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The challenge of water level control in steam generators, particularly at low
power levels, has always been a critical aspect of nuclear power plant operation.
To address this issue, this paper introduces an IHA controller. This controller
employs a CPI controller as the primary controller for direct water level control,
coupled with an agent-based controller optimized through a DRL algorithm. The
agent dynamically optimizes the parameters of the CPI controller in real-time
based on the system’s state, resulting in improved control performance. Firstly, a
new observer information is obtained to get the accurate state of the system, and
a new reward function is constructed to evaluate the status of the system and
guide the agent’s learning process. Secondly, a deep ResNet with good
generalization performance is used as the approximator of action value
function and policy function. Then, the DDPG algorithm is used to train the
agent-based controller, and an advanced controller with good performance is
obtained after training. Finally, the popular UTSG model is used to verify the
effectiveness of the algorithm. The results demonstrate that the proposed
method achieves rise times of 73.9 s, 13.6 s, and 16.4 s at low, medium, and
high power levels, respectively. Particularly, at low power levels, the IHA
controller can restore the water level to its normal state within 200 s. These
performances surpass those of the comparative methods, indicating that the
proposed method excels not only in water level tracking but also in anti-
interference capabilities. In essence, the IHA controller can autonomously
learn the control strategy and reduce its reliance on the expert system,
achieving true autonomous control and delivering excellent control
performance.
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1 Introduction

A typical natural circulation steam generator takes the form of a
vertical, UTSG, as depicted in Figure 1. This configuration serves as a
critical component within the primary coolant system of a nuclear
reactor. Its primary purpose is to function as a heat exchanger,
facilitating the transfer of heat extracted from the reactor’s primary
coolant to a secondary fluid via a bundle of heat transfer tubes (Sui
et al., 2020). This heat exchange process generates saturated steam,
which is subsequently conveyed to a steam turbine for electricity
generation. Moreover, the steam generator assumes a pivotal role in
linking the primary and secondary coolant loops and acts as a safety
barrier to prevent the release of radioactive materials. To ensure the
safe operation of the UTSG, it is imperative to maintain the water
level within a defined range. If the water level becomes excessively
low, it can lead to damage to the heat transfer tubes. Conversely, an
excessively high water level can impact the steam-water separation
process, resulting in a decline in steam quality and potential damage
to the steam turbine (Kong et al., 2022). Therefore, any abnormal
water level conditions in the UTSG necessitate a shutdown, which
can have adverse consequences on the economic and safety
aspects of PWRs.

UTSG has “shrink and swell” effects during operation, making it
a complex system with non-linear and non-minimum phases, and
has a small stability margin, which brings many difficulties to the
controller design. In order to solve the UTSG water level control
problem, the researchers have done a lot of valuable work in this
area. Wan et al. (Wan et al., 2017), Rao et al. (Rao et al., 2024),
Safarzadeh et al. (Safarzadeh et al., 2011) and Irving et al. (Irving
et al., 1980) respectively proposed UTSG mathematical models that
can accurately reflect the characteristics of the water level. Among
them, the model proposed by Irving covers a variety of power level
conditions, so it is widely used in control algorithm research, and
this model was also used for our control algorithm research. The CPI
controller can mitigate the influence of “shrink and swell” effects to
some extent. By utilizing the actual measured water level signal, it
undergoes a first-order inertia stage, causing transient signals during
water level expansion to be delayed. This delay allows the deviation
signal between steam flow and feedwater flow to increase the
feedwater amount, thus achieving the correct action. On the
other hand, it takes advantage of the characteristic that the flow
error output by the water level control unit and the trend of steam
flow change in the opposite direction. This characteristic is
employed to eliminate the impact of “shrink and swell” effects.
Consequently, the CPI controller remains widely employed in the
water level control system of UTSG.

In order to achieve robust stability and optimal dynamic
performance, it is necessary to tune the parameters of the PID
controller. Online self-tuning methods for PID control parameters
possess the capabilities of self-learning, adaptability, and self-
organization. They can dynamically adjust the PID model
parameters online, adapting to the continuous changes in the
object model parameters. So far, researchers have conducted a
substantial amount of intriguing studies in this area. The Expert
PID control method combines control experience patterns from an
expert knowledge base, deriving the parameters of the PID
controller through logical reasoning mechanisms. However, it
heavily relies on the expert’s experience, and the proficiency of

the expert determines the effectiveness of the controller (Hu and Liu,
2020; Xu and Li, 2020). The Fuzzy PID control method condenses
empirical knowledge into a fuzzy rule model, achieving self-tuning
of PID parameters through fuzzy reasoning. It similarly depends on
human experience, with the configuration of membership functions
for process variables having a significant impact on the system (Li
et al., 2017; Maghfiroh et al., 2022; Zhu et al., 2022). The Neural
Network PID control method utilizes the nonlinear approximation
capability of neural networks, dynamically adjusting PID
parameters based on the system’s input and output data to
optimize control performance. However, it faces challenges such
as acquiring training data and susceptibility to local optima
(Rodriguez-Abreo et al., 2021; Zhang et al., 2022). The Genetic
PID control method simulates the process of natural selection and
genetic mechanisms to optimize controller parameters for improved
control performance. It does not require complete information
about the controlled object, but it has drawbacks like high
computational demands and slow convergence speed (Zhou
et al., 2019; Ahmmed et al., 2020).

To overcome the limitations of the aforementioned optimization
algorithms, we explore the application of DRL algorithm, specifically
DDPG, in the water level control of the UTSG. DDPG empowers
agents with the capability for self-supervised learning, enabling them
to interact autonomously with the environment, make continuous
progress through trial and error, and collect training samples stored
in an experience replay buffer. This helps reduce the correlation
among samples and enhances training stability, all while decreasing
the reliance on expert knowledge (Wang and Hong, 2020). DDPG
employs an Actor-Critic structure, where the Actor network is
responsible for policy generation, and the Critic network
estimates state values or state-action values. These two networks
collaborate in learning to improve performance. DDPG offers higher

FIGURE 1
Steam generator structure diagram.
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sample efficiency, implying that it can learn good policies in
relatively few training steps without requiring extensive
computational resources.

To achieve real-time optimization of PI controller parameters
and reduce the difficulty of controller design, an IHA controller is
proposed. The proposed controller uses the CPI controller as a
primary controller and introduces DRL to build an advanced agent-
based controller with autonomous control capabilities, which can
continuously improve the CPI control strategy according to the state
of the environment. The main contributions and innovation of this
paper are as follows:

(1) A new reward function is proposed to improve the training
effect of the model.

(2) The DDPG algorithm is used to optimize the agent-based
controller, which can learn the control strategy
independently.

(3) The deep ResNet is used as approximators of action-value and
action functions to obtain better generalization performance.

(4) The UTSG water level model is used to verify the effectiveness
of the proposed method.

The remainder of this paper is organized as follows. In Section 2
we present methods. We then present in detail the UTSGmodel and
controller structure in Section 3. The experimental test case results
and discussions are provided in Section 4. Finally, Section 5
concludes the paper.

2 Methods

2.1 Reinforcement learning

RL is an important branch of machine learning (Carapuço et al.,
2018), but unlike supervised learning and unsupervised learning, it is
an active learning process, which does not require specific training
data, and agents need to obtain samples in the process of continuous
interaction with the environment. As shown in Figure 2, by taking
the goal of maximizing the cumulative reward, RL continuously
optimizes the strategy based on the state, action, reward and other
information, and finally finds the optimal state-action sequence
during the training process. The process is very similar to that of
human learning, in which strategies are continually improved
through interaction and trial and error with the environment.

The interactive process can be expressed by Markov decision
processes (Bi et al., 2019). Suppose the environment is completely
observable, the state space of the environment is represented by S,
and the action space is represented by A; the behavior of the agent is
defined by policy π, which defines a probability distribution p(A) to
represent the relationship between state and action. At time t, let
st (st ∈ S) be the state of the environment, and at (at ∈ A) be the
action taken by the agent according to the state st and then at time
t+1, the state transitions to st+1. In this process, the instant reward
received by the agent can be expressed as r(st, at). For the entire
process t � 1, 2, 3, . . . , T, the historical state information can be
represented by state-action pairs st � (s1, a1, . . . , st−1, at−1). The sum
of discounted future reward returned Rt by the agent after
performing the action at is defined as

Rt � ∑T

i�tγ
i−tr si, ai( ) (1)

Where γ is the discounting factor, and γ ∈ [0, 1]. It can be
found that Rt has a great relationship with the action selected by
the policy, and RL is to learn the optimal policy to maximize the
expected return from the start distribution J � Eri,si~E,ai~π[R1].
We represent the discounted state access distribution of policy π
as ρπ .

In order to describe the expected return of the model under the
state st, the action at taken by the agent, and under the guidance of
the policy π, an action-value function Qπ(st, at) is used to express it
(Sutton et al., 2000), which is defined as

Qπ st, at( ) � Eri≥ t ,si≥ t~E,ai≥ t~π Rt|st, at[ ] (2)

The above formula can be converted into a recursive form
through the Bellman equation as:

Qπ st, at( ) � Ert,st+1~E r st, at( ) + γEat+1~ π Qπ st+1, at+1( )[ ][ ] (3)

2.2 Deep deterministic policy gradient

DDPG is a model-free DRL method based on the critic-actor
framework and deterministic policy gradient algorithm (Lillic et al.,
2016; Thomas and Brunskill, 2017). In the processing of high-
dimensional state space and action space, DDPG uses deep
neural networks (Sen Peng et al., 2018) as the approximator of
action function and action-value function, which also brings a
problem. The training process of the neural network needs to
assume that the samples follow an independent distribution, but
the samples obtained in chronological order obviously do not meet
this requirement. To solve this problem, DDPG draws on the
experience replay mechanism in deep Q-network (Mnih et al.,
2015) and the minibatch training method in deep neural
networks to ensure the stability of the training process of large-
scale nonlinear networks.

To avoid the inner expectation of the deterministic policy, the
deterministic policy function μ: S ← A is used to describe the
action-value function:

FIGURE 2
The work procession of RL.
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Qμ st, at( ) � Ert,st+1~E r st, at( ) + γQμ st+1, μ st+1( )( )[ ] (4)

2.2.1 Experience replay mechanism
In continuous control tasks, samples are usually collected in

chronological order, and the data are highly correlated, so the
variance between samples is small, which is obviously not
conducive to the training of agents. Experience replay is used
to solve this problem (Mnih et al., 2015), and a fixed-size replay
buffer is created to cache the collected data. The data collected
during each task execution process will be stored in the replay
buffer in tuple (st, at, rt, st+1). During each training, a minibatch
of samples are randomly selected from the replay buffer, which
can reduce the correlation between the data and improve
training efficiency.

2.2.2 Policy exploration
Policy exploration is a very important part in RL, which is used

to explore unknown policies. If the explored policies are superior to
the current policies, they can play an evolutionary role for the
policies. In order to solve the exploration problem in continuous
control tasks, the exploration policy μ′ is constructed by adding
noise to the policy μ:

μ′ st( ) � μ st
∣∣∣∣θμt( ) +N (5)

Where N is the actor noise. Considering that the plant used in
this paper is an inertial system, Ornstein-Uhlenbeck process
(Uhlenbeck and Ornstein, 1930) is used to generate time-related
noise sequences to improve the exploration efficiency of control
tasks in the inertial system. Ornstein-Uhlenbeck process is a random
process, and its discrete form is

x t( ) � x t − 1( ) + a δ − x t − 1( )( )Ts + σϵ
��
Ts

√
(6)

Where δ and σ are the mean and variance of the noise model, ϵ is
a random number, a is a constant, which determines the speed at
which the noise model output approaches the mean, and Ts is the
sampling time.

2.2.3 Function approximators
In order for the agent to learn a better control strategy, it is very

vital to select an appropriate function approximators. Considering
that the deep neural network has strong adaptability, it can
approximate any function in a nonlinear form, so it is also the
most used function approximator. We use deep ResNet (He et al.,
2016) as a function approximator, which is constructed with residual
structure, shown in Figure 3A. The critic network (Figure 3B) and
action network (Figure 3C) are constructed for the value function
and action function, respectively. The activation function of the
hidden layer of the network approximator is the linear rectification
function and the activation function of the output layer is the
tanh function.

2.2.4 Training process
In this paper, the critic network, actor network, target critic

network and target actor network are defined asQ(s, a|θQ), μ(s | θμ),
Q′(s, a|θQ′) and μ′(s | θμ′) respectively, where θQ, θμ, θQ′ and θμ′ are

the parameters of each approximator. The main network and the
target network have the same network structure, which is defined in
Section 2.2.3.

The pseudocode of the DDPG algorithm is shown in Table 1.
During the training process, the network needs to be updated at
every timestep. To ensure a stable training process, the
network is trained using a minibatch training method.
Suppose that each time N samples are taken from the replay
buffer to form the training set R. During the training
process, the critic network is optimized by minimizing the
loss function:

L θQ( ) � 1
N

∑
i
yi − Q si, ai

∣∣∣∣θQ( )( )2 (7)
where

yi � ri + γQ′ si+1, μ′ si+1
∣∣∣∣∣θμ′( )∣∣∣∣∣θQ′( ) (8)

The start distribution J with respect to the actor parameters can
be obtained by the following formula:

∇θμJ ≈
1
N

∑
i
∇aQ s, a | θQ( )∣∣∣∣s�st ,a�μ si( )∇θμμ s | θμ( )∣∣∣∣s�si (9)

Then use gradient ∇θμJ to update the action network:

θμi � θμi + αμ∇θμJ (10)
Finally, use the soft update method to update the parameters of

the target network Q′(s, a | θQ′) and µ′(s | θμ′):
θQ′ � ηθQ + 1 − η( )θQ′ (11a)
θμ′ � ηθμ + 1 − η( )θμ′ (11b)

where η≪ 1, which makes the update speed of the target network
very slow, thereby greatly improving the robustness of the
learning process.

3 UTSG control model

3.1 Mathematical model

An adept UTSG model is crucial for the design and testing of
control algorithms. Typically, thermal-hydraulic models based
on conservation principles of mass, energy, and momentum are
employed to precisely simulate the operational characteristics of
steam generators. However, such models often exhibit intricate
non-linear features, posing challenges in controller design. In
practice, a UTSG model that is relatively straightforward yet
accurate, faithfully capturing dynamic traits, is preferred. The
linear model proposed by Irving (Irving et al., 1980), derived
through a fusion of experimental and theoretical approaches,
has undergone rigorous validation across multiple power levels,
affirming its precision in replicating operational characteristics.
Consequently, it has found extensive application in the realm of
control algorithm research. This model establishes a transfer
function model related to feed water flow Qe, steam flow Qv and
narrow-range water level Y:
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Y s( ) � G1

s
Qe s( ) − Qv s( )[ ] − G2

1 + τ2s
Qe s( ) − Qv s( )[ ]

+ G3s

s2 + 2τ−11 + τ−21 + 4π2T−2Qe s( ) (12)

Where s is Laplace variable, G1, G2 and G3 are constant, τ2 is
the delay time of the shrink and swell phenomenon, τ1 is the
delay time of the mechanical oscillation, and T is the period of the
mechanical oscillation. The first term X1(s) � G1

s [Qe(s) − Qv(s)]
calculates the change in water level by summing the flow in and
out, which represents the wide-ranging effect of UTSG. The
second term X2(s) � G2

1+τ2s [Qe(s) − Qv(s)] is used to describe
the inverse kinetic phenomena caused by shrink and swell
effects. The third term X3(s) � G3s

s2+2τ−11 +τ−21 +4π2T−2Qe(s) represents
the effect of water level oscillations generated by the feed water in

the annular descending channel. The values of the power-related
parameters of this model at 5 typical power levels are given
in Table 2.

3.2 Model dynamic characteristics analysis

In order to understand the dynamic characteristics of the
model, this section will briefly analyze the response
characteristics of the model when the feed water flow and
steam flow step +1 kg/s respectively in conjunction with the
shrink and swell phenomenon.

When the feedwater flow rate experiences a step increase of
+1 kg/s, the corresponding dynamic response of the UTSG water
level is illustrated in Figure 4A. It becomes evident that the initial
surge in feedwater flow prompts a surge in water level, irrespective
of the power levels. Subsequently, as the feedwater temperature
falls below the saturation temperature, leading to an augmentation
in subcooling within the bundle and consequent steam
condensation, the water level descends. Given that the
feedwater flow surpasses the steam flow, the water level sustains
an upward trajectory, a phenomenon colloquially referred to as the
‘shrink effect’.

When a step increase of +1 kg/s in steam flow is applied, the
associated dynamic response of the UTSG water level is depicted in
Figure 4B. It becomes evident that, across varying power levels, as
steam flow escalates, the pressure within the steam dome
diminishes, leading to a reduction in the saturation temperature
of the water and an augmentation in boiling within the bundle
area. Consequently, the water level initially experiences an ascent.
As the steam flow surpasses that of the feedwater, a sustained
decline in the water level ensues, a phenomenon commonly
referred to as the ‘swell effect’.

Simultaneously, it is noteworthy that, for distinct power levels,
identical disturbances in feedwater flow or steam flow yield varying
degrees of both the shrink and swell effects. Additionally, it is

FIGURE 3
Network structure. (A) ResNet structure; (B) Critic network structure; (C) Actor network structure.

TABLE 1 DDPG algorithm.

Randomly initialize critic network Q(s, a|θQ) and actor
μ(s | θμ) with weight θQ and θμ

Initialize target network Q′ and μ′ with weight θQ′ ← θQ , θμ′ ← θμ

Create and initialize replay buffer R with size L

For episode = 1, M do

Initialize the policy exploration model

Initialize and store observation state s1

For t = 1: T do

Select action at � μ′(st) with formula 5

Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in R

Calculate loss function and update critic network with formula 7

Calculate policy gradient with formula 9

Update actor network with formula 10

Update target network θQ′ and θμ′ with formula 11

End for

End for

Frontiers in Energy Research frontiersin.org05

Peng et al. 10.3389/fenrg.2024.1341103

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1341103


observed that the transition time during low-power operations
exceeds that observed during high-power conditions. This
phenomenon underscores the inherent challenges in regulating
water levels within the low-power range.

3.3 Cascaded PI controller

Compared with single control loop, the cascaded control is
more controllable and safer, and has better robustness (Jia et al.,
2020). Therefore, CPI controller is adopted as the basic controller
in this paper. The working process of CPI controller is shown in
Figure 8. In the outer loop control, the difference between
the expected water level and the model output water level is
used as the input of the controller. Its function is mainly used
to control the water level to track the change of the expected value.
In the inner loop control, the sum of the output of the outer loop
controller and the steam flow rate minus the feed water flow is used
as the input of the controller, which is mainly used to suppress the
steam flow disturbance.

The working principle of PI controller is expressed as:

u t( ) � Kp e t( ) +Ki∫t

0
e t( )dt( ) (13)

Where e(t) is the error, Kp is the proportional coefficient, and
Ki is the integral coefficient; in this paper, the proportional and
integral coefficients of the outer loop controller are defined as Kp1,
Ki1, and the corresponding parameters of the inner loop controller
are defined as Kp2, Ki2.

3.4 Controller design

The IHA controller proposed in this paper uses a double level
controller structure, shown in Figure 5. The CPI controller is used as
primary controller, which is responsible for directly controlling the
water level of the UTSGmodel; the advanced controller uses an agent-
based controller with intelligent characteristics, which is responsible
for online adjustment of the parameters of the CPI controller. In
control process, the primary controller and the advanced controller
work together to adjust the control policy in real time according to the
state of the system and realize intelligent autonomous control.

TABLE 2 The UTSG model parameters in different power level.

p/% G1 τ1 G2 τ2 G3 qv/(kg/s) T1

5 0.058 41.900 9.630 48.400 0.181 57.400 119.600

15 0.058 26.300 4.460 21.500 0.226 180.800 60.500

30 0.058 43.400 1.830 4.500 0.310 381.700 17.700

50 0.058 34.800 1.050 3.600 0.215 660.000 14.200

100 0.058 28.600 0.470 3.400 0.105 1,435.000 11.700

FIGURE 4
Water level response. (A) When the feed water flow steps 1 kg/s; (B) When the steam flow steps 1 kg/s.
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3.5 Observer information

The accurate observer information should be provided to
represent the dynamic characteristics of the controlled object. In
the controller system, the error and the reciprocal of error are often
used to indicate the state of the system, which is more suitable for
single-target control. However, the UTSG needs to change between
different water levels, and various system states need to be
considered using the above state expression. To improve this
phenomenon, the relative error and reciprocal of relative error
are used to represent the state of system. In this way, different
target control can be achieved by designing only one state
representation, which greatly simplifies the complexity. At the
same time, this paper draws on the ideas of (Mnih et al., 2015).
In continuous control tasks, the continuous-time environmental
state is related, and the observed variable for a period is embraced as
the environmental state representation, which can more accurately
reflect the state of the system.

In this paper, the values of relative error re(t) and reciprocal
∂re(t)
∂t in consecutive 3s are used as observer information to

obtain the observer vector s1(t) of the error term and the
observation vector s2(t) of the reciprocal term, which are
defined as follows:

s1 t( ) �
w1 0, 0, re t( )[ ]T, t � 0
w1 0, re t − 1( ), re t( )[ ]T, t � 1
w1 re t − 2( ), re t − 1( ), re t( )[ ]T, t≥ 2

⎧⎪⎨⎪⎩ (14a)

s2 t( ) �

w2 0, 0,
∂re t( )
∂t

[ ]T

, t � 0

w2 0,
∂re t − 1( )

∂t
,
∂re t( )
∂t

[ ]T

, t � 1

w2
∂re t − 2( )

∂t
,
∂re t − 1( )

∂t
,
∂re t( )
∂t

[ ]T

, t≥ 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14b)

re t( ) � ta − y t( )
ta

(14c)

where ta is the target value, w1 and w2 are normalization
coefficients, which is used to transform the value to the interval
[0,1], to promote the training efficiency of the neural network. At

time t � 0, e(t) � ∂re(t)
∂t � 0. Finally, the observation vectors s1(t)

and s2(t) are combined to obtain a comprehensive observation
matrix s(t) with a dimension of 3 × 2:

s t( ) � s1 t( ), s2 t( )[ ] (15)

Therefore, the dimension of observer information is determined
to be 3 × 2, and the dimension of action information is determined
to be 4 × 1. The network structure of action network and critic
network is further confirmed, as shown in Table 3.

3.6 Reward function

The reward function can also be called the evaluation
function. A good reward function not only speeds up the
learning process, but also makes it easier to find the global
optimal solution. The commonly used evaluation functions are
ITAE, ITSE and integral of squared time weighted errors.
However, these functions are suitable for evaluating the entire
control process. In the RL process, the control effect of each step
needs to be evaluated, and it has a strong guiding effect on the
learning process. Therefore, a new evaluation function is needed
to evaluate the learning process.

In fact, in the control process, when the water level error is large,
the PI controller needs a large gain to obtain a large response speed,
and when the error is small, the value of the gain needs to be reduced
to avoid overshoot. Therefore, this paper constructs a segmented
evaluation function r(t), which can guide the learning process by
adjusting some parameters. Experiments show that this function can
quickly and effectively guide the agent’s learning, which will be
introduced below.

According to the difference in absolute value of relative error
|re(t)|, we specifies that |re(t)|> 200% is the abnormal area,
200%≥ |re(t)|> 15% is the large error area, and |re(t)|≤ 15% is
the low error area.

Within the abnormal region, where the system strays
significantly from the target value, a proactive approach is
adopted. The ongoing task is promptly terminated, and a fresh
training process is initiated to conserve valuable training time.
Simultaneously, a correspondingly modest reward value is

FIGURE 5
UTSG water level control process.
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prescribed to guide the agent away from this undesirable state. In
contrast, the expansive error zone warrants a heightened emphasis
on speed of response, with the overarching goal being swifter
rectification without excessive deliberation. Consequently, when
the relative error resides within this territory, the reward value is
uniformly designated as −2.Within the realm of low error, where the
system’s output closely approximates the desired value but is
susceptible to overshooting and necessitates prolonged
adjustment, the formulation of the reward function assumes
paramount significance.

Considering the relative error re(t) and the reciprocal ∂re(t)∂t can
accurately represent the state of the system; Therefore, we set the
reward function as a function related to them. At the same time, the
power function is introduced to further optimize the reward
function. As shown in Figure 6, we plotted the power function
y � xα in the interval [0, 0.15], from which we can see that when
α> 1, y is not sensitive to the change of x. When α< 1, y is more
sensitive to the change of x, and the smaller α is, the more
sensitive it is, so it can play a magnifying effect on the local small
features. Below we introduce in detail the low error area
reward function.

The evaluation term r1(t) of relative error, defined in formula
16, is used to evaluate the degree of deviation of the system state
from the expected value.When the steady-state error is 0, r1(t) takes
the maximum value of 0.

r1 t( ) � −w1re t( )| |α1 (16)
where, α1 is the exponential adjustment factor, which can adjust the
local feature.When α1 > 1, it means to reduce the local micro feature;
when α1 < 1, it means to enlarge the local micro feature.

The evaluation item r2(t) of the reciprocal of the relative error,
defined in formula 17, is used to evaluate the degree of fluctuation of
the system state. When the system state is stable, r2(t) takes the
maximum value of 0.

r2 t( ) � −w2
∂re t( )
∂t

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
α2

(17)

where α2 is the exponential adjustment factor, its effect is consistent
with that of α1.

In order to prevent the influence of parameter mutation in the
control process, especially in the case of sudden step of reference
value, the reciprocal of error is very large. Therefore, we built a clip
function, as shown in formula 18, which can limit the value to a
certain range.

clip a, b, x( ) �
a, x> a
x, x≤ a
b, x< b

⎧⎪⎨⎪⎩ (18)

The clip function is used to process r2(t), and the following
results are obtained:

r2
′ t( ) � clip 1,−1, r2 t( )( ) (19)

By adding r1(t) and r2′(t), the reward function of the low error
area is obtained:

r3 t( ) � r1 t( ) + r2
′ t( ) (20)

In summary, the final reward function is obtained:

r t( ) �
−100, re t( )| |> 200%
−2, 15%< re t( )| |≤ 200%
r3 t( ), re t( )| |< 15%

⎧⎪⎨⎪⎩ (21)

In order to reduce the complexity, this paper defines α1 � α2 and
to determine the values of α1 and α2, a water level tracking
simulation experiment was carried out. The power level of the
model used is 5%. At 10s, the water level reference value is
adjusted from 0 mm to 100 mm, the simulation time is set to
600s, and the number of trainings is set to 1,200. At the end of the
training, we tested the best performance of the agent obtained
under different parameters as shown in Table 4, from which we
can see that when α1, α2 � 0.8, the shortest setting time can be
obtained, indicating that good control effect can be obtained
at this time.

4 Results and discussion

4.1 Training results

In this paper, the water level adjustment performance is trained
to obtain the best control performance. The detailed training

TABLE 3 The number of neurons in different layers.

Layer name Neuron dimension

Observation input layer 3 × 2

Action input layer 4 × 1

Fully connected layer 50 × 1

Rescale layer 4 × 1

Critic output layer 1 × 1

Action output layer 4 × 1

FIGURE 6
The curve of y � xα under different α.
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content is consistent with Section 3.5. The main parameter Settings
of the program are given in Table 5, which are determined by
suggestions given in paper (Mnih et al., 2015) and several
experimental tests.

Considering that similar results can be achieved across
different power levels, we present training results for only the
5% power level and 50% power level. These training results are
depicted in Figure 7. From the figures, it becomes evident that in
the initial stages of the training process, when the agent has not yet
collected sufficient experience and undergone an insufficient
number of training steps, the episode reward remains low,
indicating an exploratory phase. As the number of episodes
increases, the agent progressively discerns patterns, and the
control performance improves. During this phase, the episode
reward exhibits an upward trend. After a substantial number of
training episodes, the agent starts to converge, with convergence
values around −220 for the 5% power level and around −315 for the
50% power level. During this period, there is no distinct trend in
episode rewards, signifying that the optimal control policy has
been achieved.

Subsequently, an assessment of the trained controller’s
performance is scheduled, encompassing three distinctive tests: a
water level tracking test, an anti-interference test, and a comparative

analysis against findings within publicly available literature.
Concurrently, two meticulously optimized controllers,
distinguished by their commendable performance, serve as
benchmarking mechanisms for each power level. The first of
these controllers, christened ‘FCPI,’ benefits from parameter
optimization via a fuzzy logic algorithm, incorporating modules
such as fuzzification, fuzzy rules, fuzzy inference, and
defuzzification. The FCPI controller parameters can adapt with
both power levels and water level errors. Due to space
constraints, readers are encouraged to refer to the paper (Liu
et al., 2010; Aulia et al., 2021) for details on the configuration
strategy. The second controller, known as ‘ACPI,’ attains its
optimized parameters through the gain scheduling algorithm and
the relationship between the parameters of the CPI controller and
power p is expressed by formula 22.

kp1 � −0.5991*p3 + 0.6281*p2 + 0.7725*p − 0.0018

kp2 � 100 − 90

1 + p

0.3117
( )−32.68

ki1 � 8.97*10−6* log 2 p( ) + 4.876*10−5

ki2 � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(22)

In order to gauge the efficacy of control, we use the evaluation
indices ITSE and ITAE. These indices have been thoughtfully
introduced, as they offer a practical framework for assessing the
performance of the control system. They effectively encapsulate the
system’s precision and responsiveness, with smaller values
indicating superior performance.

ITSE � ∫∞

0
te2 t( )dt (23)

ITAE � ∫∞

0
t e t( )| |dt (24)

where e(t) is the error.

4.2 Test 1 water level tracking test

This section mainly tests the system’s output response under
the action of step function, so as to show the dynamic
performance of the system. The initial value of the reference
water level is set to 0mm, and then jumps to 100 mm at 10s. The
control effects of the three methods are compared at low power
level (5%), medium power level (50%) and high power level
(100%), respectively.

Figures 8, 9, 10 show the comparison results of the three
methods at different power levels. It can be seen from these
figures that the three methods can track the change of water
level and have good control effect. At the low power level, the
proposed method achieves a rise time of 73.9 s, which is 23.5%
faster than the FCPI method and 59.4% faster than the ACPI
method. At the medium power level, the proposed method
achieves a rise time of 13.6 s, which is 29.6% faster than the
FCPI method and 56.5% faster than the ACPI method. At the
high power level, the proposed method achieves a rise time of
16.4 s, which is 10.4% faster than the FCPI method and 28.6%
faster than the ACPI method. The above statements emphasize

TABLE 4 Test results under different values of α1 and α2.

α1, α2 Setting time (s)

2 497

1.5 461

1 435

0.9 398

0.8 375

0.7 392

TABLE 5 Parameter settings.

Parameters Value

L 1,000

N 64

T 600

Ts 3

M 1,200(5% power level); 250(50% power level)

γ 0.993

η 1e-4

σ 0.07

δ 0.15

a 1e-4

L 1e5
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that the proposed method offers a faster response speed and
superior control performance in terms of water level tracking.
The proposed method, IHA, can iteratively engage with the steam
generator model to acquire the water level control strategy. It
employs deep neural networks to comprehend the intricate
nonlinear relationship between system states and optimized
actions. This adaptation allows the controller parameters to
accommodate the dynamic variations of the system without the
necessity of manual design for optimization strategies, as required
in methods like FCPI and ACPI. Given the prolonged delay in false
water level generation and the extended response time in low-
power scenarios, more time is required to achieve control.

Table 6 shows the comparison results of ITSE and ITAE of
different methods, from which under different power levels, the
values of ITSE and ITAE are IHA < FCPI < ACPI. At the low
power level, the proposed method exhibits an ITSE that is 10.7%
lower than FCPI and 38.4% lower than ACPI. Additionally, the
ITAE of the proposed method is 26.2% lower than FCPI and
83.3% lower than ACPI. At the medium power level, the proposed
method achieves an ITSE that is 1.3% lower than FCPI and 7.1%
lower than ACPI. Furthermore, the ITAE of the proposed method
is 6.2% lower than FCPI and 23.7% lower than ACPI. At the high
power level, the proposed method demonstrates an ITSE that is
3.2% lower than FCPI and 10.3% lower than ACPI. Likewise, the
ITAE of the proposed method is 6.8% lower than FCPI and 20.7%
lower than ACPI. The statements above highlight that the IHA
method excels in terms of control accuracy and speed,
particularly evident at low power levels. In summary, the IHA
method exhibits the best control performance, followed by FCPI
and ACPI, which aligns with the conclusions drawn from
the figures.

Figures 11, 12, 13 depict the variation curves of the IHA
controller parameters Kp1, Ki1, Kp2, and Ki2 at different power
levels. It is evident that the controller parameters adaptively
change with the system’s state during the control process. In

theory, the integral coefficient Ki of the PI controller primarily
works to reduce steady-state error, while the proportional
coefficient Kp reflects the system’s response speed, rapidly
reducing error. Consequently, Ki has a noticeable effect
towards the end of the control process, whereas Kp′s impact
is more pronounced in the early stages. In the parameter curve
results, when the water level error is significant, the proportional
coefficient Kp1 plays a major role. At such times, Kp1 assumes
larger values across all three power levels, such as the time range
for the 5% power level from 10s to 200s, the 50% power level from
10s to 37s, and the 100% power level from 10s to 25s. However,
the integral coefficient shows no distinct pattern because it has
little influence when the error is substantial. As the water level
error decreases, the value of Kp1 decreases as well, reducing the
likelihood of overshoot. For instance, the time range for the 5%

FIGURE 7
Training results. (A) Training results at 5% power level; (B) Training results at 50% power level.

FIGURE 8
Water level tracking test results at 5% power level.
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power level shifts to 200s–350s, the 50% power level to 37s–50s,
and the 100% power level to 25s–40s. When the error approaches
zero, Kp1 stabilizes and does not have a fixed value, while Ki1

and Ki2 generally assume larger values. This is because when the
error is zero, Kp1 has minimal effect, and increasing the integral
coefficient is beneficial for reducing steady-state error.
Simultaneously, Kp2 does not exhibit a clear pattern
throughout the control cycle. Furthermore, manual parameter
adjustments reveal that Kp2 has little influence on the results
within a certain range. Hence, under varying power levels, the
proposed method can autonomously generate optimized
strategies for the CPI controller parameters (Kp1, Kp2, Ki1,
Ki2) based on the system’s state. This assurance ensures that the
system can efficiently regulate the water level to the specified
position in the shortest possible time, optimizing overall
performance.

Under the work of the ACPI method, the control law can
adapt to changes in power levels but struggles to adapt effectively
to variations in water level states. Consequently, the ACPI method
falls short of achieving an optimal control effect. The FCPI
method, while capable of adjusting the control law adaptively
with both power level and water level state, relies heavily on the
design of fuzzy membership functions and fuzzy rules, which are
inherently influenced by human experience. This design challenge
makes it difficult to encompass all possible system states, making
it also challenging for the FCPI method to achieve an optimal

FIGURE 9
The test results of water level tracking at 50% power level. (A) Kp1; (B) Ki1; (C) Kp2; (D) Ki2.

FIGURE 10
The test results of water level tracking at 100% power level.
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control effect. However, the proposed method excels in achieving
an ideal control effect across all power levels, primarily due to its
efficient reinforcement learning mechanism. Throughout the
control process, both gain and control law can adaptively
evolve in response to changes in power levels and state
information. During the learning process, the controller agent
accumulates control experience continuously through repeated
interactions with the environment. It autonomously learns from
this experience and explores new strategies within the control

policy space. Over time, the controller agent matures and evolves
into a master of control, thus achieving exceptional control
performance.

4.3 Test 2 anti-interference test

To assess the anti-interference capability of the proposed
controller, we conducted a steam flow disturbance benchmark

TABLE 6 The ITSE and ITAE of different method.

Method power (%) ITSE ITAE

IHA FCPI ACPI IHA FCPI ACPI

5 3.304e8 3.657e8 4.574e8 3.976e6 5.019e6 7.290e6

50 8.046e6 8.148e6 8.614e6 8.963e4 9.517e4 1.109e5

100 2.989e6 3.085e6 3.296e6 4.208e4 4.493e4 5.078e4

FIGURE 11
The changing curve of controller parameters at 5% power level. (A) Kp1; (B) Ki1; (C) Kp2; (D) Ki2.
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test on models at different power levels. During the test, a step
disturbance in steam flow of +35.88 kg/s was introduced at 10 s (Liu
et al., 2010; Ansarifar et al., 2012). The test results are depicted in

Figures 14, 15, 16. From these figures, it is evident that all three
methods exhibit strong anti-interference capabilities and swiftly
restore the water level to its normal state. Moreover, the
oscillation amplitude and adjustment time of the water level
decrease as the power level increases, signifying more efficient
water level control at higher power levels compared to lower
ones. Notably, at the 5% power level, the proposed method
restores the water level to its normal state in approximately 200 s
in Figure 14A, outperforming the FCPI and ACPI methods. This
rapid recovery demonstrates the exceptional anti-interference
performance of the IHA controller across various power levels.
In Figure 14B- Figure 16B, we observe the changes in feed water flow
and steam flow under the control of the IHA method. It is apparent
that the feed water flow quickly tracks the variations in steam flow.
However, due to the non-minimum phase characteristics of the
system at low power levels, the system’s recovery time is longer in
this scenario.

Table 7 provides a comparison of ITSE and ITAE results in
the anti-interference tests of different methods. At the 5% power
level, the ITSE of the IHA method is 77.8% lower than that of
FCPI and 34.2% lower than that of ACPI. Similarly, the ITAE of
the IHA method is 84.4% lower than that of FCPI and 70.2%

FIGURE 12
The changing curve of controller parameters at 50% power level.

FIGURE 13
The changing curve of controller parameters at 100% power level. (A) Kp1; (B) Ki1; (C) Kp2; (D) Ki2.
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lower than that of ACPI. These results clearly demonstrate that
the IHAmethod outperforms the other two methods significantly
in terms of both ITSE and ITAE at the 5% power level.
Conversely, the comparison results among the three methods
show similarity at the 50% and 100% power levels, which aligns
with the observations in Figure 14A- Figure 16A.

In summary, the proposed method exhibits a strong anti-
interference effect, particularly evident at certain power levels.
However, it does not consistently demonstrate clear advantages
across all power levels. This limitation stems from the focus of
this paper, which primarily investigated water level tracking tasks
during the training process of deep reinforcement learning. The
development of a comprehensive anti-interference strategy is a
potential area for future optimization and research.

4.4 Test 3 comparison of research results
with public literature

It is well known that the water level of UTSG is the most difficult
to control at low power level (Choi et al., 1989). In order to highlight
the advantages of the proposed method at low power level, we
compare the water level tracking effect of the IHA controller at 5%
power level with the research results in the public literature, and the
test content is to adjust the water level from 0mm to 100 mm.

The setting time serves as the evaluation index, defined as the
minimum time required for the water level to reach and stabilize
within ±5% of the set value. The comparison results are shown in
Table 8, from which we can see that the proposed method can
shorten the adjustment time to 375s, with a considerable advantage

FIGURE 14
Anti-interference test result at 5% power level. (A) water level change curve; (B) flow change curve.

FIGURE 15
Anti-interference test result at 50% power level. (A) water level change curve; (B) flow change curve.
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over other methods, fully embodies the advantages of
reinforcement learning.

To underscore the merits of the proposed method under
conditions of low power level, we juxtapose the water level
tracking efficacy of the IHA controller at a power level of 5%
with the discoveries derived from other public research. The
experimental setting entails the modulation of water levels
ranging from 0mm to 100 mm. It is worth noting that the
referenced investigations introduced methodologies such as SVR,
FOPID, IMC, and DSMC, all of which featured test content and
equipment models consistent with our current study. Consequently,
this paper directly assimilates their resultant data for the purpose of
comparative scrutiny.

5 Conclusion

Aiming at the water level control of UTSG, an intelligent
controller IHA based on CPI controller and DRL is proposed in
this paper, which does not require prior knowledge of the model’s
dynamic characteristics. Instead, it autonomously explores the
model during the training process, gathers pertinent data, and
subsequently leverages this experience to iteratively enhance
control performance. Through extensive training, this approach
yields a controller with commendable control performance and
robustness. The primary contributions of this paper are outlined
as follows:

(1) A new reward function is proposed to evaluate the control effect
and improve the training quality. The results demonstrate
significant improvements in training effectiveness, offering
valuable insights for other analogous control systems.

(2) The application of the DDPG algorithm for learning the CPI
control policy, enabling the algorithm to accumulate experience
through continuous exploration of the environment, without
heavy reliance on extensive expert experience. After continuous
training, the model’s performance stabilizes and ultimately
converges to an ideal state, with convergence values reaching
approximately −220 for the 5% power level and about −315 for
the 50% power level.

TABLE 7 The comparison results of ITSE and ITAE of different methods.

Method power (%) ITSE ITAE

IHA FCPI ACPI IHA FCPI ACPI

5 2.988e6 1.350e7 4.538e6 1.597e5 1.022e6 5.361e5

50 4.436e4 4.346e4 4.343e4 6.851e3 7.393e3 7.617e3

100 6.628e3 7.167e3 6.733e3 2.204e3 2.275e3 2.222e3

TABLE 8 Comparison results.

Methods Setting time(s)

Proposed method 375

SVR (Kavaklioglu, 2014) 408

FOPID (Salehi et al., 2019) >400

IMC (Tan, 2011) >400

DSMC (Ansarifar et al., 2011) >800

FIGURE 16
Anti-interference test result at 100% power level. (A) water level change curve; (B) flow change curve.
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(3) In the water level tracking test, at low, medium, and high
power levels, the proposed method achieves rise times of
73.9 s, 13.6 s, and 16.4 s, respectively. These results indicate
superior control performance compared to other methods,
and the controller parameters can be dynamically adjusted
based on the system’s state. When contrasted with outcomes
from traditional control algorithms and publicly available
literature, the substantial reduction in setting time clearly
demonstrates the evident advantages of the proposed method.

(4) In the anti-interference test, at low power levels, the IHA
controller can restore the water level to its normal state within
200 s, which is considerably faster than other methods.
Additionally, the feed water flow promptly adapts to
variations in steam flow, effectively mitigating the impact
of steam flow disturbances on the water level.

In summary, the controller proposed in this paper demonstrates
effective control across various power levels, as reinforcement learning
autonomously learns optimization strategies for controller parameters
without relying on expert knowledge. However, it is crucial to
acknowledge that the designed control method has been exclusively
validated on the steam generatormodel presented in this paper, yielding
favorable results. Its efficacy has not been verified for water level control
in other steam generator models, presenting a challenge for our team to
address in the future. Given the operational similarities among different
steam generator models, our team aims to transfer the acquired control
strategies to other models through imitation learning, thereby achieving
the migration of advanced control strategies.
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