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The magnetotelluric (MT) method is a widely used geophysical technique
for deep structure exploration. However, rapid industrial development has
resulted in significant anthropogenic interference for practical applications of
this method in recent years. To carry out MT survey in regions with strong
electromagnetic (EM) noise, we develop a strategy, in which part of MT sites are
set for night time period and a newly proposed automatic clustering method
based on MT signal patterns is applied to process measured data from Yingde
area in Guangdong. The MT sites are employed in night time to avoid human
activity and measure the quiet time MT signal to make sure that we can capture
portion ofMT signal. Based on cosine similarity, we can use clustering algorithms
to separate the signals from the noise. The application of this strategy for
geothermal exploration in Yingde area in Guangdong, indicates the validity of
our proposed strategy for real geothermal detection.

KEYWORDS

magnetotelluric, geothermal, electromagnetic noise, automatic clustering method,
data processing

1 Introduction

The magnetotelluric method (MT) (Avdeev, 2005) utilizes natural electromagnetic
(EM) sources to image underground resistivity distribution (Guo et al., 2022; Li et al.,
2023b). It has been widely used for underground structure imaging for different purposes
(Yang et al., 2021a; Egbert et al., 2022; Yu et al., 2022; Wang et al., 2024). However, it can
be easily affected by various EM noise generated by human activities (such as high-
voltage power lines, trains, etc.), which can lead to wrong results for underground
geoelectrical structure. Therefore, how to obtain reliable MT impedance estimation
from the heavily contaminated data has become an important step for MT data
interpretation.

Rapid industrialization in southern and eastern China makes the MT survey in this
area a challenge. Industrial EM noise can be divided into the following four categories:
1) EM fields generated by high-voltage and high-current transmission lines; 2) The strong
magnetic field generated by high-power electrical equipment; 3) short spatial scale EM
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FIGURE 1
Basic process for processing MT signals.

source in space; 4) Industrial current source (Hu et al., 1999;
Sun et al., 2000; Tang et al., 2012; Xu et al., 2012).

When conducting ground EM measurements in areas with
significant industrial noise, it is common to use high-quality
remote reference sites to improve data quality (Han et al., 2022).
Avoiding peak electricity usage periods and extending the duration
of data observations can be used to improve data quality
(Zhang et al., 2022).

The MT impedance estimation is usually performed based on
statistical linear regression methods. The earliest method used is
the least square method to estimate the MT impedance tensor
(Sims et al., 1971). The least square method assumes that the
input magnetic data is noise-free. The failure can down-bias
the impedance estimation. The introduction of remote reference
method can effectively suppress noise in magnetic fields (Epishkin,
1997; Varentsov et al., 2003; Munoz and Ritter, 2013). However,
when the measured data contain outliers, the least square method
with remote reference can also produce results with significant
biases. This can be addressed by the robust method proposed
by (Egbert, 1997), which has become the most widely used
method for MT impedance estimation (Rousseeuw et al., 2003;
Chave and Thomson, 2004)However, when strong EM noise is
present, the studies (Chave, 2014; Chen et al., 2020) have shown
that the robust method can also produce unreliable MT impedance
estimation.

FIGURE 2
MT signal acquisition schematic diagram.

FIGURE 3
K-means algorithm flowchart.

In recent decades, the rapid development of deep learning has
been widely used in denoising MT data (Zuo et al., 2022; Li et al.,
2023c).These include the dictionary learning algorithm (Tang et al.,
2018), impulsive atoms and a niche particle swarm optimization-
orthogonal matching pursuit (NPSO-OMP) algorithm (Li et al.,
2020) and deep-learning-based data nonlinear mapping method
(Li et al., 2023a).

Some work focuses on separating MT signal and noise
based on different features of them. For instance, the clustering
method based on Euclidean distance is developed in the work
(Tang et al., 2017; Yang et al., 2021b)to separate MT signal and
noise. It is worthy of noting that the patterns of MT signal
in frequency domain have certain similarities, and this is also
true for strong EM noise, which can be used to separate the
noise from signal using morphology-based clustering algorithms
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FIGURE 4
Yingde regional geological map.

based on cosine similarity (Guo et al., 2023). The work (Guo et al.,
2023) shows that the method is effective in separating the MT
signal and noise, which will be used in this paper to extract
useful MT signal.

In this study, a joint strategy is used to carry out geothermal
imaging in Yingde region of Guangdong Province, a developed
industrial area in China. In this strategy, MT sites covering the night
time are employed to ensure that at least some segments of the
MT signal are measured and the recently proposed morphology-
based clustering method is used to denoise the MT data. Then the
data are inverted for subsurface resistivity structure with inversion
results consistent with borehole logging and available geological
information, indicating that with proper strategies, MT can
provide useful information on subsurface structure for geothermal
application.

2 Methodology

2.1 Basic procedure for MT signal
processing

The basic steps of estimating MT impedance can be divided
into windowing the time domain data, whitening of time domain
data (first-order differencing), Fourier transformation, data stacking
and impedance estimation (Figure 1). In the frequency domain,
magnetic field components (Hx,Hy) and electrical field components
(Ex, Ey) are considered as data input and data output for a linear
system defined by the impedance (Figure 2). Through regression
methods, the impedance tensor Z (Zxx, Zxy, Zyx, and Zyy). can be
estimated, through which the apparent resistivity and phase can be
obtained (Chen et al., 2020).
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FIGURE 5
The locations of MT sites (the green sites for 1 hour and the pink sites for whole night time).

2.2 Automatic clustering method based on
MT signal patterns for MT data

Cluster analysis is a method used to classify data into
different groups based on their characteristics. It includes self-
organizing map clustering (Macqueen, 1967), density-based
clustering (Huang and Ng, 1999), and K-means clustering (also
known as K-means) (Goodman, 1974). The clustering method
used in this paper is the K-means clustering algorithm, which
uses cosine similarity for clustering. Assuming that there are
two vectors a and b, the cosine similarity is calculated as follows
(Guo et al., 2023)

cos (θ) = a • b
||a|| × ||b||

=
∑n

i=1
(xi × yi)

√∑n
i=1
(xi)

2 ×√∑n
i=1
(yi)

2

(1)

where θ represents the angle between two vectors, xi and yi represent
the corresponding components of vectors a and b. In this paper, a
and b denote the n-dimensional frequency domain data from two
different time series segments. For instance, we carry out Fourier
transformon one segment of a time series with length of 2n to obtain
a consisting of n discrete Fourier transformed data points.

Cosine similarity is a measure of similarity between two vectors
based on the cosine value of the angle. It ranges from −1 to 1,
with the values equal to 1 and −1, indicating that the two vectors

have the same direction, and the opposite direction, respectively.
when the cosine similarity is close to 0, this indicates that the
two vectors are nearly orthogonal. One obvious advantage of the
use of cosine similarity is that it can reduce high-dimensional
data to one dimensional. Compared to the clustering based on
Euclidean distance, we cluster the data based on the cosine similarity,
which emphasizing the dimensional differences and the relative
differences.

If we can group data into k groups with k clustering centers.
TheK-means clustering algorithm can be described by the following
steps (Figure 3):

1. Randomly select k initial cluster centers.
2. Calculate the cosine similarity between all the data and

the k cluster centers. Based on the maximum cosine similarity,
we associate each data with the nearest cluster center to
form a cluster.

3. Update the center point of each cluster, i.e., find the center
point of each cluster.

4. Repeat steps 2 and 3 until the number of data sets of each
cluster center no longer changes.

As indicated in the paper (Guo et al., 2023), both EM signal and
noise show cosine similarity, which can be used to separate the signal
and noise. Since thismethod is effective to single out EM signal from
contaminatedMT data, this method is used to process our noisyMT
data in this paper.
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FIGURE 6
Curve of time series at (A, B) daytime and (C, D) midninght.

3 MT geothermal exploaration in
Yingde area of Guangdong Province

3.1 Geologic setting

The survey area is located along the Yingde segment of the
Wuchuan-Renhua deep fault in the Yubei-Yuzhong sag zone of the
South China Fold Belt (Figure 4). The Wuchuan-Renhua deep fault
zone extends over 800 km in total within Guangdong Province,
with strike ranging from 20–40°and an faultwidth of 15–20 km.
The main fault zone extends north-east from Wuchuan through
Yangchun, Yunfu, Sihui, Guangning, and Yingde, to the south end
of Guangdong Province. The fault has significant influence on the
geothermal distribution in this area cutting through the deep crustal

heat source. Along the fault zone, strong dynamic metamorphism
can be observed, particularly in the granite formation where series
of silicified quartz veins and chloritization structures have formed.
Its scale ranges from 5 to 35 m. The rocks on both sides of the fault
are extensively altered with good fracture permeability.

Deep-seated magmatic rocks are considered as the heat source
for the geothermal system in this area. Regional scale faults cut
through the magmatic rock and the underground water circulation
bring the heat to near surface. The exploration for geothermal
targets relies on the understanding of the distribution of the
regional and local fault system. Another important issue is to
understand the role of different faults, for instance, as water source
channel or heat transport channel.Then geothermal reservoir can be
well imaged.
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FIGURE 7
The (A, B) apparent resistivity and (C, D) phase comparison for (A, C) the robust method and (B, D) clustering of MT observed data at sites L5-M13.

FIGURE 8
The (A, B) apparent resistivity and (C, D) phase comparison for (A, C) the robust method and (B, D) clustering of MT observed data at sites L5-M14.

Our survey area is surrounded by several hot springs in
the nearby region, including Wangbu Wuguitan thermal field
(water temperature of 52.0°C and a flow rate of 392 m3/day),
Wangbu Lake Submerged thermal field (59.0°C and a flow rate of
1388 m3/day), and thermal field Hot Spring (43.4°C and a flow
rate of 3835 m3/day). Further away, there are also Shuibian and
Lianjiangkou thermal fields. All these thermal fields are considered
to be controlled by secondary faults associated with the regional
Wuchuan-Renhua fault with deep cutting, which is believed to be
formed multiple times. It is the main fault responsible for the wide
distribution of thermal fields in Guangdong Province. The survey

area is close to the Hengshitang Xianhu and Wangbu Wuguitan
thermal fields which may have similar geological background.

3.2 MT data acquisition

In 2022, geophysicists from Guangdong Geological Suvery
Bureau designed 5 MT survey lines (L1-L5) with 28 MT sites for
1 hour (indicated by green dots in Figure 5) and 14 sites for
whole night time (indicated by pink dots in Figure 5) in total.
The equipment used includes one V5 System 2000 from Canadian
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FIGURE 9
The (A, B) apparent resistivity and (C, D) phase comparison for (A, C) the robust method and (B, D) clustering of MT observed data at sites L5-M16.

FIGURE 10
The MT inversion results.

company Phoenix, and one GSEM system, jointly developed by
Changsha Jushan Intelligent Technology Co., Ltd. and Central
South University. Line spacing of 100 m is used. Since the target
area is densely populated, it is impossible to use a regular survey
grid. The detailed station distribution is shown in Figure 5. The
remote reference point was set in approximately 100 km to the
northwest.

At the first few days, each station is measured for about 1 hour.
Since EM noises are strong during the daytime, it is hardly to
get useful information for frequencies lower than 10 Hz. They
decided to set up two MT stations during the night time. As
indicated in Figure 6, during the daytime, the survey is affected
strongly by human acivity, for instance, bypass veichle, which
typicallly affects one nearest magnetic channel. However, from
the time period 00:00–5:00, the time series is less affected and
relatively quiet.

3.3 Data processing

In this paper, an automatic clusteringmethod is used to separate
the noise and signal and a robust impedance method is used to
estimate the impedance for themeasured data (Guo et al., 2023). For
comparison, the data without the use of clustering is also calculated.
For sites measured for whole night time, the data from the time
period 00:00–05:00 are used. The MT sites for 1 h are not used for
comparison in this part.

As shown in Figure 7, compared with the result without the
application of clustering, the automatic clustering method produces
smoother apparent resistivity and phase results, which is physically
more reasonable. Without clustering, both apparent resistivity and
phase jump rapidly with large error bar.The application of clustering
improves the results significantly for both apparent resistivity
and phase. The overall trend of apparent resistivity and phase is
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FIGURE 11
2D profile of the L4 survey line and the location of the borehole, the blue dashed line represents the location of the borehole.

consistent, showing an initial increase followed by a decrease in
apparent resistivity.

Similar results also indicated in Figure 8 for another station.
Without clustering, the resistivity curve processed by the robust
method shows no clear trend, and the phase is quite scattered,
both with large error bars. However, after the application of
the automatic clustering algorithm, the results become smoother.
Both the apparent resistivity and phase curves show significant
improvements, exhibiting better continuity and consistent change
pattern. Similar results are also shown in Figure 9 for site L5-M16.
After clustering, the data are improved significantly, showing the
benefit of our proposed method for data with strong EM noise.

3.4 2D inversion

We perform two-dimensional inversion by MODEM2d (Egbert
and Kelbert, 2012; Kelbert et al., 2014) for the measured data. The
inversion is based onTMmode, and 16 frequencies are used, ranging
from 320 Hz to 1 Hz. The error tolerance is set to 5%. The initial
model is a uniform half-space with a resistivity of 100 Ω⋅m.The grid
consists of 100× 100 cells, with horizontal size of 70 m and vertical
size of 50 m. The root mean square (RMS) of data misfit set for all
the survey lines is less than 3.

4 Results interpretation and
discussion

Figure 10 illustrates the resistivity inversion results for lines L1
to L5. Since no night-time stations for L1 and L3, we will not use
the data for deep structure interpretation. This can be clearly seen
from the inversion results for different lines. For L1 and L3, there
is less information in deep region than the rest lines. The deep high

resistivity structure for L3 is probably artifact caused by EM noise.
Subsequently, we will focus on the analysis of L2, L4 and L5.

For L5, since only twonighttime sites are available, the resolution
can be poor. For L2, there are two high resistivity anomalies on
both sides of the line and relatively low resistivity in the middle.The
transition zone at y = 2 km is highly correlated to the Beijiang fault.
The large area of low resistivity is probably caused by the smoothing
effect applied during inversion. We expect a more localized low
resistivity body, probably caused by fault filling and alteration.

For L4, the inversion result is very similar as that of L2. At
y = −3 km, the high resistivity body is verified by a 3,300 m
borehole as shown in Figure 11. The 3,300 m borehole drilled a
fractured hot water layer at around 3300 m with temperature of
70 C on the surface. We infer the fault F1 by lining up the two
high resistivity bodies as in Figure 10. The whole borehole is almost
in the limestone layer. The hot water is mainly caused by the
temperature gradient of earth. The high resistivity anomaly similar
as the one in L2 likely reflects the existence of Beijiang fault F2.
We consider F2 as the channel for water source. F2 provides water
input for geothermal reservoir and F1 acts as geothermal reservoir or
channeling.

Fault F2 cuts into great depth. When groundwater flows
dissolution in the tectonic fractures, the underground rock
undergoes dissolution and forms a more connected fracture-cave
zone, which acts as thermal fluid channels. At the same time,
the deep circulation groundwater is heated by deep heat sources
(geothermal energy) and dissolves a large amount of minerals,
forming geothermal mineral water. Therefore, the mining area has
the potential of finding hot springs.

Geothermal resources typically occur in areas where
discordogenic faults meet. Moreover, discordogenic faults provide
channels connecting deep heat sources, and high-temperature
water with rich of dissolved mineral can be transported back
to shallow area through the faults. The upper cap prevents
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the heat escape of hot water, acting as a storage zone for
geothermal resources.

5 Conclusion

In this study, we develop a combined strategy to carry out
geothermal exploration in industrial region. To avoid noise from
human activity, part of MT sites are employed for night time
period. An automatic clustering method based on cosine similarity
is used to separate the EM signal and noise, and subsequently
impedance estimation is carried out. Then, 2D inversion for the
impedance data is carried out. The inversion result matches well
with the available geologic information and borehole logging
data. According to existing geological data, the area is mainly
characterized by convective geothermal systems, shallow-circulating
water in Beijiang fault is possibly input into the high temperature
fault channel (F1) to form a thermal convection system as indicated
from our inversion results.
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