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With the intensification of global climate change, the frequency of wildfires has
markedly increased, presenting an urgent challenge in assessing tripping failures
for power systems. This paper proposes an innovative method to evaluate the
spatial wildfire-induced tripping risk of transmission lines based on a flame
combustion model. Firstly, Bayes theory is employed to assess the spatial
probability of wildfire occurrence. Subsequently, Wang Zhengfei’s flame
combustion model is utilized to estimate the potential flame height of
wildfires along the transmission corridor. Thirdly, the insulation breakdown risk
of the transmission line is calculated based on the relative height difference
between the flame and the transmission line. Finally, the spatial wildfire-induced
tripping risk of the transmission line is then determined by combining the wildfire
occurrence probability and the insulation breakdown risk. A case study
conducted in Guizhou province, China validates the accuracy of the proposed
model. Utilizing ArcGIS, the wildfire occurrence probability distribution in
Guizhou is visualized to enhance the efficiency of operation and maintenance.
The results indicate that over 80% of wildfire incidents occurred in areas with
occurrence probabilities exceeding 50%.
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1 Introduction

Wildfires are on the rise globally due to abnormal climate patterns and traditional fire-
usage practices in China. When wildfires encroach upon transmission lines, the risk of
tripping increases significantly. This heightened risk is attributed to reduced air insulation
between the ground and transmission lines, resulting from elevated temperatures, flame
conductivity, and combustion by-products (West, 1979; Naido and Swift, 1993). A notable
instance occurred during the 2018 Chinese New Year holiday when the Hunan Power Grid
experienced five wildfire-induced tripping failures in just 7 days, causing widespread and
severe power outages (T. Zhou et al., 2019). Additionally, on 5 February 2021, a wildfire
along the transmission corridor of the 500 kV Laiwu line I in Guangxi province led to
multiple tripping instances in quick succession. Consequently, wildfires have become a
prominent cause of tripping failures in transmission lines, significantly impacting the safety
and stability of power grids (Lu et al., 2016b). Furthermore, wildfires tend to occur during
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specific periods due to fire-related customs like moor burns and
sacrificial offerings in China. Swift and effective response to these
incidents poses a challenge for forestry managers and related
utilities. To address this, the Fire Weather Index (FWI) was
introduced in 1970 for quantitative assessment of wildfire
occurrence risks in wildland areas, encompassing six components
that consider fuel moisture and weather conditions (VAN et al.,
1987; HOFFMANN et al., 2003; Niu et al., 2006). Subsequently,
several wildfire-risk assessment methodologies have been
established, such as Australia’s Forest Fire Danger Index (FFDI)
(William et al., 2003) and Russia’s Nesterov Index (NI)
(Sherstyukov, 2002). However, the existing indices have
predominantly concentrated on assessing the risk of large-scale
wildfires in forested areas, overlooking their specific impacts on
transmission lines.

In 2016, the State Grid Corporation of China introduced a
standard titled “Drawing Guidelines for Region Distribution Map of
Wildfires Near Overhead Transmission Lines” (State Grid
Corporation of China, 2016). This standard utilized the historical
wildfire number index to characterize the influence of human
activities on wildfire occurrences. Additionally, vegetation types
were categorized, taking into account the impact of burning
performance on the insulation of transmission lines (Lu et al.,
2016a; Shi et al., 2018; Bian et al., 2021). While offering valuable
insights, this standard overlooks the local meteorological and
topographic conditions that play a crucial role in influencing
vegetation distribution and burning performance. These
conditions, consequently, have a significant impact on the real-
world spread behavior of wildfires.

To mitigate these constraints, researchers have proposed data
mining-based risk assessment models. These models encompass
diverse factors: weather conditions, vegetation types, topography,
and transmission line structural parameters. Yet, their effectiveness
is curbed by sparse, low-quality historical trip failure data under
real-world conditions.

(Dian et al., 2016) assessed early warning risks based on the
spatial distance between wildfire and transmission line (Liu et al.,
2021). introduced a tripping risk method, integrating an adjusted
wildfire variation coefficient to gauge transmission line tripping
probabilities (Wu et al., 2016). formulated a dynamic wildfire risk
model, accounting for wildfire spread direction and speed
concerning transmission lines. However, these models overlook
the impact of wildfire behaviors on air gap insulation reduction.
Wildfire ignition across varied surfaces leads to diverse flame heights
and intensities, ultimately compromising transmission line
insulation (You et al., 2011). Therefore, it is crucial to consider
how distinct fire intensities in different geographic and weather
contexts influence the risks associated with line trips.

This study presents an innovative model for assessing wildfire-
induced tripping risk of power transmission lines. This model allows
for the calculation of potential flame intensity upon the ignition of
underlying surfaces. Subsequently, it comprehensively evaluates the
impact of two distinct flame scenarios on air gap insulation, thereby
facilitating the calculation of insulation breakdown risks.
Additionally, the model integrates wildfire occurrence
probabilities derived from a Naïve Bayes Network (NBN) to
provide a comprehensive assessment of wildfire-induced tripping
risks in transmission lines. Guizhou Province in Southwest China is

chosen as the study area. A dataset containing 14 wildfire-related
parameters is collected within the study area. This dataset enables
the computation of wildfire probabilities and the assessment of
wildfire-induced tripping risks. The resulting risk distribution is
then mapped using ArcGIS to validate the efficacy and performance
of the proposed method.

2 Study area and data

The wildfire-induced tripping risk of transmission line signifies
the extent of harm inflicted by wildfire disasters on the operation of
transmission lines. This assessment serves as a pivotal guide for
devising measures aimed at forestalling wildfires within power grid
systems (Castagna et al., 2021). The occurrence of wildfire-induced
trips hinges upon two prerequisites. The first one is a wildfire
incident occurring near a transmission line. The second is a
breakdown occurred between line-to-ground or line-to-line, as
the air insulation under the flame condition can no longer
withstand the operating voltage of transmission line. Hence, the
risk of wildfire-induced trips Rt involves a combination of the
wildfire occurrence probability Pf and the insulation breakdown
risk Rt_ f of transmission line, as described by Eq 1.

Rt � Pf × Rt f (1)

The research framework is shown in Figure 1. In the first phase, the
historical fire spot location and wildfire-related factors were collected to
form a sample set. And the relief algorithm was used to evaluate the
importance of wildfire-related factors. Subsequently, factors with the
lowest importance were systematically eliminated. Following this, an
optimal Naive Bayesian model was constructed to assess the probability
of wildfire occurrence.

In the second phase, meticulous consideration was given to the
impact of flame intensity on the gap insulation of transmission line. The
insulation breakdown risk was calculated based on distinct scenarios.
The assessment of wildfire-induced tripping risk was then conducted by
integrating this insulation breakdown risk with the probability of
wildfire occurrence.

2.1 Wildfire-related factors

The ignition of wildfires hinge on the presence of fire sources
and fuels. Studies have shown that more than 95% of wildfires are
ignited by human activities, implying that regions with frequent
human activities are more susceptible to both unintentional and
deliberate human-induced ignitions (Millington et al., 2008). In this
study, five factors including road distance, settlement distance,
population density, Gross Domestic Product (GDP) and fire-spot
density, are selected to describe the impact of human activities on
wildfire occurrence.

The fuel conditions are characterized by the vegetation along the
transmission corridors, including land-usage type, vegetation type,
normalized difference vegetation index (NDVI) and fuel loads.
Besides, both the meteorology and topography have an obvious
influence on the vegetation flammability, thereby affecting the
ignition and spread of wildfires. The relevant factors include
precipitation, temperature, elevation, slope, and aspect (Dios et al., 2021).
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2.2 Case study area

Guizhou Province, located in the Southwest of China (24°37’-
29°13′N and 103°36’- 109°35′E), as the shown in Figure 2, spans an
area of approximately 162,000 km2. Characterized by a subtropical
monsoon climate, the region provides favorable conditions for the
proliferation of dense vegetation, significantly elevating the likelihood of
wildfire occurrence. Approximately 200wildfire incidents were detected
annually since 2011 in Guizhou Province, as depicted in Figure 3. Due
to the frequent occurrence of wildfires in Guizhou Province and their
substantial impact on the power grid, there is an urgent need to develop
and implement effective wildfire prevention and control measures.

2.3 Data processing methods

The dataset of fourteen wildfire-related factors was collected for
analyzing the occurrence probability distribution of wildfires in the
study area. Most of the data were provided by the Resource and

Environmental Science and Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/Default.aspx). The information of
wildfire incidents from 2010 to 2020 are provided by the China
National Meteorological Center. As the general fire-usage habits in a
region tend to remain relatively stable over time, the historical fire-spot
density was selected to as a feature to reflect the cumulative fire patterns
in the region. Specifically, one-third of the dataset from the wildfire
incidents (early 2010–2014) was used to compute historical fire-spot
density for each grid. And the remaining samples constituted a database
for constructing the wildfire risk assessment model. Additionally, the
laser point cloud data of transmission corridors is obtained from the
China Southern Power Grid Company. The structural parameters of
transmission lines, such as the average line-to-ground height, the line-
to-line distance, and the line-to-tree height, are calculated based on the
laser point cloud data to assess the insulation breakdown risk.

In cases of wildfires occurring within a transmission corridor, the
degree of impact on the insulation of transmission lines is directly
proportional to the proximity of the wildfire to the transmission line.
According to DL/T 1620-2016, the wildfire risk for transmission lines

FIGURE 1
Framework of wildfire-induced tripping risk assessment.
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can be evaluated at a range of 1 km (National Energy Administration of
China, 2016). Therefore, the study area was subdivided into 1 km ×
1 km grids. The data of wildfire-related factors is collected and
preprocessed within these grids. For the data with a spatial
resolution of larger than 1 km × 1 km, such as annual precipitation
and temperature, the kriging method is employed for interpolation.
After that, the data of wildfire-related factors are classified into four
levels based on the quantile method. The classification standard of
wildfire-related factors was listed in Table 1.

3 Methods

3.1 NBN-based wildfire occurrence
probability assessment

The Bayes Network (BN) serves as a robust tool for risk
assessment, providing an evaluation of hazard likelihood through
statistical analysis. Notably, it offers enhanced interpretability
compared to other data mining models. Consequently, a BN
model was established to evaluate the potential occurrence of
wildfires based on wildfire-related factors. This model is
described as a graphical cause-and-effect representation, linking
variables through conditional probabilities (Requejo et al., 2019).

The BN structure comprises two key components: a directed acyclic
graph and conditional probability tables. The directed acyclic graph
represents the probabilistic dependencies between pairs of wildfire-
related factors or between these factors and wildfire incidence. It is
noteworthy that taking into account correlations between factors
elevates the computational complexity of the model. However, in
certain application scenarios where there is weak correlation
between factors or a limited number of factors, assuming
independence among factors also allows the model to achieve
acceptable performance. To address this, a conditional independence
assumption is incorporated, simplifying the BN model into a Naïve

Bayes Network (NBN), as illustrated in Figure 4.where, C is the class
node, representing the class of fire or non-fire; Node denotes one of the
wildfire-related factors. The conditional probability of C is estimated by
Eq. 2.

P Ci | x1, ..., xn( ) � P Ci( )∏n
j�1P xj

∣∣∣∣Ci( )∑2
i�1 P Ci( )∏n

j�1P xj

∣∣∣∣Ci( )[ ] (2)

where C1 is the class of wildfire; C2 is the class of non-wildfire.
Firstly, the grids experiencing wildfire incidents between

2015 and 2019 are used as wildfire samples. A corresponding set
of grids, equating in number and situated beyond a 3 km radius from
the fire-affected areas, is randomly chosen to serve as non-wildfire
samples. Subsequently, the sample set is partitioned into a training

FIGURE 2
Location of the study area.

FIGURE 3
Wildfire incidence in Guizhou Province from 2011 to 2020.
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set and a validation set, adhering to a ratio of 7:3. And the wildfire
incidents occurring in 2020 are expressly retained to validate the
predictive efficacy of the NBN model.

Secondly, the conditional probability tables of wildfire-related
factors are calculated by the training set. To mitigate the redundant
information, the Relief algorithm is used to rank the importance of
wildfire-related factors. The NBN model is optimized by the heuristic
search strategy, in which the least important factor is deleted one by one
(Chen et al., 2021). During the optimization, a β-score is used to assess
the performance of NBN model.

Fβ � 1 + β2( )PrRe

β2Pr + Re

(3)

where Pr and Pe represents the Recall and Precision obtained
from the confusion matrix (Woznicki et al., 2019). The β is the
relative importance of Recall to Precision. Considering the cost of

wildfire-induced trips, the operational department exhibits a
heightened interest in identifying potential hazards effectively.
Consequently, there is a greater emphasis on Recall in this study.
Thus, we set β = 3.

The importance rank of wildfire-related factors is shown in
Figure 5. The Distance-to-settlement, Vegetation type, Distance-to-
road are the top three important factors affecting wildfire
occurrence. The Vegetation type determines the flammability of
combustibles, affecting the difficulty of wildfire ignition directly. The
factors NDVI and fuel load serve as indicators of combustible
quantities, predominantly influencing the spread of wildfires
while exerting minimal influence on the likelihood of wildfire
occurrence.

Considering the fact that more than 95% of wildfires are man-
made, the factors representing human activities, such as distance to
settlement and distance to road, are particularly important. The
importance analysis of wildfire-related factors indicates that the area
with abundant flammable plants and human activities is prone
to ignition.

As the number of wildfire-related factors decreases from
14 to 8, there is a gradual increase in the Fβ-score of NBN model,
as shown in Figure 6. This observed increment can be attributed
to the reduction in interference from redundant factors,
enhancing the model’s overall performance. However, a
noteworthy trend emerges when the factor count diminishes
further, specifically from 8 to 5, resulting in a sharp decline in the
Fβ-score. This decline is attributable to the omission of key
factors, underscoring their pivotal role in the predictive accuracy
of the model. The Fβ-score attains its pinnacle value of 0.82 when

TABLE 1 Classification standards of wildfire-related factors.

Wildfire-related
factors

Classes

1 2 3 4

Anthropogenic
influence

Distance-to-road (m) <905 905–196 1962–3,403 >3,403

Distance-to-settlement (m) <285 285–476 476–772 >772

Population density
(people/km2)

>220 164–220 105–164 <105

GDP (10,000yuan/km2) >653 375–653 226–375 <226

Fire-spot density (unit/
(100 km2 year))

>653 298–653 89–298 <89

Fuel conditions Land-usage type High-coverage woodland
and grassland

Medium-coverage woodland
and grassland

Low-coverage woodland
and grassland

Settlements and
others

Vegetation type Coniferous and mixed forest Broadleaf forest and shrub Bushes Cultivated plants and
others

NDVI >0.876 0.836–0.876 0.788–0.836 <0.788

Fuel load (t/km2) >23.3 1.3–23.3 1–1.3 <1

Climate Annual precipitation (mm) <1,150 1,150–1,422 1,422–1,560 >1,560

Annual temperature (°C) >17 16–17 15–16 <15

Topography Elevation (m) <813 813–1,047 1,047–1,344 >1,344

Slope (°) >20 13–20 8–13 <8

Aspect South East West North

FIGURE 4
NBN structure.
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employing eight factors. The excluded factors comprise GDP,
Slope, Annual temperature, Population density, Fuel load, and
Aspect. This omission stems from the observation that GDP and
Population density, predominantly reflective of anthropogenic
fire-usage habits, exhibit weaker associations with wildfire risk
compared to fire spot density. Slope, Fuel load, and Aspect
significantly influence wildfire spread, but in this phase
emphasizing wildfire occurrence risk assessment, their impact
is relatively minor. Despite the close relationship between
wildfires and environmental temperature, the limited variance
in Annual temperature across diverse regions within a province
complicates discerning its influence on wildfire risk.
Consequently, the optimized eight wildfire-related factors are

employed to construct the NBN model. The final conditional
probability tables are listed in Figure 7.

3.2 Insulation breakdown risk assessment

When a wildfire occurs in a transmission corridor, the reduction
of air insulation can induce two kinds of tripping failures of
transmission lines, namely, line-to-ground and line-to-line
breakdowns. Thus, the insulation breakdown risk Rt_f is defined
as the greater of the line-to-ground breakdown risk Rg and the line-
to-line breakdown risk Rp, as shown in Eqs 4–6.

Rt f � max Rg, Rp( ) (4)

Rg �
���
2 /

3
√

× U

Ug
(5)

Rp �
�
2

√
× U

Up
(6)

where U is the operating voltage of transmission line; Ug and Up

represent the withstand voltage of the air gap of line-to-ground and
of line-to-line under wildfire condition, respectively.

The impact of a flame on the reduction of air gap insulation is
strongly related to the combustion strength (You et al., 2011).
The combustion process engenders substantial charge carriers
through thermal ionization and chemical dissociation, resulting
in a high conductivity within the bulk of the flame. Once the
flame bridges the entirety of the air gap in either line-to-ground
or line-to-line, it is easy to further cause a breakdown, thereby
instigating the tripping failure of the transmission line. Even in
the cases where the air gap is not fully bridged by the flame, the
insulation of the remaining gap would also be greatly reduced by
the ash and high temperature in fume (Li et al., 2016). Therefore,
the following two different scenarios are considered based on the
combustion height of flame.

3.2.1 Flame bridges entirety of air gap
When the height of the flame surpasses that of the transmission

line (Figure 8), the entirety of the insulation of both line-to-ground
and line-to-line becomes bridged by the flame. Ignoring the
insulation of alive trees, whose surface conductivity is generally
higher than 0.1 S/m (H. Zhou et al., 2018), the insulations of
transmission line are determined by the length of gap and the
breakdown field strength of flame Ef.

Ug � Hl −Ht( ) × Ef � dl−t × Ef (7)
Up � dp × Ef (8)

where Hl is the minimum height of the transmission line; Ht is the
maximum height of trees below the line; dl-t is the minimum length
of air gap between transmission line and trees; dp is the minimum
length of air gap between wires of the transmission line. According
to the experimental breakdown results of long air gap under flame, Ef
is taken as 35 kV/m (Fonseca et al., 1990).

3.2.2 Flame bridges part of air gap
When the height of flame is lower than that of the transmission

line, the insulation gap for line-to-ground encompasses a segment

FIGURE 5
Importance rank of wildfire-related factors.

FIGURE 6
Fβ-score with the number of modeling factors.
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occupied by flames and another by fumes, as shown in Figure 9. The
withstand voltage of line-to-ground gap is then determined by

Ug � Hf × Ef + Hl −Ht −Hf( ) × Es (9)

where Hf is the possible height of flame, which can be evaluated by
the flame combustion model. And Es is the average breakdown field
strength of fume, which can be obtained by the breakdown field
strength amendment of long air gap.

In the most severe case, the air gaps between wires of
transmission line are filled wrapped by the fume. Hence, the
withstand voltage of line-to-line gap is approximated by

Up � dp × Es (10)

3.2.3 Possible flame height Hf

The process of wildfire spread is extremely complicated,
depending on the condition of surface fuels and meteorological
factors (Benali et al., 2016). Several flame combustion models have
been established empirically or semi-empirically, such as
McArthur’s model for grassland fires and forest fires in Australia
(Noble et al., 1980) and Rothermel’s model for homogeneous and
deceased vegetation (Pyne, 1984). Nonetheless, these models are
either inadequate for the typical vegetation in Southern of China, or
fall short in meeting accuracy criteria due to the requisite
homogeneity in practical forest settings. Wang Zhengfei’s model,
introduced in 1989, was semi-empirically derived through physical
mechanics analysis and based on over 100 field experiments in
China (Perry, 1998). Featuring adaptable input parameters, Wang
Zhengfei’s model adeptly forecasts wildfire behaviors and finds
extensive application in assessing wildfire risks in China.

As mentioned above, the height of flame Hf is an essential
parameter that affects the breakdown risk of the air gap. In Wang
Zhengfei’s model, the flame height can be estimated by

FIGURE 7
Conditional probability tables of optimized NBN model.

FIGURE 8
Flame bridges air gap between lines and trees.

FIGURE 9
Flame partially bridges air gap between lines and trees.
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Hf � �����
I /

250
√

(11)

where I is the front-line intensity, which is the energy liberated in
time and linear space (W·m-1s-1) during the combustion. The value
of front-line intensity is determined by the calorific power q (kJ·kg-1)
of the combustible material at the underlying surface, the fuel load
W (kg·m-2) of the combustible material, and the propagating speed
of the fire (m·s-1) (Byram, 1959; Perry, 1998).

I � qWR (12)
R � KcKφKvR0 (13)

where Kc is the fuel coefficient, which depends on the spatial
distribution of fuel type, as listed in Table 2; Kφ is slope
coefficient, and Kv is the wind speed coefficient;

Kφ � e3.533 tanφ
1.2

(14)
Kv � e0.178v (15)

where φ is the terrain slope angle; v is the wind speed;
R0 is a semi-empirical initial spread of wildfire in Wang

zhengfei’s model. It is defined as the rate of fire spread through a
homogeneous fuel field in the absence of wind and topography, and
is formulated as (16). In this work, empirical coefficients α = 0.03,
β = 0.05, γ = 0.01, and δ = 0.7.

R0 � αT + βF − γH + δ (16)

In summary, the possible height of flame can be estimated by

Hf �
������������������������������������������
qwKce0.178v+3.533 tan φ

1.2 0.03T + 0.05F − 0.01H + 0.7( )
250

√
(17)

3.2.4 Average breakdown field strength of fume ES
Even if the flame fails to bridge the gap, the fumes released

from the combustion are highly likely to envelop the space
around the wires of transmission lines. On one hand, the
elevated temperature of the flame decreases the density and
humidity of the air within the fume, facilitating the
development of electron avalanches (Mphale et al., 2010; Sun
et al., 2012). On the other hand, floating particles and ash from
the fume drift into the high-electric-field area near the wires,
further distorting the electric field distribution and instigating
discharge. Hence, based on the adjustments in density and
humidity, a particle coefficient Kp is introduced to modify the
breakdown strength of air gap (Wang et al., 2011; Li et al., 2016).

Es � KpKσKhEa (18)

where Es is the average breakdown strength of fume; Kσ and Kh

represent the coefficient of density and humidity, respectively; Ea is
the breakdown strength of air gap under standard atmospheric
conditions (Temperature: 20°C, Humidity: 11 g/m3, Atmospheric
pressure: 101.3 kPa).

The triggering effect of ash particles on discharge depends on the
type of burning vegetation. Experimental results show that the AC
breakdown voltage of the air gap, influenced by the ashes and
particles released by the combustion of thatch and fir branch,
can reduce to approximately 40% of that observed under the
standard atmosphere (Li et al., 2016). Therefore, the particle
coefficient Kp is taken as 0.4.

The density coefficient Kσ depends on the relative air density in
the fume and can be expressed as

Kσ � σm (19)
σ � 273 + Ta( )Pf

273 + Ta + ΔT( )Pa
(20)

where m is the correction index, which is associated with electrode
shape, gap length, voltage type, and other factor, and is simplified to
1; Pa is the ambient pressure, and Ta is the ambient temperature; Pf
represent the changed atmospheric pressure above the flame.
Assuming that the heating is a long-term process affecting the air
above the flame, the local pressure remains essentially unchanged in
open space, that is Pf ≈ Pa; ΔT is the temperature rise of air in the
fumes, estimated by the flame combustion model (Heskestad, 1998).

ΔT � 3.9I2/3

Hs
(21)

where Hs is the height of the calculated position relative to the
canopy. In the case of line-to-ground breakdown, the median height
of the flame is considered, that isHs � Hf + 0.5(dl−t +Hf). For the
line-to-line breakdown, the height is taken as Hs � dl−t.

The humidity coefficient of air is expressed as

Kh � kw (22)
where w is an exponent parameter, which is related to gap length,
electrode shape, voltage type and other factor, and is simplified to 1;
k depends on the voltage type and is determined by the ratio of
absolute humidity h to the air density δ in the fume. For AC
breakdown of air gap, k is obtained by the following equation:

k � 1 + 0.012
h

σ
− 11( ) (23)

To determine the standard breakdown field strength Ea, two
different breakdown mechanisms are concerned. For short distance,
the breakdown of the air gap is governed by the propagation of
streamer. The breakdown field strength Ea is regarded as nearly
independent of the gap length, and is assigned a value of 241.39 kV/
m. As the gap distance increases, the electric field around the
transmission line creates conditions for the inception and
propagation of a continuous leader, which exhibits significantly
higher conductivity compared to the streamer (Gallimberti, 1979).
For air gaps exceeding 4 m, the Rizk semi-empirical model (Rizk,
1989a; Rizk, 1989b) is employed to determine the breakdown
strength, as expressed in Eq 24.

TABLE 2 Values of fuel coefficient (Sun et al., 2012).

Categories Kc

Water, Settlements, Bare ground, Road 0.0

Arable land 0.1

Mixed forest 0.5

Coniferous forest 1

Grass land 2
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FIGURE 10
Spatial distributions of factors in the study area. (A)Wildfire spots in 2010 to 2020; (B)Distance-to-road; (C)Distance-to-settlement; (D) Land-usage
type; (E) Vegetation; (F) NDVI; (G) Annual precipitation; (H) Elevation.
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Ea � 1850 + 59ds

1 + 3.89/ds

+ 92⎛⎝ ⎞⎠/ds � 59d2
s + 1942ds + 357.88
d2
s + 3.89ds

(24)

where ds is the gap length. In summary, the average breakdown
strength of fume Es is expressed as

Es �
0.3472 1 + 3.9I

2 /

3

273 + Ta
( )−1

+ 0.0048h⎛⎝ ⎞⎠ ×
59d2

s + 1942ds + 357.88
d2
s + 3.89ds

, ds ≥ 4

0.3472 1 + 3.9I
2 /

3

273 + Ta
( )−1

+ 0.0048h⎛⎝ ⎞⎠ × 241.39, ds < 4

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(25)

3.3 Spatial distribution of factors in the
study area

The spatial distributions of factors are shown in Figure 10. The
elevation in Guizhou Province gradually increases from east to west,
accompanied by a corresponding rise in precipitation from west to
east due to elevation and topography. Predominantly, the area
features moderate grassland and woodland, with settlements
concentrated in the eastern and northern regions. Consequently,
vegetation in the east and north is characterized by cultivated plants
and bushes, while the west and south boast significant woodland.
The southwest region of Guizhou Province experiences a heightened
frequency of wildfires, contrasting with fewer occurrences in the
eastern and northern areas. The province’s population centers
predominantly lie in the north, contrary to historical fire density.
This may be attributed to densely populated cities in the north,
making it challenging for fires to escalate into large-scale incidents,
as they are promptly detected and artificially extinguished. This
underscores the need for increased focus on wildfire prevention and
control in the southwest. The intricate nature of the distribution of
factors related to wildfires makes it challenging to evaluate the risk of
wildfires in specific regions through simplistic regional
statistical methods.

4 Results

4.1 Wildfire occurrence probability
distribution of study area

The established NBN model was used to calculate the wildfire
occurrence probabilities across all grids within the study area. And the
results were spatially visualized using ArcGIS 10.5 software with
ArcMap module function. During the process of drawing the map,
the wildfire occurrence probability is divided into four intervals of (0,
0.25], (0.25,0.5], (0.5,0.75] and (0.75, 1]. And the grids are given
different shades of gray from light to dark depending on the
intervals, as shown in Figure 11. Regions exhibiting higher
probability of wildfire occurrence are primarily concentrated in the
southwest zone of Guizhou province. These areas feature a pronounced
abundance of fuel loads, thereby providing favorable conditions for
ignition. Conversely, the central and northern parts of Guizhou consist
predominantly of urban areas characterized by high population density
and relatively low vegetation coverage. Consequently, the likelihood of

large-scale or prolonged fires is diminished in these areas, resulting in
lower probabilities of wildfire occurrences.

To verify the model’s applicability, the wildfire incidents
spanning the years 2015–2020 were superimposed in the wildfire
occurrence probability map. Specifically, 80.77% of the wildfires
occurred in areas with a high probability of wildfire incidence (50%),

FIGURE 11
Wildfire occurrence probability in the study area.

TABLE 3 The grading standard of risk levels.

Risk level Level I Level II Level III Level IV

Rt [0,0.40] (0.40,0.60] (0.60,0.80] (0.80,∞)

Representative color Green Blue Yellow red

FIGURE 12
Risk level percentage of transmission line section.
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underscoring the high precision and predictive capability of the
NBN model in forecasting wildfire events.

4.2 Wildfire-related tripping risk levels
distribution of study area

Subsequently, based on the laser point cloud data, the insulation
breakdown risks for all transmission line sections above 110 kV in
the Guizhou Power Grid were computed. Multiplying these risks by
the occurrence probability of wildfires yielded the final wildfire-
related tripping risks for the transmission line sections. For visual
representation, the risk values were categorized into four levels,
each denoted by distinct colors as outlined in Table 3. The
wildfire-related tripping risk levels in the Guizhou Power Grid
were distributed as follows: 42.73%, 20.36%, 21.35%, and 15.56%
respectively (see Figure 12). This signifies that the proposed
method adeptly discriminates the wildfire risk distribution
along transmission corridors.

4.3 Wildfire-related tripping risk analysis of
220 kV Yanwan line

To further illustrate the method’s efficacy, the 220 kV Yanwan
line is taken as an illustrative case study. This transmission line spans
from north to south, traversing the provincial capital city and its
adjacent counties, comprising a total of 68 transmission towers. The
distribution of risk levels among line sections is as follows: 17.91%
for Level I, 38.81% for Level II, 34.33% for Level III, and 8.95% for
Level IV (Figure 13). Specifically, line sections associated with the
10th-13th towers and the 26th-29th towers are identified as having a
risk level IV. For line sections categorized as risk levels III and IV, it
is imperative for the power supply bureau to enhance patrols and

monitoring in the vicinity, mitigating the potential impact of
wildfires and averting tripping failures.

In the spring of 2020, two wildfire incidences transpired within the
transmission corridor of the Yanwan line. One of them is monitored
around 9:00 a.m. on February 28th within the line section
encompassing the 34th-35th towers. Prompt intervention by the
relevant departments led to its extinguishment by approximately
11:00 a.m. An assessment based on the probability distribution map
of wildfire occurrences revealed a remarkably high probability of
97.89% for this specific line section. But the transmission line
continued normal operation during the wildfire due to the
underlying surface predominantly covered by grass, possessing a
low fuel load of 1.25 t/hm2. When ignited, the grass generated a
maximum flame height of merely 0.43 m, causing minimal impact
on the insulation of the transmission line. Consequently, the risk
evaluation attributed a wildfire-induced tripping risk of 0.43,
categorizing it as a level II risk within this line section.

Subsequently, at 14:00 p.m. on April 15th, another wildfire
emerged within the transmission corridor, this time between the
14th and the 15th tower. Within a span of 2 h, the wildfire swiftly
spread to the 16th tower, leading to a tripping failure of transmission
line. The intensity of the blaze hindered successful reclosing,
resulting in a partial power outage that inflicted substantial
economic losses upon the Guizhou power grid. Investigation
revealed the proliferation of oil-bearing coniferous forests
beneath the transmission lines in these sections, with a canopy
height of 15 m, leaving a minimal gap distance of 8 m from the
transmission line. The wildfire-induced tripping risk was assessed at
0.65, thereby classifying it as a risk level III.

The actual consequences of the above two wildfire accidents
coincided with wildfire-induced tripping risk of the corresponding
line sections, indicating a good applicability of the proposed
method. Currently, the model has successfully developed
software and integrated into the Southern Power Grid Wildfire

FIGURE 13
The location and risk level distribution of a 220 kV Yanwan line.
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Monitoring and Early Warning Center. This software performs
automatic annual updates to the distribution map, detailing the
occurrence probability of wildfires in each province and the
associated tripping risk for transmission lines. It serves as a
guide for local power grid operation and maintenance
departments, directing heightened inspection efforts in areas
prone to wildfires and specific line sections with elevated
tripping risk. For the fire-spots monitored by satellites in real-
time, this software provides the hazard level of the fire-spot on the
transmission line. This information aids grid operation and
maintenance departments in making informed decisions,
including options for firefighting measures or the preemptive
shutdown of transmission lines.

5 Conclusion

This paper introduces an innovative method for evaluating the
risk of wildfire-induced tripping on transmission lines. The
methodology comprises two key components: wildfire occurrence
probability and insulation breakdown risk. In the first segment, a
NBN model, coupled with extensive remote sensing data, is
employed to rapidly estimate the likelihood of wildfire
occurrence across each grid. By utilizing eight optimized wildfire-
related factors, the model achieves a prediction accuracy of 80.77%.
The ArcGIS software facilitates the visualization of wildfire
probabilities, aiding relevant departments in swiftly identifying
high-incidence areas. The second part focuses on assessing the
insulation tripping risk of transmission lines. Leveraging Wang
Zhengfei’s combustion model, the flame height in the
transmission corridor during a wildfire event is determined. The
insulation of the transmission line is classified into two
scenarios—Flame bridges entirety of air gap and Flame bridges
part of air gap—based on the flame height. Through the refinement
of the air breakdown model with flame parameters, the insulation
breakdown risk of transmission lines is promptly assessed. This
method provides a physical basis for wildfire-induced tripping risk
assessment of transmission lines. Application in the Guizhou power
grid demonstrates the model’s robust applicability, offering valuable
support for decision-making in grid about wildfire prevention
and control.
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