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With the advancement of low-carbon distribution networks, the heightened
stochasticity introduced by a multitude of renewable energy sources in the
power grid has significantly augmented the regulatory challenges faced by the
power grid. Dispatching distributed resources emerges as an effective solution to
this issue. However, these resources often lack observability and controllability,
hindering their participation in power regulation services. To establish a reliable
interaction between distributed resources and power grids, the deployment of
numerous edge sensing terminals becomes essential, albeit incurring high costs.
In light of this, our paper proposes a dynamic network planning method for edge
sensing terminals based on node differentiation and resource observability
criteria, aiming to facilitate real-time and dependable observation of
distributed resources. Initially, the node weight, a metric to gauge the disparity
among nodes, is computed, considering communication quality deviation,
resource development synergy, and the distribution of distributed resources.
Subsequently, an optimal configurationmethod is introduced, accounting for the
terminal’s reliability under faults. Lastly, a method for dynamic terminal
networking planning is presented, gradually reducing the depth of
unobservable resources. An enhanced genetic algorithm is employed to
address this challenge. This method was validated using an IEEE 33 node
system and a 91 node actual system, demonstrating significant effectiveness
in reducing terminal configuration costs.
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1 Introduction

Due to the continuous depletion of traditional energy sources, nations worldwide are
actively seeking alternative energy sources. The power system views wind energy, solar
energy, and other forms of renewable power generation as the vital means to alleviate strain
on conventional resources. With the establishment of low-carbon power grids and the
proliferation of diverse loads, a substantial number of distributed photovoltaic systems,
electric vehicle charging stations, and flexible controllable loads are interconnected with the
power grid. The transformation from a traditional passive power grid to an active one is
underway, accompanied by an increasing demand for power control and energy efficiency
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management within the distribution network (Fambri et al., 2022;
Kong et al., 2022; Nouri et al., 2022; Kong et al., 2023). In the power
system, robust sensing of distributed resources in the distribution
network can facilitate various services such as dispatching,
frequency modulation, demand response, and standby services,
thereby enhancing the stability and security of the power system
(Ji et al., 2018; Ferreira et al., 2020; Yang et al., 2022). Insufficient
sensing may result in control delays, errors, or inadequate fault
response, jeopardizing the overall stability of the system. The
conventional centralized sensing system encounters challenges
such as an extensive array of devices, diverse services, challenging
communication environments, limited bandwidth, and certain
devices being unmeasurable remotely. Consequently, it falls short
of effectively achieving accurate panoramic sensing of distributed
resources in the distribution network (Bangjun et al., 2022). The
emerging sensing architecture based on edge sensing terminals
provides a promising solution to these challenges. However, the
characteristics of distributed generation, namely, small capacity,
numerous installations, and scattered locations, necessitate the
deployment of a considerable number of new edge sensing
terminals, incurring high costs. To address these issues, there is
an urgent requirement to propose a sensing terminal network
planning technology that can efficiently reduce the configuration
costs of sensing terminals within the new distributed intelligent
sensing system of low-voltage power grids. This technology aims to
support the reliable monitoring of distributed resources and
facilitate the intelligent and digital transformation of medium-
and low-voltage power grids.

Due to the recent emergence of edge sensing terminal products,
there has been relatively limited research on their optimized layout
both domestically and internationally. However, the principles and
model-solving methods for their optimized layout bear similarity to
those of other secondary information system terminals in
distribution networks, such as feeder terminal units (FTUs) and
synchronous phasor measurement units (PMUs). Wang (2019)
calculated the probability of node voltage exceeding the limit
using the probability model of load and distributed power
output, establishing a PMU configuration planning model based
on this weight. Li and Lu (2018) combined a state estimationmethod
with a parallel belief propagation algorithm to establish a PMU
measurement position optimization model, aiming to minimize the
state estimation error of active distribution networks. The improved
immune discrete particle swarm optimization algorithm was
employed to solve the problem. Xu et al. (2015) employed an
improved matrix to design a greedy algorithm with polynomial
time computational efficiency, enhancing the power grid’s self-
healing ability but without due consideration for economic
factors. Babu et al. (2020) considered key components and key
buses, proposing an optimal terminal configuration algorithm that
takes into account the optimal substation and key components.
Chen et al. (2019) constructed a switch optimization configuration
model, aiming to minimize the sum of user outage loss and switch
configuration life cycle cost, constrained by power supply reliability.
Liu et al. (2020) proposed a bi-level optimization method for
terminal configuration that addressed the significant dimensional
differences in multiple indicators within existing configuration
models. The upper optimization model determines the
installation position of the distribution terminal, while the lower

optimization model determines the installation type of the
distribution terminal. Kong et al. (2019) suggested the use of the
generalized Tellegen’s theorem to analyze the economic indicators
and robustness of the bus and branch of the power grid, addressing
the configuration of measuring points, considering both the entire
network and the N-1 situation. From the perspective of real-time
identification and localization of fault transmission lines in
distribution networks, Ding et al. (2021) determined the
minimum number and configuration positions of PMUs with
sufficient accuracy to achieve global observability, thereby
facilitating network self-healing. Zhao et al. (2019) proposed a
linear programming model for distributed state estimation,
simultaneously considering PMUs, phasor data concentrator
(PDC), and optimal prevention of communication connections,
enhancing the state estimation in large-scale active distribution
networks. Kong et al. (2024) focused on the impact of flexible
resources on power grid frequency regulation and introduced an
information physical system planning method considering the
multidimensional uncertainty of virtual power plants. This
method addresses the optimal solution for coordinating flexible
resource pool composition, edge sensing terminal allocation, and
communication. However, these studies often treat all nodes equally
during configuration, overlooking the differences among individual
nodes. When configuring edge terminals, the distribution of
distributed resources directly impacts communication quality.
Each node in the network holds a distinct status and should not
be considered as an equally important factor. Additionally, existing
research primarily focuses on one-time planning, falling short of
achieving dynamic adaptive network planning.

The characteristics of small capacity, a large number, and
scattered installation locations of distributed power supply
necessitate the configuration of a considerable number of new
edge sensing terminals, incurring high costs. Given the
substantial one-time investment, it is often imperative to plan in
stages. Numerous studies have addressed the phased planning of
secondary information system terminals in the distribution network.
Yi et al. (2023) proposed a monitoring criticality evaluation system
based on the frequency-coupled impedance model of wind turbines.
This system considers differences in importance between the
evaluation indexes and probability of occurrence of oscillation
conditions. A multistage optimal configuration model for
subsynchronous phasor measurement units (SPMUs) is
established, taking into account the criticality of node
monitoring. The multistage optimal configuration scheme is
solved using integer linear programming. Zeng et al. (2021)
divided the PMU configuration into two stages. Indicators such
as the correlation degree, tightness, and importance of the
distribution network are utilized to derive the node centrality
index of the distribution network. The first stage configuration is
formed by combining the maximum observability under the
constraint of the number of configurations. The second stage
configuration scheme is formulated by employing multi-objective
optimization, considering the minimum number of configurations
and theminimum average interval width. Xi et al. (2022) determined
critical loads based on the fast voltage stability index to monitor key
buses. A phased decision on PMU positions was made using the
modified analytic hierarchy process, comprehensively considering
various observability indicators to rank the PMU buses. Razavi et al.
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(2018) introduced a mathematical linear model of probabilistic
multistage PMU configuration that considers changes in network
topology caused by long-term expansion during the planning
period. Ali et al. (2018) proposed a mathematical linear
expansion model of probabilistic multistage PMU configuration,
considering the constraints of zero-injection nodes and
communication channels. An auxiliary optimization technique,
not accounting for the prevalence of each planning stage, ensured
obtaining the global optimal solution in a broader and more
comprehensive search space. Razavi et al. (2020) explored a
multi-level PMU placement model under probabilistic and
deterministic frameworks, reflecting a more realistic image of
power system observability through the concept of probabilistic
observability, thereby providing a more complete search space for
optimization problems. Khare et al. (2021) aimed to reduce network
vulnerability of the power system to network attacks by using
forward dynamic programming to allocate the capital cost of
PMUs over time. This approach ensures the critical observability
of the grid in the first stage and increases the observability level in
subsequent stages. While the above methods are rooted in
observability, their different observation objects and criteria
hinder direct application to achieve the observability and
controllability of distributed resources. Additionally, these
methods face challenges in coordinating with the expansion of
distributed resources.

While the aforementioned research lays a theoretical foundation
for observability, observation reliability, and economy discussed in
this study, the terminal configuration of the distribution network
primarily centers on the configuration of PMUs, FTUs, and similar
elements. The overarching objective is to achieve observability
across all nodes of the distribution network, with limited
emphasis on edge sensing terminals responsible for sensing
distributed resources. This lack of focus on edge sensing
terminals can significantly impact the observable model.
Furthermore, in practical engineering applications, a single
terminal is often tasked with communicating with multiple
distributed resources. The numerous challenges posed by these
resources, such as their scattered locations, diverse types,
substantial differences in data volume, extended communication
distances, and random interference in communication links, can
result in deviations in communication quality. These deviations, in
turn, impede the reliability of data acquisition. In the realm of
terminal configuration, it is essential to recognize that each node in
the network holds a unique status and should not be treated as an
equally important factor. Existing research tends to overlook the
variations in communication quality and development potential
among individual nodes within the system. It fails to prioritize the
reliable observation requirements of high-risk nodes and lacks the
capability to effectively cooperate with the expansion of
distributed resources.

Therefore, in addressing the aforementioned challenges, this
study introduces a distributed intelligent sensing system designed to
enhance the observability and controllability of medium- and low-
voltage distributed resources. The system aims to overcome issues
such as scattered installation positions, random output, and
communication congestion within distributed resources,
ultimately supporting the comprehensive observability of these
resources. Given the current state of research on terminal

configuration, distribution system nodes are typically treated as
entirely indistinguishable 0-1 variables. To address this limitation,
this article takes into account the transformative impact of
renewable energy on the distribution system. It considers
differences in distributed resource distribution, communication
quality disparities induced by the terrain, and the potential for
future construction of distributed resources. Recognizing the
distinctions between various nodes, a weight model is established
to more effectively reflect the rationale behind the configuration.
This study proposes a multistage planning method designed to
gradually reduce the depth of unobservability. The objective is to
guide the dynamic distributed networking of sensing terminals,
acknowledging the challenges associated with the inability of a
one-time edge sensing terminal configuration to meet the
continuous expansion of distributed resources and adhere to
funding constraints. The specific contributions of this research
are outlined as follows:

1) The introduction of a distributed intelligent sensing system is
proposed to tackle the challenges related to data transmission
congestion and heightened burden on the main station within
an intelligent sensing system encompassing numerous
distributed power sources. This system leverages edge
sensing terminals for preprocessing and compressing
information, thereby enhancing the observability and
controllability of resources.

2) In response to the complexities arising from diverse and widely
distributed types of distributed resources, which lead to
varying communication quality and distribution among
nodes in the distribution network, and considering the high
cost associated with overlooking resource potential, this
research employs indicators such as node degree, resource
development synergy, and communication severity as node
weights in the optimization process.

3) Addressing the challenge of a high initial investment cost and
the incapacity to adapt to the controllable expansion of
distributed resources during configuration, a terminal
dynamic networking method is proposed. This method
aims to systematically reduce the depth of unobservability
of resources and attain an optimal configuration sorting of
equipment over time.

In Section 2, an intelligent sensing system supporting a multi-
service distributed low-voltage power grid is proposed. In Section 3,
a one-time configuration optimization method based on node
weight is developed. Section 4 develops a multistage optimal
configuration method. Section 5 tests the method, and the
conclusion is given in Section 6.

2 Low-voltage distributed sensing
system of digital power grids

2.1 Distributed smart sensing system

To achieve substantial and controllable support for a vast
number of medium- and low-voltage distributed resources,
especially following the integration of a high proportion of
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distributed generation, enabling efficient interaction with the power
grid for participation in services such as dispatching, frequency
modulation, and demand response, while addressing the heightened
uncertainties introduced by a large volume of distributed generation
and the increasing load on the power grid, an intelligent sensing
system is proposed. This system is designed to support multi-service
distributed low-voltage power grids. Figure 1 illustrates the
architecture of the distributed intelligent sensing system for low-
voltage power grids comprising four layers: the physical resource
layer, terminal sensing layer, communication access layer, and cloud
platform layer. This system facilitates the digital transformation of
low-voltage power grids, providing robust support for various
services such as power equipment condition monitoring and
information energy management.

1) Physical resource layer: the low-voltage power grid, following
extensive integration of distributed power sources,
encompasses diverse distributed source–load–storage
resources categorized into three main groups. The power-
side resources exhibit coordinated and complementary
characteristics, incorporating distributed photovoltaic and
wind turbines. The load-side resources possess flexibility,
distribution, and adjustability, typically involving terminal
loads such as buildings and air conditioners. Energy
storage-side resources include electric vehicles and base
station energy storage, among others.

2) Terminal sensing layer (user sensing): this layer primarily
comprises smart meters, low-voltage data monitoring
terminals, intelligent inverters, and environmental sensors.
These devices are tasked with collecting, uploading, and
receiving superior control commands. They play a crucial
role in gathering a diverse set of information indicators to
fulfill multi-service requirements.

3) End sensing layer (edge computing side): this layer
predominantly consists of wired or wireless edge sensing
terminals. The edge computing method is employed to
achieve regional autonomy functions, such as the plug-and-
play capability of intelligent terminals, local analysis of
collected data, and on-site processing of services. Notably,
the intelligent edge sensing terminal serves as a crucial data
support apparatus for medium- and low-voltage power grids
with a high proportion of distributed power access. It is
capable of analyzing and processing the received raw data,
thereby alleviating the data processing burden on the server or
cloud server. The intelligent edge sensing terminal stands as
the core component of the sensing system.

4) Local communication layer: this layer is primarily responsible
for transmitting the collected data to terminal equipment,
employing wired transmission through RS232/RS485. Both
wired transmission methods meet the majority of
requirements for bandwidth, delay, and reliability.
Consequently, buildings and air conditioning systems can
leverage existing communication lines, in conjunction with
the original wiring of the distribution network, to accomplish
information collection. However, for resources like
photovoltaic systems, wind turbines, electric vehicles, and
others characterized by significant capacity differences,
frequent location changes, and diverse types, additional

wiring is impractical and wasteful. As a result, wireless
communication serves as the primary method. Sensing
terminals and monitoring equipment require two-way
communication, and high-performance low power
consumption (HPLC) + micro-power wireless
communication is a suitable choice. This communication
method adopts a dual-mode communication approach,
enhancing communication coverage and reliability and
facilitating automatic integration into a two-channel
network. Additionally, long-range radio (LORA) wireless
technology presents itself as a viable option for wireless
communication due to its low power consumption, robust
anti-interference capabilities, and minimal noise.

5) Remote communication layer: this layer manages
communication between the terminal equipment and cloud
platform, encompassing technologies such as industrial
Ethernet, 4G/5G communication, and Ethernet passive
optical network (EPON). Public network communication
through 4G/5G operators is relatively convenient, yet the
internet access rate may be lower (Fang et al., 2020). On
the other hand, EPON technology, with its maturity, large
capacity, and high security and reliability, proves suitable for
scenarios with high reliability requirements, providing support
for high bandwidth and low latency (Babaei et al., 2019).

6) Cloud platform layer: this layer encompasses the Internet of
Things (IoT)management platform, technology platform, data
platform, business platform, and application layer. The IoT
management platform facilitates standardized and unified
access, authentication, and protocol adaptation for
intelligent terminal equipment and edge computing devices.
The technology platform serves to provide public technical
services. The data platform is responsible for realizing data
fusion, storage, and analysis within the IoT system. The
business platform is utilized for implementing services such
as topology, graphics, and model services. Finally, the
application layer integrates hierarchical distributed control,
protection, self-healing control, panoramic simulation, and
other functionalities to achieve specific business applications.

Through this distributed resource intelligent sensing system, a
precise panoramic perception of distributed resources can be
achieved, providing ample data support for scheduling
distributed resources. The cloud platform layer can more
accurately regulate distributed resources. For instance, as
distributed resources become more prevalent, congestion issues
may arise in the distribution network. Hence, the inherent
coupling relationship between various energy carriers can be
explored, and renewable energy generation can be optimized
through the complementary consumption of electricity, heat, and
cold. Leveraging the complementarity of various energy sources can
help address distribution network congestion (Hu et al., 2021). The
cloud platform layer is also capable of conducting day-ahead and
real-time scheduling on a multi-energy system composed of
multiple energy entities. By adapting to the distributed execution,
asynchronous communication, and independent computing
characteristics of the system, event-triggered distributed
algorithms (Li et al., 2018) are employed to account for the
different time-scale characteristics of electricity and thermal
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power. This approach achieves the goal of managing smooth real-
time load changes and renewable resource fluctuations while
considering the reduction of communication costs (Zhang et al.,
2021). In specific scenarios, such a system can play a crucial role in
scheduling distributed resources. For instance, in isolated islands
where the inverse distribution of resources and limited energy
transmission are the factors, adaptive energy management can be
accomplished through reinforcement learning based on hybrid
strategies to govern the energy of island clusters (Yang et al.,
2023). Therefore, with a panoramic perception of distributed
resources, the regulation of renewable energy can be more
precise and effective, facilitating the interconnection and
interaction between sources, networks, loads, and storage.

2.2 Distributed resource observability
criterion considering edge sensing terminal
distribution and fault

Ensuring comprehensive data monitoring is essential for the
effective control of diverse distributed resources. When the visibility
of distributed resources is optimized, cloud platforms can efficiently
manage and regulate a substantial volume of distributed resources.

The inherent characteristics of small capacity, large quantity, and
dispersed installation locations of distributed energy resources
necessitate the configuration of numerous new edge sensing
terminals, incurring high costs. Therefore, it becomes imperative
to devise an effective method to mitigate the configuration cost of
edge sensing terminals. This is essential to support the reliable
monitoring of distributed resources, as well as the intelligent and
digitized transformation of medium- and low-voltage grids, along
with other related technologies.

To achieve efficient and reliable monitoring of distributed
resources, optimizing the configuration of edge sensing terminals
based on the proposed sensing architecture in this study is crucial.
This optimization aims to enhance the controllability and visibility
of distributed resources. Consequently, it is imperative to introduce
a distributed resource visibility criterion based on the distribution of
edge sensing terminals. When optimizing the configuration of
measurement devices such as PMUs in the power grid,
invisibility depth is commonly employed to describe the sensing
capability of the distribution network. Hence, this study also
introduces a criterion based on invisibility depth. The invisibility
depth of a distributed resource indicates whether it is monitored by
edge sensing terminals. This depth is influenced by factors such as
the position, quantity, type, and communication conditions of edge

FIGURE 1
Distributed resource intelligent sensing system.
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sensing terminals concerning each distributed resource. This study
quantifies the visibility of distributed resources based on their
invisibility depth, and the corresponding formula is detailed in
Eq. 1. In this study, the observability of distributed resources is
gauged by the unobservable depth, as expressed in Eq. 1. The
significance of this unobservable depth extends beyond describing
the observability of distributed resources; it is also instrumental in
analyzing the observability of distributed resources under
terminal failure.

ηs �
∑M
j�1
ηsj

M
× 100%. (1)

In the formula, ηsj represents the invisibility degree of resource j
(Eq. 2); M represents the total number of distributed resources.

ηsj � 1, Not subject to edge sensing terminalmanagement,∑N
i�1Zi,j � 0

0, subject to edge sensing terminalmanagement,∑N
i�1Zi,j � 1

{ .

(2)

Edge sensing terminals are susceptible to failures during
operation due to their extended operating time, remote
communication distances, and high processing demands. When a
fault occurs, it can lead to the loss of monitoring and measurement
data for connected distributed resources, impeding reliable resource
interaction. Consequently, during the configuration of edge sensing
terminals, it is essential to ensure that certain visibility requirements
are met, even in the event of equipment failure, with the goal of
minimizing losses caused by faults.

Considering the relatively low failure rate of edge sensing
terminals and the presence of maintenance personnel capable of
promptly repairing faults, the likelihood of multiple edge sensing
terminals failing simultaneously is exceedingly low. In this model,
only the scenario of a single edge sensing terminal failure is
considered, corresponding to N − 1 reliability.

Assuming X vector represents the configuration plan of edge
sensing terminals (Eq. 3),

X � x1, x2, x3,/xn{ }. (3)
In the equation, xi represents whether node i is equipped with an
edge sensing terminal, with a value of 1 if installed and 0 if otherwise.

Let the number of edge sensing terminals installed be N (Eq. 4).

sum X( ) � N. (4)

If a single edge sensing terminal fails, there are N possible types
of failures, and the set of failures can be represented as follows
(Eq. 5):

O � X1
′, X2

′, X3
′, ..., X′

N{ }. (5)

In the equation, X′
i represents the case where the i-th edge sensing

terminal fails, and it is reflected in the Xmatrix, where the value of xi

changes from 1 to 0 after a failure, as shown in Eq. 6.

X′
i � x1, x2, x3,/xi � 0,/xN{ }. (6)

When planning the configuration, consider O as the set of faulty
edge sensing terminals.

FIGURE 2
Edge sensing terminal optimization configuration solution flow chart.

Frontiers in Energy Research frontiersin.org06

Ji et al. 10.3389/fenrg.2024.1323800

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1323800


Let Zi,j be the connection status between edge sensing terminals
and distributed resources when no fault occurs, where 1 report that
edge sensing terminal i is connected to the distributed resource j;
otherwise, no connection exists. After a fault occurs, the cloud platform
layer receives the fault information and feeds it back to each terminal.
Each terminal then reallocates and reconnects the distributed resources
tomaximize coverage, with the connection status updated toZi,j

′. At this

point, the invisibility degree of each distributed resource is updated to
ηi,sj′, where i represents the i-th faulty terminal.

However, due to constraints on the number of connections and
distances, it cannot be guaranteed that all distributed resources are
still observable at this time. The distributed resources that have not
established communication with any edge sensing terminal are
denoted as Ui and are expressed by Eq. 7.

FIGURE 3
Sensing terminal dynamic networking solution flow chart.

FIGURE 4
IEEE 33 node and photovoltaic power station topology diagram.
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FIGURE 5
Comprehensive weight index of the IEEE 33 node system node.

TABLE 1 Analysis of the influence of node comprehensive weight index.

Optimal allocation model Number of
terminals

Edge sensing terminal configures node
location

Cost of the
scheme (¥)

Considers the node weight index 13 1, 4, 6, 9, 10, 13, 14, 15, 17, 18, 24, 26, and 30 248409.8

Does not consider the node weight
index

13 1, 3, 6, 8, 10, 12, 14, 15, 17, 18, 25, 27, and 30 248409.8

TABLE 2 Optimal configuration results of IEEE 33 node edge sensing terminals with different algorithms.

Optimal configuration methods Number of terminals Edge sensing terminal configures node location Cost (¥)

Proposed algorithm 13 1, 4, 6, 9, 10, 13, 14, 15, 17, 18, 24, 26, and 30 248409.8

Minimum spanning tree algorithm 13 1, 6, 8, 10, 12, 14, 15, 17, 18, 19, 25, 27, and 30 250385.7

0-1 integer programming algorithm 14 4, 6, 9, 10, 12, 14, 15, 17, 18, 19,23, 25, 26, 31, and 32 258349.3

FIGURE 6
IEEE 33-bus system edge sensing terminal configuration scheme.
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Ui � ∑M
j�1
ηi,sj
′. (7)

The depth of unobservability during a fault can be represented as
follows (Eq. 8):

η′s �
max Ui( )

M
. (8)

3 The optimization method for
configuring distribution network edge
sensing terminals considering
node weights

The second section introduced an intelligent sensing system
designed to support multi-business distributed operations in low-
voltage power grids. Given the high cost associated with configuring
a considerable number of new edge sensing terminals, it becomes
imperative to propose a configuration optimization method capable
of effectively reducing terminal configuration expenses. The

proposed approach begins with the development of a distribution
network node weight calculation method based on monitoring
distributed resources. These weights serve as crucial parameters
in the planning of each node’s terminal configuration. Subsequently,
the section outlined the establishment of configuration constraints
and objective function models for the terminal under both normal
operation and fault conditions. To address this optimization
problem, an improved genetic algorithm is employed for solution
derivation.

3.1 Node weight degree

1) Node degree di,1

In the distribution network, varying installation locations of
distributed resources result in distinct levels of node importance.
The node degree index serves as an indicator of the installation
status of distributed resources around a specific node. For a given
node, a higher node degree value implies a greater number of
distributed resources installed in its vicinity. While conventional
configuration methods are more likely to be applied in such cases,
they concurrently increase the terminal failure rate for the node,
thereby amplifying the risk associated with
uncontrollable resources.

The definition of node degree di,1 is given in Eqs 9, 10.

di,1 � ∑M
j�1
bi,j. (9)

bi,j � 1 Ri,j <Rmax

0 Ri,j >Rmax
{ . (10)

In the above equations, di,1 represents the node degree of node i,
Ri,j represents the distance between node i and resource j, Rmax

represents the maximum distance between the terminal and
distributed resource for communication, and bi,j represents
whether resource j is within the Rmax range of node i.

2) Resource development synergy di,2

FIGURE 7
Unobservable depth change of the system during the
iteration process.

FIGURE 8
Schematic diagram of I loop 408 system. (A) Node and photovoltaic location; (B) Configuration scheme.
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During terminal configuration, it is crucial to thoroughly assess
the potential for the development of distributed resources and
integrate future plans into the configuration process. This study
focuses on distributed resources, using photovoltaic power plants as
an illustrative example. The power generation of photovoltaic power

stations is intricately linked to the intensity of solar radiation, with
higher radiation intensity corresponding to increased power
generation. Consequently, areas with abundant sunlight exhibit a
greater likelihood of future photovoltaic power station construction.
By strategically configuring edge sensing terminals near these areas,
it becomes possible to directly engage with resources following the
construction of new photovoltaic power stations in the future, thus
obviating the requirement for additional edge sensing terminals.

The initial step involves calculating the global total monthly
average solar radiation (G0) (Duffie and Beckman, 2013). The
calculation formula is as follows (Eqs 11, 12):

G0 � 24 × 3600
π

I0f cosφ cos δ cosωs + π

180
ωs sinφ sin δ( ). (11)

ωs � arccos tanφ tan δ( ). (12)

In the above formulae, G0 is the global solar radiation, unit J/m
2;

I0 is the solar constant; f is the correction factor for the solar distance;
δ is the solar declination angle, unit degrees; ωs is the sunset angle,
unit degrees; and φ is the geographic latitude, unit degrees.

The solar energy received by the object on the inclined surface is
given by Gs (Qiao, 2016) (Eqs 13, 14):

Gs � 0.774G0 cos φ − γi( ). (13)
γi �

23.5π

180 cos 2π
365nd

( ). (14)

In the above formulae, γi is the angle between the solar ray and the
equatorial plane; nd is the number of days.

The underlying assumption in this study posits that the solar
panels in a photovoltaic power station consistently maintain a

FIGURE 9
Dynamic networking results of 408 systemof Guangshui TenNorth I loop. (A) Results of Phase 1 Planning; (B)Results of Phase 2 Planning; (C) Results
of Phase 3 Planning; (D) Results of Phase 4 Planning.

TABLE 3 Networking scheme calculated in this study.

Stage e Edge sensing terminal

1 5, 12, 23, 29, 42, 46, 62, 65, 80, and 84

2 8, 20, 31, 36, 38, 44, 51, 73, and 90

3 2, 11, 13, 28, 32, 58, 75, 85, and 87

4 3, 6, 18, 35, 39, 41, 68, 81, and 89

FIGURE 10
Unobservable depth and unobservable depth change under fault.
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perpendicular orientation to the Sun’s rays. Nodes characterized by
higher irradiation intensity signify a greater potential for future
installations of new photovoltaic power stations in their vicinity.
Consequently, if an edge sensing terminal is deployed at such a node,
additional terminals are not required after the construction of new
photovoltaic power stations.

Resource development synergy di,2 is defined in Eq. 15

di,2 � Gs. (15)

3) Badness of communication di,3

The effectiveness of perception can be significantly influenced by
the communication quality between edge sensing terminals and
distributed resources. However, variations in terrain and distances
can introduce differences in communication quality. In practical
engineering scenarios, it is advisable to prioritize nodes with
minimal communication quality loss when configuring terminals. To
predict the wireless transmission quality in urban and surrounding
areas, theOkumuramodel is employed, providing an analytical formula
for the median path loss in different terrains (Eq. 16):

Lp � 69.55 + 26.16LOG10 fc( ) − 13.82LOG10 hb( )
+ 44.9 − 6.55LOG10 hb( )[ ]LOG10d − a hm( ) . (16)

In the formula, hb is the height of the base antenna, hm is the
equivalent height of the terminal, and fc is the carrier frequency
in hertz.

Small- and medium-sized towns (Eq. 17):

a hm( ) � 1.1LOG10 fc( ) − 0.7( )[ ]hm − 1.56LOG10 fc( ) − 0.8[ ].
(17)

Metropolis (Eqs 18, 19):

a hm( ) � 8.29 LOG10 1.54hm( )[ ]2 − 1.1 fc≤ 200Mhz. (18)
a hm( ) � 3.2 LOG10 11.75hm( )[ ]2 − 4.94 fc≥ 400Mhz. (19)

Suburbs + correction factor (Eq. 20):

Lps � Lp urban area − 2 × LOG10 fc/28( )[ ]2 − 5.4. (20)

Add correction factor to the open ground (Eq. 21):

Lpo � Lp urban area − 4.78 × LOG10 fc( )[ ]2 + 18.33LOG10 fc( )
− 40.94. (21)

FIGURE 11
The configuration of the other two networking schemes. (A) Configuration of networking scheme 1; (B) Configuration of networking scheme 2.

FIGURE 12
Unobservable depth comparison. (A) Unobservable depth of three schemes; (B) Unobservable depth under three schemes fault.
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In the distribution network area, different terrains will cause
differences in communication quality. The communication quality of
each node in the maximum working distance communication
(d � Rmax) and ismeasured by the communication badnessdi,3 (Eq. 22):

di,3 � Lp. (22)

Considering the di,1, di,2, and di,3 proposed above, it is necessary
to point out that the synergy of resource development di,2 is a
positive indicator, while the node degree di,1 and communication
badness di,3 are negative indicators.

The three aforementioned indicators are treated as attributes,
transforming the problem into a decision scenario with multiple
attributes (Yu et al., 2013). Utilizing the entropy method, weights are
assigned to the three indicators, assessing their roles and
proportions.

Entropy, as an index measuring the disorder state of the system,
reflects an increase in the disorder degree and the divergence
between the state quantities within the system. Consequently, the
entropy value serves to weigh the significance of a single index in the
comprehensive node index. The entropy value for index j is defined
in Eq. 23

Ej � −∑n
i�1
hi,j ln hi,j, j � 1, 2,/, m( )

hi,j � di,j/∑N
i�1
di,j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (23)

In the formulae, n represents the number of distribution
network nodes, hi,j represents the proportion of node i in the
index j of the system, and m is the number of single indices.

By using entropy to calculate the objective weight of the index,
the differences in the degree of the nodes in the system under the
index can be revealed, which has a more significant impact on the
measurement of the comprehensive index. The weight δj of the
index j can be defined in Eq. 24

δj � 1 − Ej

m − ∑m
j�1
Ej

j � 1, 2,/, m. (24)

After obtaining the weight, the weight of the node ωi can be
obtained by multiplying the weight of the weight and the index
value, which can be used as the basis for optimizing the
configuration. Among them, since the synergy of resource
development is a positive index, it is necessary to first take the
opposite and then solve the weight.

3.2 Objective function

Economic considerations take precedence in the planning problem,
with costs comprising that of both investment and operation, as well as
maintenance expenses, constituting the life cycle cost. The optimized
objective function is formulated as Eq. 25

minC � CI + CC +∑n
i�1
axiωi. (25)

In the formula, CI is the cost of investment, CC is the operation and
maintenance cost, and a is the node weight coefficient.

1) Operation and maintenance cost

The service life of edge sensing terminals is limited. In practical
applications, variations in the number of distributed resources and
the volume of connected data lead to distinct failure rates and
lifetimes of edge sensing terminals (Ge et al., 2021). The operation
and maintenance cost is determined by Eq. 26:

CC � u∑N
i�1
Li. (26)

In the formula, u represents the cost of a single repair terminal;
Li is the annual average number of repairs for the i-th terminal.
The annual average maintenance times Li can be calculated by
Eq. 27.

Li � LK + ceil vpini( ). (27)
In the formula, LK is the fixed number of repairs, v is the coefficient
related to the number of maintenance, ceil is the integral function, ni
is the number of distributed resources connected to the i-th edge
sensing terminal, and pi is the failure rate of the i-th edge sensing
terminal, which is calculated as follows Eq. 28:

pi � ψni
nmax

. (28)

In the formula, nmax is the maximum number of distributed
resources that a single terminal can provide services to and ψ is
the fault coefficient.

2) Investment cost

The investment cost CI encompasses the expenses associated with
purchasing and installing the edge sensing terminal. The life cycle
investment for equipment of the edge sensing terminal in the medium-
and low-voltage power grid is delineated as Eqs 29, 30:

CI � ∑N
i�1
PA r, li( ). (29)

A r, li( ) � r 1 + r( )li
1 + r( )li − 1( ). (30)

In the above formulae, CI is the investment cost, N is the total
number of installation terminals, P is the price of a single terminal,
A(r, li) is the capital recovery coefficient, and r is the interest rate, li
is the life of the i-th edge sensing terminal, which is affected by the
failure rate. The calculation is as Eqs 31, 32:

li � l0 − ωni∑S
j ∈ i

k1/2j + σ( ). (31)

kj � Wj

WT
. (32)

In the above formulae, l0 is the maximum life of the terminal, ω and
σ are the life coefficients, kj is the terminal data capacity coefficient,
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WT is the terminal reference capacity, andWj is the amount of data
of the distributed resource j.

3.3 Constraint condition

The optimal configuration model for the terminals is subject to
various constraints, outlined as follows:

1) Connection number constraint

The terminal’s capacity to connect with distributed resources is
limited, and to prevent underutilization, the terminal must cater to at
least one distributed resource. This constraint is expressed as Eq. 33:

1≤∑M
j�1
Zi,j ≤ nmax. (33)

2) Observability constraint

When all edge sensing terminals are functioning normally, it is
required that all distributed resources be fully observable, that is, the
unobservable depth is 0. Simultaneously, to prevent redundancy,
each distributed resource should only be connected to one terminal.
This constraint is expressed as Eqs 34, 35:

∑N
i�1
Zi,j � 1. (34)

ηs � 0. (35)
In the case of an O fault set, the unobservable depth is required

to be less than ηlim, which is expressed as Eq. 36:

η′s �
max Ui( )

M
< ηlim. (36)

3) Communication distance constraint

In the intelligent sensing system described in the second section, a
bidirectional connection can be established between the edge sensing
terminal and the distributed resources through wireless
communication. In practical applications, the distance between the
edge sensing terminal and the distributed resource should not exceed
the optimal communication range. The constraints are as Eq. 37:

Zi,jRi,j ≤Rmax. (37)

4) Maximum quantity limit

Due to the spatial constraints of the distribution network, the
number of terminals is limited as Eq. 38:

N≤Nk. (38)
In the formula, Nk is the maximum number of edge sensing
terminals installed in a certain area.

5) Maximum quantity limit

In this study, all terminals are configured on nodes, and each
node is configured with a maximum of one terminal (Eq. 39).

xi,b ≤ 1 i � 1, 2, 3, . . . n. (39)

In the formula, xi,b is the number of edge sensing terminals installed
on node i.

3.4 Configuration process and
solution method

Firstly, the index for evaluating the weight of each node is
determined, and the comprehensive weight of the index is calculated
using the entropy method. Subsequently, the comprehensive node
weight of each node is calculated to optimize the terminal
configuration. In this study, an improved adaptive genetic
algorithm is employed as the solution algorithm. The fitness
function for the edge sensing terminal optimization configuration
problem is Eq. 40

f � − CI + CC +∑n
i�1
axiωi

⎛⎝ ⎞⎠. (40)

The key steps in the genetic algorithm include selection,
crossover, and mutation. In the selection process, the roulette
method is employed, favoring the selection of excellent
individuals. Let the crossover probability of global search be
denoted as Pc, and the mutation probability of local search as
Pm. The calculation formulas for crossover probability and
genetic probability are as Eq. 41:

Pc �
Pc1 − Pc1 − Pc2

fmax − fav
· fb − fav( ) fb ≥fav, fmax >fav( )

Pc1 other cases

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pm �

Pm1 − Pm1 − Pm2

fmax − fav
· f − fav( ) f≥fav, fmax >fav( )

Pm3 fmax � fav( )
Pm1 other cases

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
.

(41)

In the formulae, fb represents the larger fitness value of the two
crossover individuals, fav is the average fitness value, fmax is the
maximum fitness value of all individuals, Pc1 and Pc2 are the upper
and lower limits of the crossover probability, respectively, and Pm1,
Pm2, and Pm3 are the upper, lower, and intermediate values of the
mutation probability, respectively.

If the average fitness value is equal to the maximum fitness value,
the upper limit is chosen as the crossover probability, and the
intermediate value is selected as the mutation probability. Such a
choice can maintain a favorable evolutionary trend and simplify the
mathematical calculation process. The solution process for the
optimal configuration of the edge sensing terminal is illustrated
in Figure 2.
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4 Dynamic networking method of
sensing terminal coordinated with
controllable distributed resource
expansion plan

The third section discussed the one-time configuration of
edge sensing terminals considering node weights. However, it
currently lacks the ability to dynamically adapt to changes in the
network based on power grid planning, ensuring comprehensive
information sensing under evolving conditions. As the
integration of renewable energy and load demand rises, the
demand for distributed controllable resources increases,
leading to a continuous process of resource expansion. In
practical engineering applications, more distributed resources
are progressively integrated, forming a multistage resource
planning selection process, as discussed in Liang and Ma
(2021). Due to the characteristics of small capacity, large
quantity, and scattered installation locations, newly
constructed distributed resources must be gradually
incorporated into the observable and controllable range of the
power system. Additionally, financial constraints may limit the
immediate configuration of edge sensing terminals for perceiving
distributed resources, making it more feasible to install new
terminals in multiple stages. Considering these aspects,
configuring all distributed resources at once to achieve
complete observability and controllability is not realistic.
Hence, there is a pressing requirement for research on
dynamic perception networking technology. The term
“dynamic” implies the ability to stagewise configure edge
sensing terminals according to plans for expanding distributed
resources and the limitations of current terminal configuration
funds. This ensures the maximum unobservable depth for each
stage, obtaining the optimal ranking of configuration terminals
for each stage and gradually expanding the perception of
controllable distributed resources.

4.1 Dynamic networkingmodel construction

The power company provides an advance comprehensive
plan for the expansion of distributed resources in a specific area
and derives the edge sensing terminal configuration scheme
based on the planned solution for distributed resources.
However, owing to the substantial volume of one-time
construction, the expansion of distributed resources and the
configuration of edge sensing terminals must be executed in
batches according to the plan. Let the state variable indicate
whether a specific location in the distributed resource scheme is
extended to include sensing (Eq. 42).

yj � 1, Distributed resource j has been include in the expansion plan
0, Distributed resource j is not included in the expansion plan

{ yj ∈ Y.

(42)

In the formula, Y represents the construction scheme of all
distributed resources.

The state variable Vj is used to indicate whether the distributed
resource j is observable (Eq. 43).

Vj � 1, The unobservable depth of distributed resource j is 0
0, else

{ .

(43)
In the optimal configuration of the phased edge sensing

terminal, it is necessary to minimize the unobservable depth of
the distributed resource under the condition of fixed cost. In the case
that the distributed resource j has to be included in the expansion,
that is, yj = 1, if Vj = 1, it indicates that the distributed resource can
be observed. Then, yj − Vj � 0. If yj − Vj � 1, it indicates that the
distributed resources at j are not monitored.

Assuming that the distributed resource planning is divided into
q stages, the objective function of the dynamic networking model of
the sensing terminal is Eq. 44

min∑q
e�1

Ye − Qe( )
Se � Se−1 +Xe

Xe � x1, x2, x3 . . . . . .xN[ ]
Qe � V1, V2, V3 . . . . . .Vm[ ]
Vj � max Ze i,j( )( )
Ye � y1, y2, y3 . . . . . .ym[ ]
Ze � F Se, Ye( )
e � 1, 2, 3 . . . q

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (44)

In the formula, Se is the terminal configuration before the current
stage, where the element is defined as the same formula Eq. 44), S0 = 0;
Xe is the decision variable phasor of the single-stage configuration edge
terminal, which is defined in the same formEq. 44);Qe is the observable
situation of the distributed resources in the e-th stage, which is
composed of Vj. It is determined by the distributed resources and
terminal connection Ze in the e-th stage. If the maximum value of the
j-th column of Ze is 1, then Vj is 1, which means that the resource j is
observable. F is the function of calculating the connection condition,
and the connection condition Ze is calculated from the current
configuration and photovoltaic construction.

The decision variable xi is still used to indicate whether node i
installs the edge terminal (Eq. 45).

xi � 1, Node i installs edge sensing terminal
0, Node i does not install edge sensing terminal.

{ xi ∈ X.

(45)
In the formula, X represents the edge sensing terminal configuration
scheme when the power company’s distributed resource
construction scheme is Y.

The constraints of the model are as follows:

1) Cost constraints

The cost of each stage must not surpass the maximum value
(Eqs 46, 47).

CI,e � P × ne. (46)
CI,e <Cmax ,e. (47)

In the formulae,CI,e is the direct investment cost in the e-th stage, which
is composed of the number of terminals ne in the e-th stage multiplied
by price P of a single terminal; Cmax ,e is the maximum cost that can be
invested in stage e in the optimal allocation. It should be pointed out
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that the cost here is different from the cost of the one-time edge sensing
terminal configuration. The former is the investment cost of a single
investment, and the latter is the annual expenditure cost during the
lifetime of the edge sensing terminal, that is, the life cycle cost.

2) State variable constraints

Vj is used to indicate whether the planning point j is connected
to the terminal, but the existence of Vj has to be based on yj = 1.
When yj = 1, it is meaningful to discuss whether j is observable. The
constraint can be expressed as Eq. 48

Vj ≤yj. (48)

3) Connection number constraint

All edge sensing terminals must provide services for at least one
distributed resource (Eq. 49).

1≤∑ms

j�1
Zi,j ≤ nmax. (49)

In the formula, nmax is the maximum number of distributed
resources that a single edge sensing terminal can provide services to.

4) The number of monitored constraints

Each distributed resource should be connected by only one
edge sensing terminal, and the constraints are expressed as Eqs
50, 51:

∑ns
i�1
Zi,j � 1. (50)

ns � ∑s
e�1
ne. (51)

In the formulae, ns is all edge sensing terminals included in the
distribution system up to the current stage; s is the current stage.

5) Communication distance constraint

The distance between the edge sensing terminal and distributed
resources should not exceed the ideal range of communication
(Eq. 52).

Zi,jRi,j ≤Rmax. (52)

6) Maximum quantity limit

Due to the spatial limitations of the distribution network,
there are certain constraints on the number of edge sensing
terminals (Eq. 53).

nq ≤ nk. (53)

In the formula, nk is the maximum number of edge sensing
terminals installed at each node of the distribution network and
nq is the total number of terminals in the final planning.

4.2 Configuration process and
solution method

In the dynamic networking of edge sensing terminals, the adaptive
genetic algorithm is still employed. Initially, the comprehensive weight
of each index is calculated based on the final distributed resource
expansion plan. Subsequently, the weight index of each node is
determined considering the overall weight of the nodes. The final
configuration scheme X for edge sensing terminals is then obtained.
Following this, iterative solutions using the genetic algorithm are
performed according to the distributed resource expansion plan for
each stage. The goal is to obtain the edge sensing terminal configuration
scheme that minimizes the unobservable depth of distributed resources
and establishes connections with them.

When applying the genetic algorithm to address the problem,
the fitness function for the edge sensing terminal dynamic
networking configuration problem is expressed as Eq. 54

f � − ∑q
e�1

Ye − Qe( )⎛⎝ ⎞⎠. (54)

The dynamic network configuration of edge sensing terminals is
solved using the adaptive genetic algorithm, as illustrated in Figure 3.

5 Case study

5.1 IEEE 33 node system

The optimal configurationmethod for edge sensing terminals, as
proposed, is implemented and validated on the IEEE 33-bus system
and the Hubei Guangshui Ten North I loop 408 system using the
model and solution approach outlined in this article, with
verification performed through the MATLAB software.

The mathematical model parameters are detailed in
Supplementary Data SA1, and certain parameters within it are
chosen based on Ge et al. (2021). When determining resource
development synergy, parameters are selected according to
KLEIN (1976). For this study, the typical day parameters from
March 16 are used, with the latitude setting for node 1 at 40° north
latitude. Due to the small size of the IEEE-33 node system, the nodes
are categorized as follows to reflect differences in the weight index of
each node: nodes 1–5 and 19–22 are quasi-smooth terrain of large
cities, nodes 6–10 and 29–33 are open terrain, nodes 11–18 are
suburban terrain, nodes 26–28 are open terrain with the correction
factor halved, nodes 23–25 are suburban terrain with the correction
factor doubled, and a 0.2 times a(hm) loss of large cities is
introduced at nodes 5, 10, 15, 20, 25, and 30.

The topology of the IEEE 33-bus system and the distribution of
photovoltaic power stations are depicted in Figure 4. In the figure,
the red points signify the locations of the photovoltaic power
stations. While each photovoltaic power station is physically
linked to its corresponding node, this connection is not
illustrated for simplicity. Supplementary Data SA2 and SA3
provide the positional coordinates of each node and certain
photovoltaic power stations, which are measured in kilometers.

The three indices—node degree, resource development synergy,
and communication quality—proposed above are collectively
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employed to assess the weight index of nodes. Through the entropy
method, the objective weights (d1–d3) are determined, yielding
comprehensive weight results for the calculated indices: δ1 =
0.4096, δ2 = 0.2933, and δ3 = 0.2971. The weights for each node
are presented in Figure 5.

The optimal terminal configuration scheme for the system is
computed using the edge sensing terminal optimization
configuration method proposed in this study. To assess the
impact of node comprehensive weights in the optimization
process, a simulation is conducted without considering the node
weights. The optimal terminal configuration schemes calculated
before and after these two simulations are presented in Table 1.
Upon comparison, it is observed that incorporating node
comprehensive weight indices does not lead to an increase in the
required equipment count, and the cost of the configuration scheme
remains the same, albeit with different node weights in the two
schemes. Due to the different weights of nodes, the proposed
solution in this article is more adaptable and universal and can
ensure high reliability, achieving observability and controllability of
distributed resources.

To evaluate the effectiveness of the algorithm, the minimum
spanning tree algorithm and the 0-1 integer programming method
are employed to optimize the edge sensing terminal. The respective
configuration schemes are presented in Table 2 for comparison.

The results indicate that the algorithm proposed in this study
yields the same number of terminals as the minimum spanning tree
algorithm, which is fewer than the number obtained by the 0-
1 integer programming algorithm. Moreover, the proposed
algorithm minimizes the total cost. Considering the
comprehensive weight of nodes, the configuration scheme
becomes more feasible and adaptable for the future.

The terminal configuration scheme, taking into account the
comprehensive weight of nodes, is illustrated in Figure 6.

In this scheme, a single edge sensing terminal is connected to a
maximum of four photovoltaic power stations, and each edge
sensing terminal is linked to at least one photovoltaic power
station. The distance between the terminal and the photovoltaic
power station is within the set Rmax (4 km), ensuring that the scheme
adheres to the constraints and achieves complete observability of the
distributed resources.

Throughout the solution process, the unobservable depth
progressively diminishes with each iteration, ultimately leading to
the comprehensive observability of distributed resources. The
unobservable depth during faults also gradually decreases and
eventually drops below the predetermined threshold by 5%. The
variation of unobservable depth and unobservable depth during
faults is shown in Figure 7.

It can be demonstrated that the method proposed in this study
accurately accomplishes terminal configuration within the specified
target, minimizing both the life cycle cost and node
comprehensive weight.

5.2 Hubei Guangshui Ten North I loop
408 system

The terminal dynamic networking model proposed in this study
is applied to the actual distribution network system, specifically the

Hubei Guangshui Ten North I loop 408 system. The distribution
system comprises a total of 91 nodes and 120 photovoltaic power
stations. The location of each node and photovoltaic power station
are depicted in Figure 8A, with detailed coordinates provided in
Supplementary Data SA4 and SA5, which are measured in
kilometers. The selection of parameters, aside from the
comprehensive weight of nodes, follows the assignments provided
in Supplementary Data SA1. After optimization using the method
proposed in this study, the final configuration scheme and its
connections with resources are illustrated in Figure 8B.

In the edge sensing terminal configuration scheme presented in
Figure 9, a total of 37 edge sensing terminals are deployed across
91 nodes. In the simulation of the dynamic networking model, a
four-stage planning is set, denoted as q = 4. Each stage involves the
expansion of 30 photovoltaic power plants, with a maximum
investment of ¥600,000 in the first stage and ¥540,000 in
subsequent stages.

To validate the effectiveness of the example, MATLAB is utilized
to randomly generate the locations of photovoltaic power stations
expanded over the four planning stages. The construction planning
of photovoltaic power stations for each stage is detailed in
Supplementary Data SA6.

In the first stage of planning, edge sensing terminals are
configured at nodes 5, 12, 23, 29, 42, 46, 62, 65, 80, and 84. The
unobservable depth is 23.3%, and the unobservable depth under
fault is 36.67%. At this stage, the number of terminals is small, and
the extended photovoltaic power stations are more dispersed,
resulting in a higher unobservable depth after a fault. For the
second stage, terminals are configured at nodes 8, 20, 31, 36, 38,
44, 51, 73, and 90. The unobservable depth is 6.67%, and the
unobservable depth under fault is 15%. In the third stage of
planning, terminals are configured at nodes 2, 11, 13, 28, 32, 58,
75, 85, and 87. The unobservable depth is 2.22%, and the
unobservable depth under fault is 6.67%. Finally, in the fourth
stage, edge sensing terminals are configured at nodes 3, 6, 18, 35,
39, 41, 68, 81, and 89. The unobservable depth is 0, and the
unobservable depth under fault is 3.33%.

The comprehensive configuration scheme is presented
in Table 3.

The unobservable depth and unobservable depth under fault
steadily decrease through the iterative process of the four-stage
planning, ultimately achieving complete observability of low-voltage
distributed resources. The evolving trend of unobservable depth and
unobservable depth under fault is illustrated in Figure 10.

To validate the effectiveness of this method, it is essential to
compare it with two other network planning strategies. The first
strategy involves arranging nodes sequentially from small to large,
denoted as “networking scheme 1.” The second strategy entails a
randomly generated network configuration, labeled as “networking
scheme 2.” The configurations of these two schemes are illustrated
in Figure 11.

The observability of networking scheme 1 and networking
scheme 2 at each stage is computed, and the changes in the
unobservable depth for all three schemes throughout the
networking process are compared. The variations are depicted in
Figure 12. By comparing the results, it becomes evident that the
model and algorithm introduced in this study exhibit significant
advantages in attaining the objective of minimizing the
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unobservable depth at each stage. The proposed approach effectively
achieves dynamic networking of edge sensing terminals in
alignment with the photovoltaic construction process.

6 Conclusion

In this study, a dynamic networking method for monitoring
terminals, which takes into account both node weight and
unobservable depth while considering node differences, has been
proposed to facilitate real-time and dependable monitoring of
distributed systems. The key findings of the research are
summarized as follows:

1) The proposed one-time configuration planning algorithm
successfully achieves the minimum life cycle cost of the
terminal while ensuring complete observability of
distributed resources and accounting for node differences.

2) The proposed dynamic networking algorithm effectively
achieves optimal configuration in phases, progressively
reducing the unobservable depth of the system.

3) The comprehensive weight index, considering the differences
in nodes, has a negligible impact on the number of monitoring
terminals required and does not increase the installation cost.

Nevertheless, the model still has certain limitations that warrant
improvement. Future research could consider a broader range of fault
types to enhance the evaluation of unobservable depths under faults,
moving beyond the current focus on single edge sensing terminal faults.
Additionally, the inclusion of various renewable resources, such as the
monitoring of wind turbines, could enhance the model’s
comprehensiveness. Furthermore, considering the diverse data
transmission requirements for distributed resource power plants with
varying capacities, there is room for optimization to achieve a panoramic
perception of distributed resources at the minimum lifecycle cost.
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