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The automotive sector is experiencing rapid evolution, with the next-generation
emphasizing clean energy sources such as fuel-cell hybrid electric vehicles
(FCHEVs) due to their energy efficiency, eco-friendliness, and extended
driving distance. Implementing effective energy management strategies play a
critical role in optimizing power flow and electrical efficiency in these vehicles.
This study proposes an optimized energy management strategy (EMS) for
FCHEVs. The suggested EMS introduces a hybridization between the
equivalent consumption minimization strategy (ECMS) and the Artificial
Hummingbird Algorithm (AHA). The Federal Test Procedure for Urban Driving
(FTP-75) is employed to evaluate the performance of the proposed EMS. The
results are assessed and validated through comparison with outcomes obtained
by other algorithms. The findings demonstrate that the proposed EMS surpasses
other optimizers in reducing fuel consumption, potentially achieving a 48.62%
reduction. Moreover, the suggested EMS also yields a 15.45% increase in overall
system efficiency.

KEYWORDS

electric vehicle, energy management, equivalent consumption minimization strategy,
fuel-cell hybrid electric vehicles, optimization

1 Introduction

Energy scarcity and environmental preservation garner significant attention in various
nations, and the extensive usage of fossil fuels exacerbates ecological concerns. Among the
different energy sources and technologies that can be used to replace classical energy is
hydrogen energy, where hydrogen fuel cells (FCs) are seen as potential alternatives for
achieving zero-pollution emissions (Luderer et al., 2021). The transportation industry is
mandatory for daily life, and the car sector is vital in many countries. Currently,
conventional fuel cars continue to dominate the market, emitting pollutant gases.
Notably, the transportation industry contributes significantly to greenhouse gas
emissions (Yan et al, 2023), which promotes decarbonization by replacing classical
fossil fuels with clean fuels like hydrogen (Chang et al., 2019; Zuo et al., 2023a; Zuo
et al,, 2023b). Usually, proton exchange membrane fuel cells (PEMFCs) are used in the

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344341/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344341/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344341/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344341/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344341/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1344341&domain=pdf&date_stamp=2024-03-19
mailto:hr.hussien@psau.edu.sa
mailto:hr.hussien@psau.edu.sa
mailto:aalahmer@tuskegee.edu
mailto:aalahmer@tuskegee.edu
https://doi.org/10.3389/fenrg.2024.1344341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1344341

Almousa et al.

FCHEVs. The PEMFEC, which utilizes hydrogen to generate heat,
electric power, and water, has a slow response to changes in driving
conditions and encounters challenges in adapting to these changes
(Ghoniem et al., 2023a; Chen et al., 2024). Rapid acceleration and
deceleration have an impact on the FC’s longevity, and the hydrogen
reaction in the fuel cell is frequently less than the load rate. Despite
these difficulties, battery systems (BSs) and supercapacitors (SCs)
are frequently used with fuel cells in hybrid energy storage systems
for power applications (Wang et al., 2022a). Lithium-ion batteries
have been getting more and more attention in the last few years (Li
et al,, 2024), which makes them a feasible solution for hybridization
with the SCs (Zuo et al., 2022). This lowers the amount of hydrogen
used, shrinks the size of the FC, and improves the power system
efficiency (Li et al, 2021; Wang et al., 2022b). The growing
significance of hydrogen energy in the transportation sector is
demonstrated by the widespread usage of FC-based hybrid
systems in FC-hybrid automobiles and other transportation
equipment (Saleet et al). FCs serve as the main source in
FCHEVs, with SCs or batteries serving as supplemental power
sources. These vehicles must navigate challenging road conditions
and abrupt power changes, which might shorten the FC’s lifespan
(Zhang et al.,, 2019; Ghoniem et al., 2023b). When load demand is
high, BSs and SCs can simultaneously act as supplementary energy
sources to recover surplus energy and power FCs (Kasimalla and
Velisala, 2018). Because of their high specific power, quick dynamic
response, and energy recovery, SC can react quickly to sudden
changes in load demand (Kasimalla and Velisala, 2018). The
hybridization of these components enhances the operational
conditions of the fuel cell (FC) system, resulting in improved
performance.

The effectiveness and performance of FCHEV:s are significantly
influenced by the energy management Strategies (EMSs) (Sulaiman
et al., 2018). Its primary purpose is to distribute power among
various energy sources to accomplish two objectives: (1) lowering
the amount of hydrogen consumed or limiting the amount of
equivalent energy consumed (Li et al., 2016); and (2) prolonging
the life of the fuel cell, which also increases the hybrid system’s
economics (He et al, 2022). In the literature, EMSs can be
categorized into several categories. The two main ones are rule-
based and optimization-based EMSs (Zhang et al., 2020). The rule-
based approach is the first kind of EMS utilized to maximize fuel cell
efficiency. It entails acquiring the fuel cell's power map and
modifying the power distribution in accordance with the status
of the power system. This category includes deterministic rule-based
strategies like State machine control strategy (SMCS) (Kasimalla and
Velisala, 2018) and fuzzy rule-based strategies. Fuzzy logic
controllers have found extensive use in EMSs due to their
although  their
performance remains somewhat dependent on the designer’s

simplicity in design and implementation,
expertise (Sulaiman et al., 2015; Xue et al, 2020). Nevertheless,
there are drawbacks to this approach, including characteristics that
are influenced by test operating circumstances and a lack of
flexibility to adjust to various situations. Furthermore, to tackle
these challenges, a digital control scheme is recommended for
integrating solar, battery, and fuel cells. This scheme also
elucidates the energy management system employed by diverse
electric  vehicles in  (Mathesh and

control  units  of

Saravanakumar, 2023a).
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Optimization-based EMSs are rooted in solving a predetermined
objective function, either minimization or maximization. These
EMS are classified into two sub-categories: online and offline
strategies. Offline EMS involves solving the optimal control
problem for a predefined mission (speed profile). On the other
hand, online EMS are dynamic and robust, as they evolve in real-
time according to the changes in the objective function values.
Recently, there has been an increased interest in real-time optimum
energy management systems (Benhammou et al., 2023). Large data
sets are used by learning-based methodologies to train parameters
for ideal control. Jia et al. (2024) introduced a learning-based model
predictive EMS with health-aware control to ensure the stable,
efficient, and healthy operation of FCHEVs. To address the
economy and durability concerns of FCHEVs, Song et al. (2024)
proposed an energy management strategy utilizing nonlinear model
predictive control (NMPC) technology, dynamic programming, and
the Markov Monte Carlo method for optimal control. Furthermore,
Huang and He (2024) presented a data-driven EMS based on deep
reinforcement learning aimed at enhancing the fuel economy of
FCHEVs and improving the training effectiveness of the proposed
EMS. Rasool et al. (2023) emphasized the significance of EMSs in
optimizing the performance of FCHEVs. This highlighted the need
for additional research and the integration of advanced EMS
techniques with multi-objective algorithms to improve fuel
economy, reliability, and cost-effectiveness. Huo et al. (2023)
proposed an improved EMS for FCHEVs using a soft actor-critic
algorithm. Oubelaid et al. (2023) introduced a multi-stage power
management strategy designed for HEVs with the primary goal of
safeguarding FCs against potential damage resulting from sudden
load variations. This strategy incorporated a fuzzy EMS and
coordinated switching strategy to facilitate efficient utilization
and precise control of FC power. Zhang et al. (2023) proposed a
multi-level EMS for FCHEVs with the objective of enhancing the
energy utilization rate of the system. This strategy was specifically
designed to elevate the overall efficiency of the FCHEV hybrid power
system. Xu et al. (2023) introduced an adaptive model predictive
control-based EMS for FCHEVs aimed at enhancing fuel efficiency
and mitigating degradation of the onboard FC hybrid systems.

Generally, most of the EMSs concentrate on maximizing energy
usage and prolonging the life of FC and other parts. Figure 1 depicts
all the categorizations of EMSs.

Recent references have demonstrated that the highest
performance levels can be reached through the integration of
online strategies and metaheuristic optimization algorithms
(MAs), and these solutions have gained immense popularity
(Antarasee et al., 2022). One approach to enhance EMS
efficiency involves the use of a genetic fuzzy-based EMS, as
proposed in (Ahmadi et al, 2018). Additionally, authors in
(Antarasee et al., 2022) introduced an enhanced EMS that is
based on a genetic algorithm. Furthermore, authors in Rezk et al.
(2019) have put forward optimizations for ECMS and EEMS
using the Salp Swarm Algorithm (SSA), and the Mine Blast
Algorithm (MBA). Among these approaches, EEMS-SSA
produced the most favorable. In the comparative study
conducted in (Zhao et al., 2019), various MAs were used, like
MBA, Artificial Bee Colony (ABC), Cuckoo Search (CS), Grey
Wolf Optimization (GWO), and Whale
Algorithm (WOA).

Optimization
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FIGURE 2
The topology of the FCHEV power system.

The goal of this study is to explore the optimal utilization of fuel
through the application of the Artificial Hummingbird Algorithm
(AHA), a bio-inspired metaheuristic algorithm, to minimize the cost
function of the equivalent consumption minimization strategy
(EEMS). The primary contribution outlined in this manuscript is
the implementation of an EMS that effectively reduces fuel
consumption and enhances electrical efficiency. The proposed
EMS is designed to decrease the hydrogen consumption of the
power system, drawing inspiration from the ECMS and AHA. A
comparison is drawn between the proposed ECMS-AHA and
conventional approaches such as ECMS, ECMS-based cuckoo
search (CS), particle swarm optimization (PSO), and state
machine control strategy (SMCS). The key objectives of this
research are as follows.

o Develop an optimized EMS for FCHEV applications to
achieve improved fuel savings and higher electrical efficiency.

« Enhance the External Energy Maximization Strategy (EEMS)
by integrating it with the AHA.

« Evaluate the proposed EMS using the Federal Test Procedure
(FTP-75) driving profile and compare the results with classical

Frontiers in Energy Research

ECMS, ECMS-PSO, ECMS-CS, and state machine control
strategy (SMCS).

2 The proposed FCHEV system

The FCHEV, utilizing a combination of fuel cells (FC), a battery
system (BS), and supercapacitors (SC), is constructed in an active
topology to satisfy the traction system requirements of the vehicle’s
engine. As depicted in Figure 2, the power system is composed of a
PEMEFC, a Lithium-ion BS, and a SC.

The FC plays a crucial role in controlling and maintaining the
mean power required by the traction system, while the BS and
supercapacitors provide additional support for the load during
continuous and transient peak loading cases. These BSs ensure
consistent power demands are met, whether during routine
operation or sudden spikes in load power. The power system
effectively manages varying load conditions, optimizing overall
performance and efficiency. The motor traction forces (F,,) are
presented by the external forces applied to the external structure, as
depicted in Eq. 1 (Zhao et al., 2019):

03 frontiersin.org
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FIGURE 3

Artificial hummingbird algorithm optimization flowchart.

Ftr:Fd_Frr_Far_Fup (1)

Where F,; is the demanded force of the motor, F,, is the rolling
resistance force (as defined in Eq. 2), F,, is the aerodynamic force
applied on the front of the vehicle (as defined in Eq. 3), and F,,,, is the
uphill driving force (as defined in Eq. 4). Each force can be defined as

follows (Mathesh and Saravanakumar, 2023b):

F. = f.F. 2

where f, is rolling resistance coefficient, and F, is tire normal
load (N).

2
Vers

For = Ca.hp,—3

3)

where p, represents the air density (1.32 kg/m?), A is the vihecule’s
frontal area (m?), and C, represents the drag coefficient, and Vs is
effective (relative) speed (m/s).

(4)

F,p, = m.g.sin (a)

Where m represents the vehicle mass (kg), g is the acceleration
gravity (m/s®), and « represents the angle of the road.

o PEMFC: FC combines hydrogen and oxygen, resulting in water
and electricity by passing the atoms through a proton exchange
membrane. The membrane, made of perfluoro sulfonic acid
polymer, selectively allows protons to flow. PEMFCs offer high
power capacity compared to their volume, fast startup dynamic,
and moderate operating temperatures, making them widely
used in many applications (Shaari and Kamarudin, 2019;
Alnagbi et al., 2022).

« Supercapacitor (SC): Often referred to as ultracapacitors, SCs
are electrical energy storage devices that store and release
energy via the electrostatic charge principle. They are made
consisting of two electrodes immersed in an electrolyte
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TABLE 1 The parameters of the power system.

Parameter Value

BS voltage 48V
BS capacity 40 Ah
BS initial SoC 65%
BS time response 20s
Capacitance of the SC 156 F
Voltage of the SC 291.6 V
Initial voltage of the SC 270V
Number of cells of the PEMFC 65
Stack efficiency of the PEMFC 50%
The rated operating temperature of the PEMFC 45°C
The capacity of the PEMFC’s converter 12.5 kW
The capacity of the BS’s boost converter 4 kW
The capacity of the BS’s buck converter 1.2 kW
DC bus voltage 270 V
The capacity of the motor’s inverter 15 kVA-200 V
The frequency of the motor’s inverter 400 Hz

solution, which, when voltage is applied, accumulates
electrical charges to form a double-layer capacitance.
Supercapacitors have a long cycle life, high power, and fast
charge/discharge cycles.

o Battery system: Lithium-ion batteries are represented by
several electrochemical models, including the Randles
Circuit, Thevenin Model, and the Internal Resistance
Battery Model (Fotouhi et al, 2016). One popular model
for characterizing electrical properties is the Shepherd
Model (Shepherd, 1965). The discharge voltage of the
battery is calculated using a variety of factors, including
open circuit voltage, exponential voltage losses, polarization
voltage losses, and ohmic losses (Mayyas et al., 2013).

« Converters: Bidirectional DC/DC boost converters for the BS
and SC coupling to the common DC bus, enabling power flow
in either direction. By lowering current fluctuations, multilevel
converters enhance the DC bus’s power quality (Mayyas et al.,
2011). By transferring power to the DC bus with minimal
changes in current, a multilayer boost converter shields the FC
stack from possible harm. A bidirectional DC/AC converter
powers the vehicle motor, enabling power flow in both
directions for regenerative braking and propulsion, hence
increasing system efficiency.

3 Energy management strategies

o SMCS: the state machine control strategy is a strategy based
on switching rules (Rasool et al., 2023). It is based on selecting
the operating state based on the inputs’ states: the motor
demanded power and the battery SOC. Stateflow is used to
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create the state machine, and the continuous control system is o ECMS: ECMS is an algorithm designed for instantaneous
built as an optimum setpoint generator coupled to local optimization that uses Pontryagin’s Minimum Principle
controllers. to compute the equivalence factor, a penalty for battery
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TABLE 2 Comparison between different considered EMSs.
EMS H, (g) n (%) Decrease in H,% Increase in 7 (%)
SMCS 58.62 53.14 29.47 6.3
ECMS 80.48 48.92 48.62 15.45
cs 4559 54.56 9.29 353
AHA 4135 56.48 0 0
PSO 59.4 48.43 30.39 16.62
objective function of ECMS is expressed by Eq. 5
80 (Njoya Motapon et al., 2014):
60 J = min(Prc + & Ppar) (5)
40 Where Prc represents the FC power, Py, represents the battery
20 power, and « is the penalty factor. The following constraints (Eqs
l 6-8) should be considered while forming the problem (Njoya
0 Motapon et al., 2014):
SMCS ECMS Cs AHA PSO
m H2(gram) = Efficiency (%) PR < Ppc < PREX (6)
= Decrease in H2 % ™ Increase in 1 (%) Plin < p,.. < Plrex (7)
FIGURE 7 0<a<100 (8)

Graphical comparison results between different
considered EMSs.

power consumption (Musardo and Rizzoni, 2005). It
maximizes fuel economy by maintaining the battery
state of charge below its maximum threshold. ECMS
estimates the equivalence factor using instantaneous or
prediction-based estimation, ensuring the battery state
stays within certain limits (Rezaei et al., 2018). The

Frontiers in Energy Research

Where the SoC,,;, is the lower SoC, V. and Quuy are the
battery’s voltage and capacity.

o Optimized ECMS-based AHA:

The cost function is minimized through the utilization of the artificial
hummingbird algorithm (AHA), a metaheuristic optimization algorithm,
as opposed to the PMP minimization strategy. Considering the
constraints specified in Eqs 6-8, this cost function can be minimized
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in the capacity of a metaheuristic optimizer. The online optimization
procedure regulates the power transfer within the power system in order
to minimize the aforementioned equation. More details about the AHA
are provided in Section 4.

4 Artificial hummingbird
algorithm (AHA)

AHA replicates the flight abilities and clever food
detection tactics observed in the natural habitat of the

Frontiers in Energy Research

hummingbirds. Hummingbirds tend to visit food sources
with the highest nectar volume, requiring a high nectar-
refilling rate and long wunvisited time. In the AHA
algorithm, hummingbirds determine the highest visit-level
food sources and choose the one with the highest nectar-
refilling rate as their target food source. They can then
fly towards it for feeding. This algorithm includes three
phases:  guided

migration foraging.

foraging, territorial foraging, and

o Guided foraging:

frontiersin.org
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In this stage, the AHA algorithm makes use of three flight skills:
omnidirectional, axial, and diagonal flights. Hummingbirds can fly
in three different directions: omnidirectionally, which allows them
to project any direction onto any of the three coordinate axes, and
diagonally, which allows them to travel from one corner to the other.
In this algorithm, all the candidate (x) solutions are updated in the
guided foraging if there are better solutions as presented in Eq. 9:

)

Xgf (t + 1) = Xtarget T A+ D. (x (t) - xtarget)

where X¢o,q¢ is the target position, a is guiding gain, and D expresses

the flight patterns that can be expressed by Eq. 10:
ifi=randi([1,d]); axial flight

poll if i =randperm([1,k]),k € [2, [ri(d - 2)] + 1]; diagonal flight

if omnidirectional flight
0 otherwise

(10)

Where d expresses the search space dimensions, r; is a
random gain.

o Territorial foraging:

After visiting its target food source and ingesting the nectar from
flowers, a hummingbird may seek a new food source rather than visit
other sources. As a result, it can easily go to a nearby area within the
search space range, where it is possible to discover a fresh and rich source
or a potential improvement over the one it already has. The following is
the mathematical equation representing the hummingbirds’ local search
for a potential food source as part of this foraging technique. The

territorial foraging phase model can be presented in Eq. 11:
Xef (t+1) = Xegrger +b- D - x(2) (11)

Where b is a normal distribution with null mean and unitary
standard deviation that expresses the territorial factor.

Frontiers in Energy Research

o Migration foraging:

One technique for figuring out a hummingbird’s rate of
migration is the AHA algorithm. The hummingbird will travel to
a more distant food source if there is inadequate nectar
replenishment in an area with a high rate of refilling. The
hummingbird will migrate to a new randomly generated food
source if the migration coefficient rises above a certain number
of iterations. The visit table is then updated as a result of this
migration foraging process. The migration foraging phase model can
be formulated by Eq. 12:

Xmf(t+1)=Lb+r- (Ub~Lb) (12)

where Lb and Ub are the lower and the upper boundaries of the
search space, r is a random factor.

The optimization process diagram for AHA is shown
in Figure 3.

5 Results and discussion

The simulation model is constructed and programmed in
Matlab/Simulink 2022a, where the S-function block includes the
proposed ECMS-AHA, where the inputs are the BS’s state of charge
(SoC) and the motor demanded power. The current PI controllers
are employed for controlling the FC and BS converters. The model’s
S-function utilizes the inputs, namely, the battery SOC and load
demand, to produce the reference currents for the FC and BS. All
models are formulated by building upon the individual subsystem
models outlined in Section 2. The simulation tests use the
parameters provided in Table 1.

The SC is connected directly to the common DC bus, therefore,
its voltage is the same as that of the voltage of the common DC bus.
This last is adjusted by BS converters, and the required level is

08 frontiersin.org
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The battery voltage under different EMSs.

maintained with a straightforward Proportional-Integral (PI)
controller. The PEMFC boost converter controls both input
current and output voltage. The BS is charged and discharged
using two DC/DC converters, which also control output voltage
and restrict current. An inverter system satisfies voltage and
frequency specifications while converting DC electricity to AC
power. Figures 4A, B show the vehicle speed profiles according
to the FTP-75 and motor load.

Figure 5 illustrates the real-time hydrogen consumption rate,
measured in liters per minute, representing the variation in
hydrogen consumption rate over time in response to the
changes in operating conditions. The curves in Figure 5
portray the impact of each management strategy on hydrogen
consumption. Specifically, the ECMS-AHA demonstrates an
effective reduction in hydrogen consumption during peak
times while maintaining minimal consumption at other times.
This suggests that the ECMS-AHA strategy is designed to
optimize hydrogen usage by adjusting parameters or
operations in response to demand fluctuations.

Figure 6 illustrates the overall quantity of hydrogen used during
the simulation time. The ECMS-AHA management approach
demonstrates a notable reduction in overall fuel consumption
compared to alternative methods or scenarios. Overall, the
ECMS-AHA technique proved to be the most effective in
optimizing hydrogen utilization during the study period.

For a thorough investigation of its performance, it was evaluated
using two primary metrics: electrical efficiency and hydrogen
consumption. The electrical efficiency, which expresses the total
power losses, can be calculated as the ratio of supplied power to
demanded power by the traction system.

- Regarding hydrogen consumption, the ECMS-AHA leads to a

significant reduction in hydrogen consumption from 80.48 g to
41.35 g compared to SMCS, ECMS, CS, and PSO. This results

Frontiers in Energy Research

600
Time (s)

in a decrease in hydrogen consumption by 29.47%, 48.62%,
9.29%, and 30.39%, respectively.

The methodology used to derive these findings is presented in
Eq. 13:

) =100 fECMS,SMSC,SC,PSO - fECMS—AHA (13)

recums-ara (%
[ Ecmssmsc.sc.pso
where pcars apa is the reduction ratio in the consumed fuel, frcass.
AHA 1s the consumed fuel by this strategy, and fzcms, scmscscpso
represents the by ECMS, SMCS, SC and PSO strategies.

- In terms of electrical efficiency, the proposed strategy (ECMS-
AHA) demonstrates improvements of 6.3%, 15.45%, 3.53%, and
16.62% compared to SMCS, ECMS, ECMS-CS, and ECMS-PSO,
respectively. This demonstrates the capability of the proposed
strategy to enhance load power supply while reducing power
losses. The improvements in electrical efficiency demonstrated
by the proposed strategy ECMS-AH compared to SMCS, ECMS,
ECMS-CS, and ECMS-PSO can be attributed to the specific
characteristics and capabilities of the AHA. The AHA may
offer a more effective and efficient optimization approach
compared to the algorithms used in SMCS, ECMS, ECMS-CS,
and ECMS-PSO. The AH algorithm’s ability to explore and exploit
the search space for optimal solutions could lead to significant
improvements in electrical efficiency. Furthermore, ECMS-AH
may demonstrate enhanced adaptability to dynamic system
conditions, allowing it to make real-time adjustments and
optimizations that result in improved electrical efficiency gains
compared to the other strategies. Moreover, the AHA algorithm
within the ECMS framework may excel in effectively balancing
power management trade-offs, leading to better load power supply
enhancement and reduced power losses. It is important to
highlight that the variation in efficiency gains can be attributed
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to the differences in optimization algorithms, adaptability to
dynamic system conditions, and the ability to effectively
balance power management trade-offs. The distinctive approach
of each strategy to optimization and control significantly influences
the attained efficiency gains. For instance, when applied CS or PSO
within the ECMS framework, the use of CS or PSO may enable
better exploration and exploitation of the search space, leading to
higher efficiency gains compared to other strategies. However,
SMCS typically relies on predefined states and transitions, which
may not be as adaptive or responsive to dynamic changes in the
system’s operating conditions. This could result in suboptimal
power management and efficiency.

These figures and indicators demonstrate that the utilization of
ECMS-AHA in a PEMFC-integrated hybrid power system results in
a reduction in hydrogen consumption.

Table 2 provides a numerical comparison of the considered
management strategies, including hydrogen consumption, efficiency,
the reduction ratio in hydrogen consumption, and the improvement
ratio in efficiency. The comparison indicates the superiority of the
ECMS-based AHA. Specifically, the ECMS-based AHA reduces
hydrogen consumption from 80.48 to 41.35 g, resulting in a savings
ratio of 30.39% compared to the standard ECMS method. Additionally,
the ECMS-based AHA has improved its efficiency from 48.92% to
56.48%. These findings are visually represented in Figure 7, where the
metrics for each management strategy are depicted in columns.

As depicted in Figure 8, the fuel cell (FC), which has relatively
delayed reaction kinetics, assumes the predominant responsibility
for supplying most of the load poder. Meanwhile, the battery system
(BS) stores excess energy to ensure a constant power flow. In certain
instances, the FC may require more time than expected to reach its
reference output. Utilizing the stored energy in the battery during
periods of high demand or in case of a power disruption in the fuel
the Additionally,
supercapacitors (SCs) effectively manage sudden load fluctuations

cell can enhance system’s  reliability.
due to their rapid ability to store and discharge electrical energy.
Figure 9 illustrates the voltage of the supercapacitor (SC).
Variations in power absorption or release in the common bus result
in voltage fluctuations. When power generation aligns with power
demand, the SC voltage stabilizes at 270 V. However, during sudden
load fluctuations, the SC voltage rapidly decreases as it discharges to
meet the immediate power requirements of the traction system.
Figure 10 displays the outcomes of the voltage of the FC achieved
using various control strategies. The suggested approach employs
the FC with a more moderate response time when compared to
alternative methods. This decision contributes to a prolonged state
of health (SoH) for the FC, enhancing its longevity and efficacity.
Figure 11 provides a depiction of the battery voltage. In the case
of the suggested technique incorporating AHA, the battery voltage
exhibits significant fluctuations in voltage. The BS plays a crucial role
in protecting the FC system and reducing its voltage fluctuations,

leading to increased battery voltage variability.

6 Conclusion

This study presents an innovative energy management strategy
(EMS) designed for a fuel cell hybrid electric vehicle (FCHEV) with a
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key focus on optimizing the EMS using the Artificial Hummingbird
Algorithm (AHA). The primary goal of this approach is to enhance
electrical efficiency and improve fuel economy. This study aims to
develop an optimized EMS for FCHEV applications, enhance the
External Energy Maximization Strategy (EEMS) with the AHA, and
comprehensively evaluate the proposed EMS under the Federal Test
Procedure (FTP-75) driving profile. The simulation results indicate
substantial reductions in hydrogen consumption and enhancements in
electrical efficiency when compared to alternative strategies such as
SMCS, ECMS, ECMS-CS, and ECMS-PSO. Numerically, the proposed
EMS achieved a noteworthy reduction in fuel consumption to 41.35 g,
representing a 29.47% decrease compared to SMCS, a 48.62% decrease
compared to ECMS, a 9.29% decrease compared to SC, and a 30.39%
decrease compared to PSO. Moreover, the overall efficiency increased to
56.48%. These improvements are attributed to the specific
characteristics and capabilities of the AHA, which offers a more
effective and efficient optimization approach compared to the
algorithms used in other strategies. The AHA algorithm’s ability to
explore and exploit the search space for optimal solutions could lead to
significant improvements in electrical efficiency. It is important to note
that the real-time implementation of the presented strategy is
constrained by the requirement for high-speed computing capability
to effectively improve the objective function. However, it is anticipated
that advancements in physical processing systems will soon overcome
this limitation.
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