ©)
0 0 Sn i

The element s; in matrix S is expressed as formula 10:

Si = z::lwij (10)

Step 3: Construct the Laplacian matrix L is shown in formula 11.

L=S-W (11)

Step 4: The normalized Laplacian matrix L’ is shown in
formula 12:

L'=SixLxS? (12)

Step 5: Take the first K smallest eigenvalues and compute the
corresponding eigenvectors. Using these K eigenvectors,
form a new matrix V of size nxK, constituting the
eigenvector space.

Step 6: Apply the k-means clustering algorithm to the eigenvector
space V of size nxK. This corresponds to clustering the
original data and obtain the partition of K clusters. the
cluster By can be expressed as formula 13.

Bi ={ri, 1251} (13)

In the equation, By represents the set of load curve indices for the
k-th cluster, r, represents the u-th load curve, and u represents the
number of load curves in that cluster.

Step 7: Check if the termination condition is satisfied. If it is
satisfied, proceed to step 8. If not satisfied, update a = o +
7, B =1 - a, where 7 is a fixed step size. Repeat steps 4 to
7 until the termination condition is met. Record the
number of clusters, the corresponding silhouette
coefficient (SC) index, Davies-Bouldin index (DBI) (Bai
et al., 2022), and the load curves for each cluster.
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Step 8: Increase K by 1 (K = K + 1) and check if K is less than the
maximum predetermined value Kmax. If K is less than
Kmax, repeat steps 5 to 8 until K = Kmax. Select the
optimal number of clusters K based on the highest SC or
DBI index, which determines the number of clusters and
the load curves in each cluster.

3 Load forecasting based on deep
learning networks

CNN can effectively extract spatiotemporal features from
charging load data, while LSTM can capture the time series
dependency of the data. This model architecture is highly
meaningful in electric vehicle charging load forecasting, as
charging load data often exhibits spatiotemporal dependency and
sequential characteristics.

3.1 Convolutional neural network

CNN is mainly used to process spatial features in input data, and
for charging load data, it can capture spatial patterns of load in the
dimensions of time and power. By using convolutional layers and
pooling layers, CNN can automatically learn spatiotemporal features
in charging load data, such as load distribution, fluctuations, and
patterns of change. These features are crucial for predicting changes
in charging load. Through convolution and pooling operations,
CNN can reduce the dimensions of input data and extract the
important features. This the computational
complexity of subsequent models while retaining key spatial

most reduces
feature information.

Convolutional neural networks are structurally complex,
consisting of input layers, convolutional layers, pooling layers, fully
connected layers, and output layers. In this study, we mainly use
convolutional layers and pooling layers to extract features from the
relevant data. The calculation formula for extracting data feature
values using 2D convolutional neural networks is as follows and the
features can be expressed as formula 14:

k _ k-1, k k
Yf - f(k ien i 1uij + bj) (14)

In the equation, x5! represents the output value of the i-th feature
map in the (k-1)th layer; uf‘] represents the convolution kernel
between the j-th feature map in the k-th layer and the i-th feature
map in the (k-1)th layer; blj represents the threshold corresponding to
the j-th feature map in the k-th layer; N represents the set of input
feature maps; Y’J? represents the output value of the j-th feature map in
the k-th layer; f (.) represents the activation function.

The convolutional layer performs convolution operations on the
input data by setting the size of the convolution kernel and the stride,
resulting in a feature map. Typically, multiple convolution kernels are
used to extract different feature information from the input signal,
resulting in multiple feature maps. The pooling layer is a form of non-
linear downsampling, where the maximum pooling takes the maximum
value within a neighborhood of feature points. In this study, we reduce
the dimensions of the data through max pooling, thereby reducing the
parameters and complexity of the network. Multiple convolutional

frontiersin.org
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FIGURE 1

Memory cell structure diagram.

layers and pooling layers are typically interconnected, extracting input
information layer by layer. As the convolutional layers and pooling
layers stack, deeper features of the input information are extracted.

3.2 Long short-term memory network

LSTM is mainly used to handle the time series dependencies in
input data. For charging load data, it can capture the sequential
patterns and long-term dependencies of load in the time dimension.
LSTM, through its internal gating mechanism, is able to effectively
model and capture the long-term dependencies in time series data.
For charging load data, LSTM can learn the historical patterns and
trends of load, thereby making better predictions of future load
variations. Handling variable-length sequences: The length of
charging load data may vary due to different time periods. LSTM
is capable of processing variable-length time series data,
accommodating different lengths of charging load input, and
therefore being more adaptable to real-world applications. The
memory cell structure is illustrated in Figure 1.

Translation: The Long Short-Term Memory (LSTM) network
efficiently explores the temporal dependencies in the information of
a time series by adding forget gates, input gates, and output gates in the
hidden layer. At each time step, the LSTM unit receives the current data
input x;, the previous hidden state /; ;, and the memory cell state C; ;
through these gates. The computation process of LSTM is as follows:

In constructing an LSTM neural network, the forget gate helps
LSTM determine which information will be removed from the
memory cell state, and its formula as shown in Eq. 15:

ft =0(foxt+thht,1 +bf) (15)
The input gate (i,) is used to determine which new information
will be stored in the new cell state (C,). computation process as
shown in formula 16:
iy = 0 (Wiwxy + Wiyhi_y + b;)
gi = cp(ngxt +Wanhey + bg)
C = Ct—lft + gy

(16)

Translation: In the equation, g, represents the candidate values
to be added to the new cell state (C,). C,,f, determines how much
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information will be forgotten from C,;. The element-wise
multiplication of g, is used to determine how much information
will be added to the new cell state C,.

The computation process for calculating h, using the output gate
(o) is as follows:

The CDNA module is added to the generating network
optimization module. A set of convolutional kernels predicted by
CDNA module is applied to the previous frame image to obtain
multiple intermediate images with the same resolution, and their
formula is and their formula can be expressed as 17:

oy = G(Woxxt + Wahht—l + ba)

he = o¢(Cy) (7)

In the equation, o and ¢ represent the sigmoid and tanh
activation functions, respectively. Weo Was Wie Wiy, Wer, W,
Wow and W,, are weight matrices used for element-wise
multiplication with the input x; and the previous hidden state h;.
; for the forget gate, input gate, input node, and output gate,
respectively. bs by, by, and b, are the corresponding biases. f, i,
g» 01, C,, and h, represent the output results of the forget gate, input
gate, input node, output gate, memory cell state, and hidden state,
respectively.

3.3 CNN-LSTM network

CNNs (Convolutional Neural Networks) are primarily utilized
for processing spatial features within input data. For charging load
data, CNNs can capture spatial patterns across time and power
dimensions. Through convolutional and pooling layers, CNNs
automatically learn spatiotemporal characteristics of charging
load data, such as distribution, fluctuation, and patterns of
change. These features are crucial for predicting variations in
charging loads. Convolution and pooling operations reduce the
dimensionality of input data, extracting the most significant
features. This process decreases the computational complexity of
subsequent models while retaining essential spatial information.

LSTMs (Long Short-Term Memory networks), on the other
hand, are designed to handle temporal sequence dependencies
within input data. For charging load data, LSTMs can identify
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Convolutional long-term and short-term neural network prediction model.

sequential patterns and long-term dependencies across the time
dimension. With their internal gating mechanism, LSTMs
effectively model and capture long-term dependencies in time
series data. Specifically, for charging load data, LSTMs learn
historical patterns and trends, enabling better predictions of
They variable-length
sequences, accommodating charging load data of different

future load variations. also  handle
durations, thus offering flexibility for practical application scenarios.

The CNN-LSTM model combines the advantages of
Convolutional Neural Networks (CNN) (Cheng et al., 2018) and
Long Short-Term Memory Networks (LSTM) (Cheng, 2022). The
prediction model is shown in Figure 2. By combining spectral
clustering and the CNN-LSTM model, we can better differentiate
different charging load patterns and train dedicated models for each
pattern. This enables us to more accurately predict the electric
vehicle charging demand under different charging load patterns,
thereby improving the planning and management of charging
infrastructure.

The paper first uses a one-dimensional Convolutional Neural
Network (CNN) to extract the hidden features of the time series
vectors, which is set at the top layer of the entire prediction model.
As shown in Figure 2, the CNN-LSTM prediction model consists of
two main parts: a CNN neural network that extracts feature
information from the original time series to obtain a sequence
of feature information, and an LSTM network that predicts based
on the obtained feature information sequence. Unlike traditional
neural networks, the LSTM network has memory units in the
hidden layer, where the information from the previous time step
(t-1) is passed to the hidden layer neurons at time step t through
the memory units, thus capturing long-term correlations between
time series.

The training of the CNN-LSTM prediction model mainly
involves two processes: forward propagation and backward
propagation. In the forward propagation process, the main
objective is to compute the error of the target loss function. The
mathematical formula for the loss function is shown in Eq. 18. In the
backward propagation process, the Adaptive Moment Estimation
(ADAM) algorithm is used to optimize the network parameters.

Frontiers in Energy Research

1
L= fz;:l (yr - )A’T)2 (18)

In the equation, yT represents the true value of the charging load
power at time step T, y, represents the predicted value of the
charging load power at time step T, and F represents the number of
samples in the training sample set.

4 Electric vehicle charging load
forecasting

Based on the aforementioned steps, this paper proposes a
method for electric vehicle charging load forecasting using
spectral clustering and deep learning networks.

First, the historical data of the target charging station is extracted
using Monte Carlo simulation. The dataset needs to cover various
dates, weather conditions, and other factors. The collected data is
cleaned and normalized, and then Monte Carlo sampling is
performed to generate a comprehensive and extensive dataset of
electric vehicle charging load.

Next, the sampled dataset is subjected to spectral clustering. The
clustering number K is iterated from 1 to n, and the optimal K value
is selected based on the corresponding silhouette coefficient index
and Davies-Bouldin index. The data is then divided into different
clusters, and the cluster centroids of each category, representing
samples with similar charging load characteristics, are obtained.

Finally, for each cluster, a CNN-LSTM model is constructed.
The time series data is first subjected to convolution operations to
extract spatiotemporal features from the charging load data.
Through convolution and pooling operations, the CNN reduces
the dimensions of the input data, extracts the most important
features, and reduces the computational complexity of the model
while retaining key spatial feature information. The LSTM captures
the time series dependencies of the data and performs electric
vehicle charging data forecasting using temporal regression. By
combining spectral clustering and the CNN-LSTM model,
different charging load patterns can be better differentiated, and
dedicated models can be trained for each pattern. The structure of
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the electric vehicle charging load forecasting model based on
spectral clustering and deep learning networks is shown in Figure 3.

5 Case study

To validate the effectiveness of the proposed method, the
experimental part selects a certain electric vehicle charging
station in Pukou District, Nanjing, Jiangsu Province as the
research object. The load data of this electric vehicle charging
station has a sampling frequency of 5min per data point, and
the unit of the data is kW.

The prediction part of the experiment is the forecasting of
electric vehicle charging load. The evaluation metrics used for the
prediction results are Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE), as described in
(Chai and Draxler, 2014). The calculation formulas for these metrics
are shown in Eqs 19-21:

10.3389/fenrg.2024.1294453

(1)

In load forecasting, ; = p; represents the true value of the load,
and &; = p, represents the predicted value of the load.

5.1 Charging load feature extraction

To validate the effectiveness of the proposed electric vehicle
(EV) charging load prediction method based on spectral clustering
and deep learning networks, historical charging load data from an
EV charging station in Pukou District, Nanjing, Jiangsu Province,
China, was employed. The historical load data covers the period
from 0:00 on 14 July 2022, to 0:00 on 25 June 2023, with a sampling
frequency of 5min per data point, and the data is measured in
kilowatts (kW).

Prior to load prediction, charging load feature extraction was
conducted. Firstly, the historical load data was cleaned and
normalized.

Subsequently, in the experiment, the processed data was directly
subjected to spectral clustering without conducting Monte Carlo
sampling simulation. The clustering results are presented in Table 1.
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Framework diagram of electric vehicle charging load forecasting.
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TABLE 1 Non-Monte Carlo spectral clustering results.

Cluster label 0

Number of clusters: 3

10.3389/fenrg.2024.1294453

Cluster label 1 Cluster label 2

Number of instances in each cluster 54

94 32

SC and DBI Scores vs. Number of Clusters
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—— DBI Score
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g
&4
2 -
o B
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FIGURE 4

Change of SC and DBI indices with the amount of the amount K
of the clusters.

From Table 1, it can be observed that there is a significant disparity
in the number of data points among the three clustering labels. Label
1 has the highest count, with 94 data points, which even approaches
three times the count of label 2. The substantial difference in data
volume among the three labels, coupled with the inadequate data
samples and incomplete coverage, may result in inconsistent model
performance when training models for each label. Furthermore, it
may lead to underfitting or overfitting issues. A smaller training
dataset may fail to capture the distribution and patterns of the data
adequately, thus
Conversely, a larger training dataset may lead to overfitting,

resulting in subpar model performance.
where the model excessively fits the training data and struggles
to generalize well to unseen data. Additionally, a smaller training
dataset may lead to underfitting, where the model fails to sufficiently
learn the data’s features and patterns, thereby resulting in inferior
performance.

Therefore, to address the issue of insufficient and incomplete
data samples, this study performed Monte Carlo sampling
simulation on the processed data to generate a diverse and
comprehensive set of charging load samples.

The obtained samples from the simulation are saved as the
experimental dataset, which consists of the simulated charging load
data from 0:00 on 14 July 2022, to 0:00 on 15 June 2023, with a
sampling frequency of 5 min per data point. This dataset is then used
for spectral clustering operations according to the procedures
described in Chapter 1.2.

During the spectral clustering process, a resolution coefficient
p = 0.5 is used. The initial weight coefficient a is set as 0.05, while f is
set as 0.95. The adjustment step T for a and f is set as 0.01. K, starts
from 2, and K,,,, is set as 20. The trends of the SC index and DBI
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index with the changing value of the clustering number K are shown
in Figure 4. From Figure 4, it can be observed that the SC index and
DBI index reach their optimal values when K = 3. Thus, the
clustering number is determined as 3, and the cluster centroids
are shown in Figure 5.

From Figure 5, it can be observed that the cluster centroids
represent daily load curves with three distinct features, and there are
significant differences between them. This can be mainly attributed
to seasonal factors. In the summer, as shown in cluster 2, the load
curve exhibits high volatility due to the hot weather, intensive
operation of air conditioning systems in electric vehicles,
increased power consumption, and higher charging frequency at
the charging station. The load is particularly concentrated during the
periods of midday to afternoon and evening rush hour.

On the other hand, clusters 1 and 3 exhibit similar daily charging
load trends. Cluster 3 represents the spring and autumn seasons,
where the charging load shows smoother and weaker fluctuations
throughout the day, and the overall power consumption is lower
compared to clusters 1 and 2. Cluster 1 represents the winter season,
where the load curve is influenced by frequent operation of heating
systems in electric vehicles due to the low temperature. However, the
power consumption is significantly lower than that in the summer
when air conditioning systems are heavily used, but higher than the
charging load in the spring and autumn periods.

5.2 Electric vehicle charging load
forecasting

Based on the results of spectral clustering, the method described
in Section 3 is used to predict the output of distributed photovoltaics.
In the power prediction part, the main purpose is to validate the
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Loss plot for cluster label O.

effectiveness of the proposed method for electric vehicle charging
load forecasting based on spectral clustering and deep learning
networks. Therefore, this part of the experiment only compares
the load data after spectral clustering with the proposed prediction
method in this paper.

During the experiment, the clustered data is organized by class,
and the data of each class is concatenated in chronological order to
form a single time series data for each class, which serves as the
experimental data for each class. The training set consists of 80% of
the experimental data, and the remaining 20% is used as the test set.

The experiment was conducted using PyCharm on the Windows
operating system. After establishing the CNN-LSTM network
structure, the training effect of the model is evaluated by
observing the loss values during training. The parameters are
considered to be optimal for each class when the training loss
value converges and becomes stable.

In the comparative experiment, we introduced the
unreprocessed Monte Carlo spectral clustering-CNN-LSTM
prediction model, the unclustered CNN-LSTM prediction model,
the spectral clustering-RNN prediction model, and the spectral
clustering-CNN-LSTM prediction model proposed in this paper
for ablation experiments and comparative experiments. At the same
time, we also introduced the unreprocessed Monte Carlo spectral
clustering-CNN-LSTM prediction model to comprehensively study
the differences in data sample size, clustering and unclustering, and
CNN-LSTM and other neural network predictions.

Due to the different characteristics of each class, the prediction
performance also varies, as shown in Figures 6-8 which depict the
respective loss graphs during training.

Figure 6 shows the loss curve for clustering label 0, Figure 7 for
clustering label 1, and Figure 8 for clustering label 2. Each figure
contains the loss curves for three methods. From Figures 6-8, it can
be observed that the proposed spectral clustering-CNN-LSTM
prediction model has significantly lower losses in each class
compared to the other two contrastive methods. Additionally, the
waveform tends to stabilize and converge more effectively in the
proposed model. The loss of the spectral clustering-RNN prediction
model, as shown in the figures, is higher than that of the proposed
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Loss plot for cluster label 2.

spectral clustering-CNN-LSTM prediction model, indicating the
superior performance of CNN-LSTM. Moreover, the unclustered
loss is notably higher than the other two methods, demonstrating
that the algorithm’s loss is smaller and more likely to converge stably
after clustering, highlighting the importance and necessity of the
clustering algorithm. Since each cluster possesses distinct
characteristics, the losses of the same methods vary between
different label classes, leading to varying prediction performance.

Additionally, we also noted that in Figure 7, for label 1, the loss
curve obtained from the unreprocessed Monte Carlo sampling
simulation is similar to the loss curve described in this paper.
The reason is that the data obtained from the non-sampled
simulation itself has a relatively large amount of clustering label
1 data, and the model’s fitting ability is obviously better than the
non-sampled simulation method for label 0 and label 1 models.
However, for label 2, it can be seen from Section 5.1 that there are
only 32 unlabeled data points for label 2 in the non-sampled Monte

Carlo, which is significantly lower than the average level. This leads
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Predicted and true values at cluster label 1.

to the worst fitting ability of the model, and its loss value is
significantly higher than the loss values of other methods in
Figure 8. Therefore, it can be seen that Monte Carlo can solve
the problem of insufficient data samples and incomplete coverage,
which is of great significance for this experiment.

Subsequently, each class is compared separately using the
predicted values from the four methods against the ground truth,
and the results are presented in Figures 9-11.

Figure 9 shows the predicted values and true values curves for
the four methods when clustering label 0 is applied, Figure 10 shows
the predicted values and true values curves for the four methods
when clustering label 1 is applied, and Figure 11 shows the predicted
values and true values curves for the four methods when clustering
label 2 is applied. From the figures, it can be seen that the proposed
electric vehicle charging load prediction model in this paper closely
approximates the true photovoltaic output results, indicating the
best prediction performance. The spectral clustering-RNN
prediction model follows, followed by the unreprocessed Monte
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Predicted and true values at cluster label 2.

TABLE 2 Cluster label 0 evaluation index.

Cluster label: 0 MAE MSE RMSE
Unclustered CNN-LSTM 0.16155 0.06197 0.24894
Spectral Clustering CNN-LSTM 0.12113 0.03179 0.17831
Spectral Clustering RNN 0.14284 0.04096 0.19979
TABLE 3 Cluster label 1 evaluation index.

Cluster label: 1 MAE MSE RMSE
Unclustered CNN-LSTM 0.15417 0.05131 0.22652
Spectral Clustering CNN-LSTM 0.11550 0.02856 0.16901
Spectral Clustering RNN 0.14688 0.03965 0.19914

TABLE 4 Cluster label 2 evaluation index.

Cluster label: 2

Unclustered CNN-LSTM 0.12962 0.04316 0.20776
Spectral Clustering CNN-LSTM ‘ 0.08988 0.01917 ‘ 0.13840
Spectral Clustering RNN ‘ 0.11764 0.02746 ‘ 0.16573

Carlo sampling simulation-SC-CNN-LSTM method, and the
unclustered CNN-LSTM model has the poorest prediction
performance. Comparing Figures 10, 11, it can be observed that
Monte Carlo simulation makes the data more abundant and
comprehensive, thereby improving the model’s fitting and
generalization abilities. Meanwhile, spectral clustering plays a
significant role in improving the prediction performance, and
CNN-LSTM exhibits relatively good performance compared to
other mainstream neural network algorithms.

The average absolute error, mean squared error, and root mean
squared error for each class are presented in Tables 2-4, respectively.
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TABLE 5 Prediction results without Monte Carlo sampling simulation.

Non-Monte Carlo - spectral clustering -CNN-LSTM

10.3389/fenrg.2024.1294453

Cluster label 0 0.19893 0.04180 0.20445
Cluster label 1 0.15721 0.03314 0.18204
Cluster label 2 0.21468 0.07945 0.28187

TABLE 6 Comparative analysis of baseline model performances on the
mixed dataset.

Methods Evaluation index
MSE
XGBoost 0.173 0.216 0.465
Seq2seq 0.145 0.180 0.425
GRU 0.095 0.119 0.345
LSTM 0.094 0.118 0.344
Bi-LSTM 0.020 0.255 0.255
Proposed 0.192 0.043 0.205

The bold values in represent the best performance value comparing with other values.

Table 2 shows the Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE) for the three
algorithms when clustering label 0 is applied. From Table 1, it can be
observed that the proposed Spectral Clustering CNN-LSTM method
has the smallest errors. Specifically, both MAE and MSE are
approximately 47% lower compared to the Unclustered CNN-
LSTM algorithm and about 23% lower compared to the Spectral
Clustering RNN method. The MAE value for the Spectral Clustering
CNN-LSTM method is also the smallest among the three, indicating
that for label 0, the proposed load prediction method exhibits the
best evaluation metrics and prediction performance, thus
highlighting the effectiveness of this approach.

Table 3 presents the evaluation metrics for the three algorithms
when clustering label 1 is applied. From Table 3, it can be observed that
the proposed Spectral Clustering CNN-LSTM method achieves
approximately a 44% reduction in both Mean Absolute Error (MAE)
and Mean Squared Error (MSE) compared to the Unclustered CNN-
LSTM algorithm, and about a 28% reduction compared to the Spectral
Clustering RNN method. The MAE value for the Spectral Clustering
CNN-LSTM method is also the smallest among the three, at 11.55%.
This indicates that for label 1, the proposed load prediction method
exhibits the best evaluation metrics and prediction performance, further
demonstrating the effectiveness of this approach.

Table 4 displays the evaluation metrics for the three algorithms
when clustering label 2 is applied. The conclusion is consistent with
Tables 2, 3. It is evident that for different labels, the proposed
Spectral Clustering CNN-LSTM model consistently exhibits the best
performance. Both spectral clustering and CNN-LSTM demonstrate
significant importance in electric vehicle charging load prediction.
This reinforces the effectiveness and significance of the proposed
approach across various label classes.

In order to demonstrate the importance of Monte Carlo
simulation on the data volume in this research, the experiments
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also involved the output of the original data without Monte Carlo
sampling simulation. According to the clustering results in Table 1
in Section 5.1, CNN-LSTM prediction was performed, and the
evaluation metrics are shown in Table 5. From Table 5, it can be
observed that without Monte Carlo sampling, the model’s fitting
ability was poor due to the small data volume of cluster label 2,
resulting in underfitting and hence, lower evaluation metrics. Next
is cluster label 0. Cluster label 1 had a more sufficient data volume,
but its coverage was not comprehensive enough, resulting in
slightly lower evaluation metrics compared to the Monte Carlo
sampling simulated data. Overall, the prediction results without
Monte Carlo sampling indicated that directly clustering and
predicting the original data without Monte Carlo would result
in poor model fitting performance. This also validates the
capability of Monte Carlo simulation in addressing issues
related to insufficient data samples and incomplete coverage,
thereby improving the model’s fitting and generalization
abilities. It is an indispensable part of this research.

To validate the superior of the method proposed in this research,
state-of-the-art EV charging load forecasting approaches are
compared. And the comparing result are shown in Table 6. The
baselines are eXtreme Gradient Boosting (XGBoost), Sequence to
Sequence (seq2seq), Gated Recurrent Unit (GRU), Long Short-Term
Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-
LSTM)
performed on a mixed dataset, comprising both realistic and
simulated data. The results are presented in Table 6.

Analysis of the data presented in Table 6 reveals that the method
proposed in this study demonstrates superior performance

respectively. The comparative experiments were

compared to the baseline methods. This enhanced performance
can be attributed to the integration of a hybrid deep learning
approach, combining Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks. This combination
effectively captures the characteristics of the training data and
exhibits robust capabilities in handling time-series analysis.

6 Conclusion

The proposed electric vehicle (EV) charging load prediction
method in this paper addresses the challenges related to the poor
reliability, complexity, variability, and uncertainty of EV charging
load data. The method combines spectral clustering with deep
learning networks to achieve accurate and reliable EV charging
load predictions.

In the feature extraction phase of EV charging load, historical
data of EV loads in the target area are collected and cleaned. Monte
Carlo sampling simulation is then performed to generate a set of
simulated EV charging load data. By considering the distribution
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and statistical characteristics of the existing data, multiple simulated
samples are generated using random sampling. The generated data is
then subjected to spectral clustering analysis. Spectral clustering
divides the simulated data into different clusters, where each cluster
represents samples with similar charging load patterns.

In the EV charging load prediction phase, for each cluster, a
corresponding CNN-LSTM model is constructed. The model is
trained using the clustered and simulated charging load data as
inputs, where the input is a time series of the sampled EV charging
load data after clustering, and the output is the predicted charging
load demand.

Finally, in the experimental part, various evaluation metrics are
computed, and the prediction results from different models are
compared against the real data. The proposed method’s
computational accuracy and effectiveness in predicting EV charging
load data are verified. The results demonstrate that the model provides
reliable and accurate EV charging load predictions, offering valuable data
support for the operation and management of EV charging stations.

Opverall, the integration of spectral clustering and CNN-LSTM in
this method contributes to handling the challenges posed by EV
charging load data, enabling improved predictions and supporting
more efficient management of EV charging infrastructure. In future
work, the method proposed in this research should be validated
across a broad range of geographical regions, utilizing sufficiently
comprehensive datasets (Ma et al., 2020; Liu and Qin, 2023).
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