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With the rapid development of urbanization in China, urban energy consumption
increases rapidly, leading to energy shortages and environmental pollution, of
which building operational energy consumption carbon emissions (BECCE)
account for a large proportion. It has a vital impact on global warming and
urban green and sustainable development. Chengdu city in Sichuan Province is
taken as the research area in this paper. First, basic information and power data on
four types of single buildings, including large-sized buildings, small- and
medium-sized buildings, government agencies, and residential buildings, are
collected. Second, the characteristics of the four types of buildings are
extracted, and the calculation model of BECCE (“electricity-carbon” model)
based on particle swarm optimization algorithm–support vector machine
(PSO–SVM) is constructed, and the model is trained and verified using the
method of five-fold cross-validation. Then, according to the mean absolute
error (MAE), root mean square error (RMSE), and R2 evaluation indicators, the
constructed “electricity-carbon” model is compared and evaluated. Finally, the
generalization ability of the “electricity-carbon” model is verified. The research
results show that (1) the “electricity-carbon”model constructed in this paper has a
high accuracy rate, and the fitting ability of the PSO–SVM model is significantly
better than that of the support vector regression (SVR) model; (2) in the testing
stage, the fitting situation of large buildings is the best, and MAE, RMSE, and R2 are
858.7, 1108.6, and 0.91, respectively; and (3) the spatial distribution map of
regional BECCE can be quickly obtained using the “electricity-carbon” model
constructed in this paper. The “electricity-carbon” model constructed in this
paper can provide a scientific reference for building emission reduction.
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1 Introduction

With the deepening of urbanization, carbon emissions in the
construction sector also increase (Ahmed et al., 2020; Zhao et al.,
2022). According to the United Nations Environmental Program
and IEA, (2017) and the United Nations Intergovernmental Panel
on Climate Change (IPCC), 40% of the total energy use is consumed
by the building sector, which accounts for a third of energy-related
carbon emissions (IPCC, 2014, europa. eu). In 2018, 9.7 Gt CO2 was
emitted from the energy use of buildings in their entire life cycle,
accounting for 39% of the total global energy-related CO2 emissions.
In addition, the current rapid economic development will further
lead to a sharp consumption of energy and a large amount of CO2

emissions in the future. In this context, greenhouse gas emission
reduction targets have been proposed by many countries. China’s
goal is to achieve a carbon peak in 2030, achieve carbon neutrality in
2060, and finally achieve net-zero CO2 emissions (Wei, 2015;
Michael et al., 2016; Mallapaty, 2020).

In the whole life cycle of buildings, building operational energy
consumption carbon emissions (BECCE) account for 70% of the
carbon emissions, and because the energy consumption of buildings
is still increasing, this value is expected to continue to rise (Energy
Information Administration, 2020). In order to adjust building
energy conservation and emission reduction policies in a timely
manner, the rapid and accurate calculation of BECCE has gradually
attracted people’s attention (Sztubecka et al., 2020). Nowadays, the
methods for estimating BECCE can be divided into two categories:
“bottom-up” and “top-down” (Zhao et al., 2021), as it is difficult to
extract relevant structural characteristics and detailed energy
consumption data from a single building. Therefore, most of the
previous studies used the “top-down” method to estimate BECCE
(Liu et al., 2020; Zhao et al., 2021), but the data collected by this
method have a time lag, and BECCE can only be estimated with a
certain error, making it difficult to quickly and accurately measure
BECCE. So far, there is no universally accepted real-time calculation
method for BECCE, which has gradually become an area of
exploration for scholars today.

Electricity is the main energy consumed in the building
operation phase (Roeck et al., 2020) because its consumption
data are real-time data with a short release time lag and small
statistical errors, and it has been gradually applied to research related
to carbon emission calculations in Han (2022). In recent years, with
the rapid development of artificial intelligence in the field of building
carbon emissions, for example, Moraliyage et al. (2022) constructed
a repeatable and transparent method for building energy-saving
estimation, which uses artificial intelligence (AI) algorithms to
improve the performance of the measurement and validation
(M&V) protocol. It has been demonstrated to provide a robust
and explainable framework for the M&V protocol aimed at
achieving net-zero carbon emissions. In the same year, an
explainable artificial intelligence model was proposed, which
successfully predicted energy use and greenhouse gas emissions
of residential buildings and identified the most influential variables
as urban form, building geometry, total building area, and natural
gas (Zhang et al., 2023). As a highly robust machine learning
method, support vector machine (SVM) can solve nonlinear
problems well (Seyedzadeh et al., 2020) and is widely used in
building energy performance and greenhouse gas emissions. In

the SVM model, the selection of the penalty and kernel functions
has a great influence on its generalization ability and prediction
accuracy. Considering that the particle swarm optimization (PSO)
algorithm has the advantages of simple structure and fast
convergence, it can be used to optimize the parameters in the
SVM (Eseye et al., 2017; Tang et al., 2018; Cuong-Le et al.,
2021). To solve the classification prediction problem, Liang et al.
(2023) used PSO–SVM to predict low-index media outbursts to
improve coal mining efficiency, with a high prediction accuracy of
about 90%. Zhang et al. (2023) accurately identified faults in wind
turbine power converters using PSO–SVM, and the accuracy of test
samples was as high as 98%. Huang et al. (2023) used the PSO–SVM
model to solve the fault prediction problem of relay protection
equipment, and the results showed that the prediction accuracy of
the model for three different devices was at least 91%. At the same
time, it was also extensively used in regression problems. Sandeep
et al. (2023) compared the superiority of PSO–SVM, SVM,
backpropagation neural network (BPNN), and other models in
monthly flood flow prediction. Liu et al. (2023) studied the
mechanical behavior of carbonate gravel using a mixed
PSO–SVM model instead of a large-scale test method, and the
results showed the relatively high accuracy of the model.

Based on the above literature, this paper mainly contributes to
the following two aspects: (1) obtaining real-time energy
consumption data for building operations poses challenges due to
inherent delays. Similarly, measuring the BECCE of individual
buildings in real time using the carbon emission factor method is
complex. Taking into account the unique advantages of easy access
and real-time power big data, the carbon emission characteristics of
four types of buildings combined with the physical characteristics of
buildings are hereby described. (2) The non-linear mapping
relationship between power big data, building physical
characteristics, and BECCE of a single building was established
by the machine learning method, and the “electron-carbon” model
was constructed to achieve rapid and accurate BECCE calculation.
In this paper, a total of 2,526 individual buildings in Chengdu,
including large public buildings, small- and medium-sized public
buildings, government offices, and residential buildings, were taken
as research objects, and a BECCE rapid measurement method
(“electron-carbon “model) based on PSO–SVM was constructed.
The structure of this paper is as follows: Section 1 outlines the
advantages of power big data and machine learning methods for
BECCE measurement; Section 2 mainly collects the power data and
building form data (building floor and building area) of
2,526 buildings in Chengdu, Sichuan Province, and discusses the
characteristics of different types of buildings; Section 3 constructs
the “electricity-carbon”model based on PSO–SVM; Section 4 draws
the research conclusion. Then, the discussion and conclusion are
presented in Section 5 and Section 6, respectively.

2 Research framework construction

Based on the perspective of building emission reduction, this
paper proposes an accurate and rapid BECCE measurement method
for real-time detection of carbon emissions during building
operation. First, the traditional method (carbon emission factor
method) is adopted to calculate the building carbon emissions
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according to the carbon emission coefficient (Eggleston et al., 2006).
Second, a building carbon emission measurement index system is
constructed from two aspects of power data and building
characteristics, and an “electricity-carbon model” is established
by combining machine learning methods. Finally, BECCE is
calculated according to the “electricity-carbon” model, and the
model results are analyzed. The research framework is shown in
Figure 1. The specific steps are as follows:

(1) The traditionalmethod is used tomeasure carbon emissions. The
consumption of five energy sources (coal, natural gas, liquefied
petroleum gas, artificial gas, and electricity) in Chengdu’s large
buildings, small- and medium-sized public buildings,
government agencies, and residential buildings is collected,
and based on the carbon emission coefficient of each energy
source, the BECCE of each building are calculated.

(2) An “electricity-carbon” model is constructed based on
PSO–SVM. The three influencing factors of building

electricity consumption, building area, and building floor
are extracted as indicators; these indicators are combined
with the PSO–SVM algorithm to establish the “electricity-
carbon” model; a training set and a verification set are
constructed; and the model is evaluated according to the
evaluation indicators.

(3) The generalization ability of the “electricity-carbon” model is
verified. Based on the building sample data in the test set, the
“electricity-carbon” model is used to measure carbon
emissions and compared with the actual data to verify the
effectiveness of the “electricity-carbon” model.

2.1 Study area

Chengdu (102°54’~104°53′E, 30°05’~31°26′N) is the capital of
Sichuan Province and the political and economic core of southwest
China (Figure 2). With a total area of 12121 × 104 square kilometers

FIGURE 1
Research framework.
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and a resident population of 21.192 million, its GDP exceeded
273.8 billion U.S. dollars in 2020. Since the 1980s, Chengdu’s
urbanization has accelerated. The urban population has increased
from 8,225,400 in 1980 to 20.947 million in 2020, while the built-up
area has expanded from 60 square kilometers to 977.12 square
kilometers in 2021. Building energy consumption is mainly
electricity, natural gas, and liquefied petroleum gas. Chengdu’s
climate is warm and humid. Since the 1980s, the climate in
Chengdu has shown a trend of increasing temperature and
drying (Oleson et al., 2013). This indicates that the greenhouse
effect in Chengdu has been more obvious. The increase in CO2

emissions in Chengdu is expected to cause more serious climate
problems due to the city’s dense population and the increase in the
number of buildings. Therefore, it is necessary to make real-time
carbon emissions in the building operation stage transparent to
reasonably implement the building emission reduction policy. It is of
great significance to study the BECCE of the rapid measurement
method of regional buildings.

Considering the actual distribution of the four types of
buildings in Chengdu, a total of 2,526 building samples were
hereby collected from 23 residential areas, including 199 large
buildings, 969 small- and medium-sized public buildings,

374 government organs, and 984 residential buildings. Each
sample included the building name, address, administrative
division, consumption of five types of energy in 2021, floor
area, and number of floors. The detailed statistics are shown
in Table 1.

2.2 Calculating district-level building
operational energy consumption carbon
emissions from different sources

First, BECCE of four types of large buildings, small- and
medium-sized buildings, state organ buildings, and residential
buildings in each district of Chengdu are calculated according to
the IPCCNational Greenhouse Gas Inventory guidelines. Given that
there is no central heating in Sichuan and the total carbon sink of
building green space is small, the calculation formula for the carbon
emissions of a specific building in Sichuan within a period of
operation (not considering the full life cycle of the operation
stage) is as follows:

C � C1 + C2, (1)

FIGURE 2
Geographical distribution of Chengdu.
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TABLE 1 Statistical description of building features.

Building type Building information Descriptive statistics

Large public building Number of building floors/floors Maximum: 44.0

Minimum: 2.0

Mean: 14.7

Standard: 9.6

Floor area/m2 Maximum: 549455.0

Minimum: 5211.0

Mean: 85436.2

Standard: 84793.63

Electricity consumption/kwh Maximum: 39004340.0

Minimum: 100000.0

Mean: 6009218.0

Standard: 6958499

Small- and medium-sized public buildings Number of building floors/floors Maximum: 31.0

Minimum: 1.0

Mean: 4.9

Standard: 4.2

Floor area/m2 Maximum: 239036.0

Minimum: 29.0

Mean: 9682.7

Standard: 15982.6

Electricity consumption/kwh Maximum: 22806935.0

Minimum: 0

Mean: 389082.2

Standard: 1135010.0

Residential building Number of building floors/floors Maximum: 45.0

Minimum: 1.0

Mean: 16.1

Standard: 11.4

Floor area/m2 Maximum: 104907

Minimum: 101

Mean: 22638.5

Standard: 54947.9

Electricity consumption/kwh Maximum: 14101350.0

Minimum: 456.0

Mean: 347202.0

Standard: 1162293.0

Government agency Number of building floors/floors Maximum: 27.0

Minimum: 1.0

(Continued on following page)

Frontiers in Energy Research frontiersin.org05

Wei et al. 10.3389/fenrg.2024.1329942

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1329942


where C is the operating carbon emissions of buildings in
Chengdu within a period of time; C1 is the direct carbon
emissions during the operation of buildings in Chengdu in the
current year, which are mainly caused by the direct consumption of
fossil energy during the operation of buildings; and C2 is the indirect
carbon emissions during the operation of buildings in Chengdu in
the current year, which are mainly caused by the use of electricity
during the operation of buildings.

In China, BECCE are mainly produced from primary energy,
heating power, and electric power sources (Department of Energy
Statistics, 2016). In this paper, five energy sources, including coal,
natural gas, liquefied petroleum gas, artificial gas, and electricity, are
selected to calculate BECCE in buildings based on the use of the
energy structure system in Chengdu. The composition of BECCE
can be expressed as follows:

CTOTAL,i � CCOAL,i + CNG,i + CLPG,i + CAG,i + CEP,i, (2)

where CTOTAL,i represents the BECCE of the ith type building in
Chengdu. CCOAL,i, CNG,i, CLPG,i, CAG,i, and CEP,i represent,
respectively, carbon dioxide emissions from coal, natural gas,

liquefied petroleum gas, artificial gas, and electricity generated by
ith type buildings in Chengdu.

The carbon emissions generated by energy use in buildings are
calculated as follows:

Cj,i � Nj,iFj,i, (3)

where Cj,i represents the carbon emissions generated by the use
of the jth-type energy in the building operation stage of the ith-type
building. Nj is the consumption of energy in jth type, and Fj is the
carbon emission coefficient of jth-type energy. The specific carbon
emission coefficient of each energy source is shown in Table 2:

The carbon emission coefficient of electric energy is related to the
fossil energy used in local mainstream power generation. The carbon
emission coefficient of electric energy obtained by different energy types
in different regions is also different (Table 3). For example, the carbon
emissions of coal-fired power plants using fuel are much higher than
those of hydroelectric power plants. According to different energy
structures in different regions, the power carbon emission coefficient
adopts the average carbon emission factor of the regional power grid
published by the state in 2012 (which has not been updated since 2012),
as shown in Table 2 (Bai, 2019). The research area in this paper is
Chengdu (Sichuan province), and 0.5257 is selected as the carbon
emission factor of electric energy.

2.3 Selection of predictors for building
operational energy consumption
carbon emissions

The plane distribution of four different types of buildings in the city
was drawn based on a total of 2,526 individual building samples
collected in Chengdu, including 23 districts. Figure 3 presents the
number of building types in the five major individual building sample
collection areas. Jinniu District, as themain central city of Chengdu, has
a relatively uniform distribution of large public buildings, small- and
medium-sized public buildings, residential buildings, and government
offices, thereby making the sample of all types of buildings in this paper
more balanced. Compared with Jinniu District, the sampling balance of
the other four districts was poor, especially for large public buildings.
Given that the energy consumption data of large buildings in the

TABLE 1 (Continued) Statistical description of building features.

Building type Building information Descriptive statistics

Mean: 5.8

Standard: 3.4

Floor area/m2 Maximum: 102981.0

Minimum: 416.0

Mean: 8682.9

Standard: 13109.8

Electricity consumption/kwh Maximum: 6807529.0

Minimum: 293.0

Mean: 479232.4

Standard: 732851.1

TABLE 2 Carbon emission coefficient of fossil energy consumption.

Energy type Emission coefficient of CO2

kg CO2/unit kg CO2/kg

Standard coal -- 2.493

Raw coal -- 1.781

Coke -- 2.422

Crude oil 2.74 --

Gasoline 2.30 3.15

Diesel oil 2.63 3.06

Kerosene 2.56 --

Liquefied natural gas 1.233 --

Liquefied petroleum gas 2.852

Natural gas 1.973 --
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operation stage of the surrounding urban areas were relatively difficult
to calculate, there were only four large public buildings in Dujiangyan
District and one in Qingbaijiang District.

Considering the actual distribution of the four types of buildings
in Chengdu, a total of 2,526 samples of various types of buildings in
23 districts are collected in this paper, including 199 large buildings,
969 small- and medium-sized public buildings, 374 state agencies,
and 984 residential buildings. Each sample includes the building
name, address, administrative division, and the consumption of five
kinds of energy in 2021 as well as the building area and the number
of floors. The total electricity consumption data and carbon
emissions of 2,526 buildings are shown in Figure 4.

It can be seen from Figure 3 that the trends of carbon emissions and
electricity consumption of each building are basically the same. It can be
observed that there is a significant relationship between building electricity
consumption and carbon emissions. Among them, Jinniu District,
Wuhou District, Chenghua District, Wenjiang District and Dujiangyan
generally exhibit high carbon emissions, and the corresponding electricity
consumption is also relatively high. Then, according to the carbon
emissions of the five energy sources, the carbon emission proportion
data of each energy source of the four types of buildings are plotted using a
stacked column chart, and Figure 5 is obtained.

It can be seen from Figure 5 that in addition to the carbon emissions
generated by electricity consumption in residential buildings accounting

TABLE 3 Average carbon emission coefficients of the regional power grid in China.

Network name Covered province, region, and municipality Average carbon emission coefficient (kg
CO2/kWh)

North China regional power
grid

Beijing, Tianjin, Hebei, Shanxi, Shandong, and Inner Mongolia western
region

0.8843

Northeast regional power grid Liaoning, Jilin, Heilongjiang, and eastern Inner Mongolia 0.7769

East China regional power grid Shanghai, Jiangsu, Zhejiang, Anhui, and Fujian 0.7035

Central China regional power
grid

Henan, Hubei, Hunan, Jiangxi, Sichuan, and Chongqing 0.5257

Northwest regional power grid Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang 0.6671

Southern regional power grid Guangdong, Guangxi Autonomous Region, Yunnan, and Guizhou 0.5271

FIGURE 3
Distribution of individual building samples in Chengdu.
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for 69.3%, the carbon emissions generated by electricity consumption in
large buildings, small- and medium-sized buildings, and state agencies
accounted for 89.6%, 88.4%, and 88.5%, respectively, which are
significantly greater than 80%. Except for natural gas, the proportions
of coal, liquefied petroleum gas, and artificial gas are relatively low for the
other four energy sources. By analyzing the stacked histograms of the
four types of building carbon emissions, it can be found that most of the
BECCE inChengdu come fromCO2 from electricity and natural gas use.

It can be seen from Figure 4 that the degree of electrification of
various buildings in Chengdu is relatively high during the operation
phase, but the carbon emissions of other energy sources, such as natural
gas, still occupy a certain proportion. It is time-consuming and labor-
intensive to conduct real-time and accurate statistics on consumption,
so the carbon emissions of buildings cannot be quickly calculated. In
order to achieve fast and accurate calculation of BECCE of different
types of buildings, according to Figure 3, it can be seen that there is a
significant correlation between electricity consumption and BECCE.

This paper is based on the power data of Chengdu’s building operation
phase, taking into account the different building shapes of different
building types, extracting building power data, effective area, and
building floors, and a total of three indicators as characteristic
variables. The BECCE of the calculation model of different building
types based on machine learning is constructed, the complex mapping
relationship between building power consumption, building area,
building floors, and BECCE during this period is obtained, and the
fast and accurate calculation of BECCE through power data is realized.

3 Methods

3.1 Support vector machine

The PSO–SVM model has been widely used in the field of carbon
emission prediction due to its excellent fitting ability (Li, 2020;

FIGURE 4
BECCE and power data of buildings in 23 districts of Chengdu. (A) Building operational energy consumption carbon emissions; (B) Electricity
consumption.
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AlKheder and Almusalam, 2022), such as in sewage treatment plants
(Szeląg et al., 2023), building carbon emissions (Mao et al., 2019; Gao
et al., 2023), transportation industry (Li et al., 2022), and other related
CO2 emissions, and has achieved a relatively significant effect.

SVM is a novel small-sample learning method. The specific steps
are as follows:

Assuming that the training set consists of N data samples, the
regression model associated with SVM can be described
as follows:

f x( ) � ωψ x( ) + b, (4)
where ψ(x) is the mapping function and ω and b are the weight and
deviation, respectively. The calculation of the SVM model can be
obtained using the insensitive loss function ε to solve the following
convex optimization problems:

minimize
1
2
ω‖ ‖2 + c ∑N

i�1
ξ i + ξ*i( )⎡⎣ ⎤⎦

ωϕ xi( ) + b − yi ≤ ε + ξ*i , i � 1, 2,/, N

yi − ωϕ xi( ) − b≤ ε + ξ i, i � 1, 2,/, N

ξ, ξ*i , i � 1, 2,/, N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (5)

where c represents the positive parameter used to control the
empirical error and ξi and ξ*i represent the relaxation variables
used to control the training error. xi and yi represent input and
output variables, respectively. N represents the number of samples.

3.2 Particle swarm optimization
algorithm–support vector machine

Given the impact of the optimal penalty parameter c, kernel
function parameter g, and kernel function ∂ on regression results,
the particle swarm optimization algorithm (Kennedy and Eberhart,
1995) was used to optimize SVM. As a random search method, PSO
can realize individual optimization in space. The position and
velocity of the ith particle are expressed using Eqs 6, 7, respectively.

Xk+1
i � Xk

i + Vk+1
i , (6)

Vk+1
i � ωVk

i + c1r1 Pk
i −Xk

i( ) + c2r2 gk −Xk
i( ), (7)

where ω, c1, and c2, respectively, represent inertia weight,
acceleration factor 1, and acceleration factor 2. r1 and r2 are
random numbers distributed in [0,1]. k is the number of current
iterations; Vi is the velocity of the ith particle; Pk

i is the global
optimal position at the kth update; and gk is the global optimal
position at the kth update. The specific steps of the “electricity-
carbon " model are shown in Figure 6. PSO parameters are shown
in Table 4.

3.3 Evaluation of model performance

Evaluation of model performance is also very important as part
of the test of model usability. When judging the degree of model
prediction, at least one statistical error indicator and one goodness-
of-fit measure should be applied (Nourani et al., 2019). In this study,
MAE, RMSE, and R2 were thus used to evaluate the model
performance. Among them, MAE can quantify the difference
between the expected and observed values, especially ignoring the
negative effect. The error of the RMSE measurement model was
analyzed in quantitative prediction; R2 quantified the correlation or
collinearity between the expected and actual values. MSE is used as
the fitness function of PSO. The specific calculation formula is
shown in Table 5.

4 Results

4.1 Building volume characteristics of
different types of buildings

Due to differences in building types, building shapes (building
floor and building area) are inevitably different, which will naturally
lead to differences in carbon emissions. In order to improve the

FIGURE 5
Structure of energy carbon emissions of four types of buildings.

Frontiers in Energy Research frontiersin.org09

Wei et al. 10.3389/fenrg.2024.1329942

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1329942


accuracy of measurement of building carbon emissions, a more
targeted measurement of building carbon emissions is carried out,
and the relationship between building shapes and total emissions of
four types of buildings is studied. The quadrilateral method is
adopted to conduct statistical analysis on the boxplot of building
floors, building areas, and carbon emissions of large buildings,
government agencies, residential buildings, and small- and
medium-sized buildings, as shown in Figure 7.

As shown in Figure 7A, for building floors, the maximum
number of floors in large and residential buildings is basically the

same. Meanwhile, according to the positions of the lower quartile
and median line as well as the upper quartile, large and residential
buildings are concentrated on the 6–11th floor, but the floor
distribution of residential buildings is more discrete, while the
distribution of government agencies and small- and medium-
sized buildings is concentrated. For the building area, the large
building area is significantly larger than the three types of
buildings, mainly distributed between 31258 m2 and
108927 m2. For the other three types of buildings, the
residential building area is relatively large. In Figure 7B, it can

FIGURE 6
Measurement model of BECCE based on PSO–SVM.
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be clearly seen that the carbon emissions of large buildings are
significantly higher than those of the other three types of
buildings, while there is no significant difference in the carbon
emissions of government agencies, residential buildings, and
small- and medium-sized buildings.

Compared with Figures 7A, B, the number of floors and floor
area of large buildings, government agencies, and small- and
medium-sized buildings can clearly reflect the change in carbon
emissions of these three types of buildings. For residential buildings,
there is no significant relationship between the building floor and

carbon emissions. At the same time, it can be further seen that
government agencies and small- and medium-sized buildings have
similar architectural shapes, and their structure of energy carbon
emissions is basically the same as shown in Figure 5. In this paper,
government agencies are included in small- and medium-sized
buildings for research.

In order to avoid the generality and inaccuracy of using the same
model to predict the carbon emissions of buildings, this paper
establishes different “electricity-carbon” models for large and
residential buildings. For government agencies and small- and
medium-sized buildings, the same “electricity-carbon” model can
be established.

4.2 Measurement of building operational
energy consumption carbon emissions of
different types of buildings based on particle
swarm optimization algorithm–support
vector machine

Before the BECCE calculation model is established, there are big
differences in the digital scale among the three parameters of
building floor, building area, and electricity consumption.

TABLE 4 PSO parameter settings.

Parameter Value

Maximum number of evolutions 20

Particle swarm size n 50

Local search capability c1 1.5

Global search capability c2 1.5

Search area of c (0, 1500]

Search area of g (0, 1500]

TABLE 5 Specific model evaluation.

Formula Interpretation of variable

MAE � 1
n∑n
i�1
|yActual,i − ypred,i |

n: data

RMSE �




















1
n∑n
i�1
(yActual,i − ypred,i)2

√
yActual,i : actual electricity consumption of building i

R2 � 1 −∑n
i�1

(yActual,i−ypred,i )2
(yActual,i−�yActual)2

ypred,i : predicted electricity consumption of building i

FIGURE 7
Analysis of the shape and carbon emission characteristics of four types of buildings: (A) boxplot of architectural forms of four kinds of buildings and
(B) boxplot of BECCE for four types of buildings.
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Therefore, this paper first carries out normalization processing on
the dataset to eliminate the impact of dimension and avoid the
problem of low accuracy in model construction.

4.2.1 Optimization process
In order to ensure the overall effect of the model, the PSO

algorithm is used to find the optimal values of three
hyperparameters, such as kernel functions, g and c. In the stage
of model training, five-fold cross-validation is used to train and
verify the model. A total of 80% of the data in the dataset is used as
the model training hyperparameter, and the remaining 20% is used
as the verification set to verify the model performance. Finally, the
PSO algorithm selects the optimal hyperparameter set according to
the effect of the verification set. The dataset partitioning process of
the five-fold cross-validation is shown in Figure 8.

In the process of PSO hyperparameter optimization, this
paper takes the MSE of the verification set as the standard to
save the optimal model. The hyperparameter optimization
process of the “electricity-carbon” model of three types of
buildings, namely, large buildings, residential buildings, and
small- and medium-sized buildings, is shown in Figure 9. In
the calculation model of large buildings, when the evolution
reaches the 14th generation, the fitness function decreases to
the minimum, and the model reaches the best state. The
combination of hyperparameters of kernel functions, c and g
is (linear kernel function, 690.0, 803.2). In the calculation model
of small- and medium-sized buildings, the combination of
hyperparameters is (linear kernel function, 715.6, 910.6) when
the evolution reaches the 13th generation. In the calculation
model of residential buildings, the combination of
hyperparameters is (polynomial kernel function, 402.4, 588.3)
when it evolves to 12 generations.

4.2.2 Performance comparison of support vector
regression and particle swarm optimization
algorithm–support vector machine models

According to the optimal “electricity-carbon” model of large
buildings, small- and medium-sized buildings, and residential
buildings, the fitting between the predicted results of their
respective verification sets and the actual observed values is
visualized, as shown in Figure 10. Then, according to MAE,
MSE, R2, and the other three model evaluation indexes,
PSO–SVM is compared with support vector regression (SVR)
without parameter optimization to verify the reliability of the model.

Figure 10 shows that the “electricity-carbon” model has a good
effect on the BECCE measurement of small- and medium-sized
buildings. The measured value of BECCE is basically consistent with
the actual observed value, and R2 = 0.92 also indicates that there is a
significant correlation between the predicted and actual observed
data. The model also has a good prediction effect on large buildings,
and the trend of the line graph between the predicted and actual
observed values is basically the same. The prediction effect of the
model for residential buildings is relatively poor, R2 = 0.65. It can be
seen from Figure 5; Figure 7 that the actual situation of residential
buildings is relatively complex, and it is difficult to make a good
prediction. However, it can be seen from Figure 8 that the measured
values of the “electricity-carbon” model are roughly consistent with
the trend of the actual observed values. The evaluation results of the
performance indexes of the PSO–SVM and SVR models are shown
in Table 6.

In this paper, the performance of the PSO–SVM model was
compared with that of SVR, BP, and ELM, and the index evaluation
results of the four models are shown in Table 6. Table 6
demonstrates PSO optimization as an essential part of model
performance improvement. After PSO optimization, two

FIGURE 8
Data division process of five-fold cross-validation.

Frontiers in Energy Research frontiersin.org12

Wei et al. 10.3389/fenrg.2024.1329942

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1329942


indicators, MAE and RMSE, were significantly reduced compared to
their values before optimization, and R2 of each type of building was
increased by 0.1 on average. This indicated a significant
improvement in the correlation between the measured BECCE
and actual values. At the same time, compared with BP and
ELM, the PSO–SVM model was found to have the advantages of
small-sample learning, thereby being furnished with better fitting
ability and thus being more suitable for constructing the “electricity-
carbon” model.

4.3 Rapid measurement of building
operational energy consumption carbon
emissions with different types of buildings

According to the optimal hyperparameter of the three models
determined in Section 4.2.1, the “electricity-carbon” model of large

buildings, small- and medium-sized buildings, and residential
buildings is constructed, respectively. By comparing the SVR
model without optimization, PSO–SVM shows good model
performance, but the model generalization ability is still difficult
to determine. In order to test whether the “electricity-carbon”model
can calculate BECCE quickly and accurately, this paper re-extracts
the data of various types of buildings, including 21 large buildings,
100 small- and medium-sized buildings, and 100 residential
buildings. The above data are input into the constructed
“electricity-carbon” model to measure BECCE, and the measured
and actual values are compared, as shown in Figure 11.

Figure 11 clearly shows the distribution area between the
measured and actual values, which can help judge whether the
measured result is close to the actual result. According to Figures
11A-C, the distribution area between themeasured and actual values
is basically consistent. Second, the R2 values of the estimated and real
values of small- and medium-sized buildings, residential buildings,

FIGURE 9
Iterative process of optimal parameters of the model: (A) large buildings; (B) government agencies and small- and medium-sized buildings; and (C)
residential buildings.
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and large buildings are 0.65, 0.79, and 0.91, respectively, indicating
that the “electricity-carbon” model has good generalization ability.

As can be seen from Table 7, according to MAE and RMSE
evaluation results and the analysis of Figure 10, the error of
calculation results is also within an acceptable range, so it is feasible.

4.4 Spatial distribution of building
operational energy consumption
carbon emissions

The calculation results of the “electricity-carbon” model are
imported into ArcGIS software to generate the BECCE spatial
distribution map, as shown in Figure 12. The central area of

Chengdu (Pidu District, Wenjiang District, Chenghua District,
Jinniu District, and Wuhou District) has a high carbon emission
of buildings, while the surrounding areas have relatively low carbon
emissions. Many large shopping malls, office buildings, and other
large buildings are located in downtown Chengdu, which may result
in BECCE being relatively concentrated in the central part of
Chengdu, indicating that the “electricity-carbon” model has a
certain reliability in the rapid measurement of BECCE results.

5 Discussion

The rapid development of urbanization in China is accompanied
by massive energy consumption, leading to massive emissions of

FIGURE 10
Verification results of the “electricity-carbon” model for four types of buildings: (A) government agencies and small- and medium-sized buildings;
(B) residential buildings; and (C) large buildings.
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greenhouse gases, among which BECCE accounts for 70% of the
carbon emissions in the whole life cycle of buildings (Fenner et al.,
2018), which is very important for global warming and sustainable
urban development. BECCE’s accurate calculation as the basis of
building energy conservation and emission reduction has attracted
more and more attention. In 2013, the State Council issued ten
measures in the Action Plan for the Prevention and Control of Air
Pollution, and the energy consumption structure in the building
operation stage gradually became the key to the control of air
pollution in China (Li, 2016; Hu et al., 2022). To this end, a

series of “coal to gas” and “coal to electricity” policies
implemented in China have contributed to the reduction in air
pollutants from building operations (Chen and Chen, 2019). Against
such a favorable background, the concept of the “electricity-carbon”
model is proposed in this paper. This model can measure the carbon
emissions of individual buildings quickly and efficiently through
electricity data. Taking 2,526 buildings in Chengdu as the research
object, the BECCE calculation model was constructed for large
public buildings, small- and medium-sized public buildings,
government agencies, and residential buildings, respectively, and
satisfactory results were obtained. However, in the research process,
it was found that the calculation results of the “electron-carbon”
model for three types of buildings, including large public buildings,
small- and medium-sized public buildings, and government
agencies, presented little difference from the actual results, while
the BECCE calculation results for residential buildings were
relatively poor. The energy carbon emission structure of various
buildings (Figure 3) revealed that the energy carbon emission
structure of residential buildings during the operation was
relatively complex, in which carbon emissions generated by
electricity accounted for only 69.3% and carbon emissions
generated by natural gas were as high as 30.7%, which might
have a certain impact on the performance of the “electricity-

TABLE 6 Model performance evaluation results.

MAE RMSE R2

PSO–SVM LP building 751 817.7 0.89

SP and MP building 108.0 170.2 0.92

R building 63.8 88.9 0.65

SVR LP building 1113.0 1490.0 0.79

SP and MP building 119.2 266.7 0.81

R building 71.76 99.0 0.56

BP LP building 635.3 1280.9 0.84

SP and MP building 123.9 165.2 0.86

R building 72.0 103.9 0.52

ELM LP building 809.0 1693.0 0.72

SP and MP building 38.5 185.6 0.83

R building 43.4 100.7 0.55

FIGURE 11
Measurement results of BECCE for four types of buildings: (A) government agencies and small- and medium-sized buildings; (B) residential
buildings; and (C) large buildings.

TABLE 7 Evaluation results of generalization ability.

MAE RMSE R2

LP building 858.7 1108.6 0.91

SP and MP building 182.1 286.2 0.65

R building 80.0 230.0 0.79
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carbon” model (Huang et al., 2024). However, the “14th Five-Year
Plan” Building Energy Conservation and Green Building
Development Plan was issued, which could further promote the
implementation of building energy replacement action, improve the
degree of building electrification, and monitor the carbon emissions
of single buildings through power data to be more effective. This
could also improve the problem of poor measurement accuracy in
the “electricity-carbon” model for single buildings. It also
demonstrated the good popularization prospects of the
“electricity-carbon” model.

In the research process, the carbon emission factors used in this
paper had limitations in time, causing certain differences in the
carbon emission measurement results. Therefore, further attempts
will be made to extract the latest updated carbon emission factor
database of relevant departments to improve the universality of the
application of the “electricity-carbon” model. At the same time,
there were relatively few architectural form features extracted in this
paper, and the depiction of single buildings was relatively poor,
which exerted a certain impact on the final calculation results. In
order to further improve the accuracy of the “electricity-carbon”
model, more abundant architectural form indicators will be

extracted in the future. Finally, the “electricity-carbon” model
proposed in this paper is more suitable for buildings with a high
degree of electrification. However, with the gradual improvement of
future electrification projects and the construction of new building
power systems, the “electricity-carbon” model holds better
application space in the future.

6 Conclusion

The rapid development of urbanization in China has further
promoted a large amount of energy consumption in the building
industry, resulting in a large amount of greenhouse gases, among
which carbon emissions in the building operation stage account for
the main proportion. Accurate measurement of carbon emissions in
the operation stage of a single building has a crucial impact on the
green and sustainable development of a city. In this paper, based on
the research of 2,526 buildings in Chengdu, including large
buildings, small- and medium-sized public buildings, government
institutions, and residential buildings, this paper proposes a BECCE
rapid measurement model (“electricity-carbon “model) for single

FIGURE 12
Spatial distribution map of BECCE in Chengdu.
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buildings based on electricity consumption and building physical
characteristics and draws specific conclusions.

According to the statistical comparison between the
electricity consumption of 2,526 buildings of various types in
Chengdu and their BECCE, there is a significant relationship
between the electricity consumption of buildings and their
BECCE. Combined with the carbon emission structure of
various buildings, the electric-carbon emission ratio of public
buildings, small- and medium-sized buildings, government
agencies, and residential buildings is 0.90, 0.88, 0.89, and 0.69,
respectively. Except for residential buildings, the carbon emission
structure of other buildings is basically the same.

Combined with the building shapes and carbon emission
structure analysis of all kinds of buildings, the characteristics of
government agencies and small- and medium-sized buildings are
similar in all aspects, so the two types of buildings can be studied
as a whole. In this paper, using building electricity consumption,
building floor, and building area as the index system, combined
with the PSO–SVM algorithm, the “electricity-carbon”model for
large buildings, government agencies, small- and medium-sized
buildings, and residential buildings was put forward and
compared with the unoptimized SVR model. MAE (751, 108.0,
and 63.8), RMSE (817.7, 170.2, and 88.9), and R2 (0.89, 0.92, and
0.65) of the PSO–SVM model were significantly better than those
of SVR (1113, 119.2, 71.76), RMSE (1490, 266.7, 99.0), and R2
(0.79, 0.81, 0.56), indicating that PSO–SVM is more reliable and
more accurate. To verify the generalization ability of the model,
data on various types of buildings were collected: 21 large
buildings, 100 small- and medium-sized buildings, and
100 residential buildings, and the data were input into the
“electricity-carbon” model. The R2 values between the
estimated and actual values of large buildings, small- and
medium-sized buildings, and residential buildings are 0.91,
0.65, and 0.79, respectively.

All the above conclusions show that the “electricity-carbon”
model proposed in this paper has certain validity. However, the
“electricity-carbon” model proposed in this paper is relatively poor
in the calculation of residential buildings, indicating that the model
is more suitable for buildings with a high degree of electrification.
With the gradual improvement in future electrification projects, the
“electricity-carbon”model has a large application space in the future
and good prospects for popularization.
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