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For substation secondary circuit terminal strip wiring, low efficiency, less easy
fault detection and inspection, and a variety of other issues, this study proposes a
text detection and identification model based on improved YOLOv7-tiny and
MAH-CRNN+CTC terminal lines. First, the YOLOv7-tiny target detectionmodel is
improved by the introduction of the spatially invariantmulti-attentionmechanism
(SimAM) and the weighted bidirectional feature pyramid network (BiFPN). This
also improves the feature enhancements and feature fusion ability of the model,
balances various scales of characteristic information, and increases the
positioning accuracy of the text test box. Then, a multi-head attention hybrid
(MAH)mechanism is implemented to optimize the convolutional recurrent neural
network with connectionist temporal classification (CRNN+CTC) so that the
model could learn data features with larger weights and increase the
recognition accuracy of the model. The findings indicate that the enhanced
YOLOv7-tiny model achieves 97.39%, 98.62%, and 95.07% of precision, recall,
and mean average precision (mAP), respectively, on the detection dataset. The
improved MAH-CRNN+CTC model achieves 91.2% character recognition
accuracy in the recognition dataset.
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1 Introduction

A more significant piece of insulating equipment (Huang et al., 2023) in the secondary
equipment (Zhong et al., 2023) of a substation is the secondary circuit terminal strip. It
serves as a line transmission component, connects the equipment inside and outside the
screen, and carries numerous groups of mutually insulated terminal components. The
ability of the protection device to connect to the main equipment via the terminal strip is
crucial, and the ability of the protection device to operate normally is directly correlated
with proper wiring. Normalizing the terminal block can significantly lower the likelihood of
accidents resulting from the secondary circuit and the frequency of wiring errors. Current
worker point-to-point inspections are not only slow but also prone to incorrect and
inadequate inspections (Liu et al., 2023). The rapid advancement of deep learning (Wang
et al., 2018) has led to a surge in the use of image detection and recognition in power-related
fields, including live detection, robot inspection of substations, and unmanned aerial vehicle
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inspection of transmission lines. These applications benefit from the
high stability and accuracy of the recognition features of the
technology.

Currently, the advancement of deep learning in the field of
artificial intelligence technology has progressively established the
mainstream. In order to avoid the hidden hazard of substation
operation, Zhou et al. (2018) integrated the efficient and accurate
scene text (EAST) algorithm into the line end identification of the
screen cabinet to identify the text information. This algorithm was
then combined with manual experience judgment. By employing
combined character placement and recognition, Wang et al. (2020)
increased the text character recognition accuracy and expedited the
recognition process. The accuracy of each module cannot be
optimized by this training strategy; it can only improve the
model overall performance. Wang and Yi (2019) trained
YOLOv5 by incorporating the concept of structural clipping into
the model and then pruned the model based on the training
outcomes. Training precision was lost even if the model scale
was shrunk and training speed increased. The maximum pooling
layer was applied to the convolutional neural network (CNN) model
by Masci et al. (2012) in order to increase the model recognition
accuracy. Cui et al. (2013) used a pattern of template matching to
ascertain the direction and location of the terminal row;
nevertheless, it is limited to determining these two factors, and
manual labor is still required for text recognition. Wang et al. (2019)
suggested fresh segmentation results, processed the algorithm, and
employed a progressive way to segment texts of varying scales.
Although the detection speed is lost, the detection rate is increased.
Yang et al. (2022) described a text identification model that
combines support vector machines with quad-pronged splitting
having strong positioning effects and good accuracy, but it is too
complex to extract design elements. Although the detection speed
was poor, Xiaoxuan et al. (2021) built a set of intelligent recognition
systems based on the YOLOv3 network and paired it with deep
transfer learning approach. The multi-dimensional long short-term
memory recurrent neural network with connectionist temporal
classification (MDLSTM-RNN+CTC) model was proposed by
Messina and Louradour (2015) and applied to text line character
identification. This approach incorporated feature information from
four dimensions thoroughly; however, its recognition accuracy was
not very excellent.

In response to the shortcomings of the existing detection and
recognition models, this paper presents an innovative approach for
terminal text detection and recognition that combines an enhanced
YOLOv7-tiny model with a MAH-CRNN+CTC architecture.
Initially, the proposed improved YOLOv7-tiny object detection
model integrates the spatially invariant multi-attention
mechanism (SimAM), which plays a pivotal role in enhancing
the model capacity to discern and focus on essential features of
the target while filtering out noise, thereby boosting the overall
detection performance. Subsequently, the model adopts a weighted
bidirectional feature pyramid network (BiFPN), which efficiently
consolidates feature maps from varying scales. This strategy enables
the bidirectional exchange of feature information and dynamic
allocation of weights according to feature significance, further
refining the model precision in detecting targets. The MAH-
CRNN+CTC recognition model introduces a multi-head
attention hybrid (MAH) mechanism. This component facilitates

the comprehensive consideration of the entire sequence
information, effectively addressing the issue of long-range
dependencies. As a result, it accelerates the model training
process, enhances feature extraction efficiency, and significantly
boosts the model recognition accuracy.

The bidirectional long and short-term memory (Bi-LSTM)
module offers a potent temporal modeling tool that empowers
the model to decipher and leverage intricate contextual cues
within the input sequences, thereby bolstering both the precision
and resilience of the recognition process. Conversely, the CNN
module concentrates on achieving end-to-end text recognition
through multi-level analysis and abstraction of images,
transforming intricate image data into sequential features
compatible with subsequent processing by the bidirectional Bi-
LSTM component.

This paper is structured as follows: Section 1 introduces the text
detection module, elaborating on the YOLOv7-tiny network model
and detailing the improvements made to it; Section 2 encompasses
an introduction to the text recognition module, focusing on the
enhanced methods employed for improving the text recognition
model; Section 3 presents the analysis of the experimental outcomes
for both the text detection and recognition processes; and lastly,
Section 4 presents a summary of the paper.

2 Text detection

2.1 Improving the YOLOv7-tiny
network model

YOlOv7 consists of three components: the neck, which fuses
features, the head, which makes predictions, and the backbone,
which extracts features (Wu et al., 2019). The major components of
the feature extraction network of the YOLOv7 network are the
MPConv, spatial pyramid pooling, cross-stage partial channel
(SPPCSPC), E-ELAN, and Columbia Broadcasting System (CBS)
modules. The E-ELAN module uses expand, shuffle, and merge
cardinality to improve network learning while maintaining the
original gradient path based on the original ELAN. After
convolution of the feature map 3 times and 5 × 5, 9 × 9, and
13 × 13 maximum pooling, the SPPCSPC module uses the concept
of spatial pyramid pooling to obtain image features under various
receptive fields. This solves the issue of repetitive feature extraction
from the image by the convolutional neural network. Subsequently,
the characteristics of distinct receiving domains are combined, and
following double convolution, they are ultimately split with the
feature map. The MPConv module uses a 2 × 2 maximum pooling
operation to increase the receptive field of the current feature layer.
It then uses 1 × 1 convolution to adjust the number of channels.
Finally, it fuses the feature information that has been processed with
the feature information obtained by normal convolution to improve
the feature extraction capability of the network. As the
YOLOv7 feature fusion network, the path aggregation network
(PANet) is utilized to fuse the deep semantic and shallow
location characteristics of the image and produce feature maps of
various sizes. The RepConv structure modifies the number of
channels for characteristics with varying scales on the
prediction side.
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YOLOv7-tiny is an improvement over YOLOv7, as shown in
Figure 1. ELAN-S is utilized in place of E-ELAN in the backbone
section, and the SimAM module is added to the ELAN-S
structure to improve the feature expression capabilities of the
network. The Max pooling operation is exclusively used for
down sampling, and the convolution process in MPConv is
canceled. The BiFPN module is incorporated into the SPPCSPC
structure for feature fusion in the neck section. The RepConv
structure is still used in the head section to modify the number
of channels for features with varying scales.

2.2 SimAM module

The module for attention mechanisms different from the
channel attention mechanism and spatial attention that have
been previously proposed, SimAM (also known as the SimAM
module) (Yang et al., 2021) is a lightweight attention module
that is both simple and incredibly effective. The SimAM module
will not add further complexity to the network because it does not
include any extra parameters. It is a feature map-derived 3D
attention method. This module uses the energy function to
optimize it in accordance with neuroscience theory and quickly
arrive at an analytical solution; in other words, it uses the energy
function to determine the attention mechanism weight. The energy
function et(*) is defined as follows:

et wt, bt, y, xi( ) � yi − t̂( )2 + 1
M − 1

∑M−1

i�1
y0 − x̂i( )2, (1)

t̂ � wtt + bt
x̂i � wtxi + bt

{ , (2)

where t and xi are the target neuron and other neurons of the
input feature tensor X, respectively, and X ∈ RC×H×W. C, H, and
W are the pass number, height, and width of the feature tensor,
respectively. i is the neuron index on a certain number of
channels. M is the number of neurons on the channel,
M � H × W. wt and bt target neuron transform weights and
bias, respectively. y, yt, and y0 are scalar quantities, of which
yt and y0 are for different values; this paper introduced the binary
label instead, with yt � 1 and y0 � −1.

Neurons inside the same channel can be trained to have their
linear separability minimized by minimizing Eq. 1. By incorporating
a regular term and employing binary labels, the energy function can
be changed to

et wt, bt, y, xi( ) � 1
M − 1

∑M−1

i�1
−1 − wixi + bt( )[ ]2 + 1 − wtt + bt( )[ ]2

+ 1 − wtt + bt( )[ ]2 + λw2
i ,

(3)
where λ is the regularization coefficient and wi is the weight of the
transformation of the i neuron.

FIGURE 1
Improved YOLOv7-tiny network structure.
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Eq. 3 to Eq. 4.

wt � − 2 t − ut( )
t − ut( )2 + 2σ2t + 2λ

bt � −1
2

t + ut( )wt

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (4)

where ut and σ2t are both intermediate variables. Eq. 5,

ut � 1
M − 1

∑M−1

i�1
xi

σ2t �
1

M − 1
xi − ut( )2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(5)

By substituting wt and bt into Eq. 2, the minimum energy e*t can
be obtained, that is Eq. 6,

e*t �
4 σ̂2 + λ( )

t − û( )2 + 2σ̂2 + 2λ
. (6)

ut and σ2t are replaced with the mean û � 1
M∑M

i�1
xi and variance

σ̂2 � 1
M∑M

i�1
(xi − û)2, respectively.

The lower the energy, the greater and more important the
difference between the target neuron and the peripheral neuron
t. The importance of neurons can be obtained by obtaining 1

e*t
, and

then the enhanced feature tensor ~X can be obtained by using Eq. 7:

~X � sigmoid
1
E

( ) ⊙ X, (7)

where X is the input characteristic tensor. E is the sum of e*t in all
channels and spatial dimensions. ⊙ is the Hadamard product.

In Eq. 7, the sigmoid function is added to limit the excessive
value of E, and the sigmoid function does not affect the relative
importance of each neuron.

Figure 2 shows the SimAMmodule chart. It can be seen as a cell
aimed at increasing the convolution characteristic expression
ability of the neural network; any intermediate feature tensor can
be taken as the input and the transformation output with the
same size and have the feature of enhancing the characterization
of the tensor, where X is the input feature tensor in the figure.

The biggest advantage of this module is based on the defined
energy function to choose from.

2.3 Weighted bidirectional feature
pyramid network

As shown in Figure 3A top-down pathway of the feature
pyramid network (FPN) allows for feature fusion. A certain
amount of detection accuracy can be increased by the fused
high-level semantic information. Prior feature fusion techniques
frequently treated the feature information of various scales
identically. Although it is impossible to determine the relative
relevance of many input features, each contributes differently to
the output features. This implies that the characteristics of some
scales might be more significant and have a bigger influence on the
outcome. Consequently, the weighted BiFPN is proposed in this
research (Tan et al., 2020). As shown in Figure 3B, additional
weights are applied for each input, utilizing a distinct blend of
several input properties.

First, the nodes with a single input edge and little contribution
are eliminated to simplify the network and decrease the amount of
parameters. This effectively lowers the network complexity. Second,
based on the properties of three distinct scales, the jump connection
mechanism was established, increasing a feature fusion path in the
quantity under the assumption of somewhat larger. Diagrams will be
used to better integrate low-level and high-level semantic
information, and weights can be used to focus network model
studies on the most important informational properties, thereby
enhancing network performance and characterization. The
calculation of wighted feature fusion in BiFPN is represented by
Eq. 8:

Out � ∑
i�0

ωi*Ii
ε + ∑

j�0
wj

, (8)

where ω represents the learnable weight, Ii represents the input
feature, and ε � 0.0001.

3 Text recognition methods

3.1 Improved CRNN+CTC algorithm

Text recognition is all that is needed to identify secondary device
terminals. The convolutional recurrent neural network (CRNN)
model not only performs well for more complicated texts,
handwritten letters, and symbols but it also does not require
segmenting the target to precisely mark the characters. It also has
no restrictions on the length of the text sequence. There are not
many model parameters, and training proceeds quickly. The model
structure is thereby enhanced and optimized by making a reference
to the network architecture of the traditional text recognition model
or CRNN. Meanwhile, to better mine the long-distance data features
of correlated time series, the MAH mechanism is introduced to the
Bi-LSTM in the recurrent neural network module to accommodate
the secondary equipment terminal strip identification of the
substation. The network architecture of the substation secondary

FIGURE 2
Spatially invariant multi-attention mechanism (SimAM)
module structure.
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equipment terminal strip recognition model is shown in Figure 4.
The three primary components of the terminal strip recognition
model are the connection temporal classification (CTC), Bi-LSTM
neural network, and convolutional neural network (CNN). These
include the CNN for picture feature extraction, the Bi-LSTM for
character sequence extraction, and CTC for character mismatch
resolution.

3.2 Feature extraction network

The third and fourthmax pooling kernel scales in the CNNmodule
are set to 1 × 2 pixels, making it simple to use the CNN features that
have been extracted as the recurrent neural network (RNN) input. To

expedite the network training process, batch normalization layers are
incorporated after the fifth and sixth layers of convolution. The original
image height will be decreased to a fixed value of 32 pixels before it is
entered into the CNN. The width of each feature vector in the feature
sequence is set to 1 pixel, and they are all generated in the same direction
as the feature map sequence, that is, from left to right. The first feature
vector is linked to the first feature map.

In order to increase the network training speed, the BN layer is
added to the CNN module in this research. The variable body of the
ReLu function, known as the Leaky ReLu function, is adopted by the
activation function. To address the issue of neurons not learning after
the negative interval of the ReLu function, a leak value is added to the
negative interval of the ReLu function, causing the output to slope
slightly toward the negative input. As shown in Table 1, the CNN

FIGURE 3
Improved feature structure pyramid.

FIGURE. 4
Network architecture of the identification model of the secondary equipment terminal strip in the substation.
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module gains 4 maximum pooling layers in this study, with the final
2 pooling layers having convolution kernel sizes of 1 × 2 pixels. The
remaining convolution kernel sizes are 3 × 3 pixels and padding = 1,
with the exception of the final convolution layer, which has a
convolution kernel size of 2 × 2 pixels and padding = 0. The input
image is processed in this article to create a 32 × 160-pixel image. After
the CNN, the resulting feature map size is 512 × 1 × 40 pixels, meaning
that there are 512 featuremaps in total, each with a height of 1 pixel and
a width of 40 pixels.

3.3 Sequence prediction network

The sequence properties in the sequence label distribution of
each frame are predicted using the model prediction module. The
RNN is highly proficient at capturing contextual connections in the
realm of sequential text recognition. However, while processing
lengthy texts, the standard RNN loses its ability to connect distant
information and becomes vulnerable to the gradient disappearance
issue, which makes the network difficult to converge and results in

low training accuracy. An exceptional variety of the RNN that excels
at acquiring long-term dependent data is the long short-term
memory (LSTM). It can selectively recall the information that
must be retained for a long time and forget the irrelevant
information. It can also regulate the information transferred
through the gate empty state, as shown in Figure 5.

Through its forgetting gate, input gate, output gate, and other
gating structures, the LSTM cell structure may efficiently save and
regulate the cell state update; the update rules are shown in Eq. 9. Eqs
9–14 illustrate how the gating unit is realized.

Ct � ft*Ct−1 + it*~Ct, (9)
ft � σ Wf Ht−1, xt[ ] + bf( ), (10)
it � σ W i Ht−1, xt[ ] + bi( ), (11)

~Ct � tanh Wc Ht−1, xt[ ] + bc( ), (12)
Ot � σ WO Ht−1, xt[ ] + bO( ), (13)

Ht � Ot* tanh Ct( ), (14)
where Ht−1 is the output of the hidden layer of the previous unit. xt

is the input of the current cell. ft, it, and Ot represent the output of
structures such as forgetting, input, and output in the gating
structure, respectively. Ct, Ct−1, and ~Ct represent the cell state of
the current moment, the cell state of the previous moment, and the
cell state of the output layer, respectively. W i, Wc, and WO are the
corresponding weight parameters of the gate, respectively. bf, bi, bc,
and bO are the bias parameters corresponding to the gate,
respectively. [, ] is the vector connection symbol.

While the feature sequence recognition of the secondary device
terminal number considers both the past and future context
information to be beneficial, one-way LSTM only employs the
past context information. Consequently, this article employs the
Bi-LSTM network module, which uses the future information
backward and the past information forward, as shown in Figure 6.

In this paper, a two-layer Bi-LSTM is set up. The output of theCNN
is a feature map of size m×T, where T is the output sequence length of
the feature module and m is the number of channels. After

FIGURE 5
Long short-term memory (LSTM) cell structure.

TABLE 1 CNN network structure.

Network layer Input size

Convolution layer 64 × 32 × 160

Maximum pooling layer 64 × 16 × 80

Convolution layer 128 × 16 × 80

Maximum pooling layer 128 × 8 × 40

Convolution layer 256 × 8 × 40

Maximum pooling layer 256 × 4 × 40

Convolution layer 512 × 4 × 40

Maximum pooling layer 512 × 2 × 40

Convolution layer 512 × 1 × 40
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transforming x � (x1, x2,/, xT) of each column through “map to
sequence,” it is input into the Bi-LSTM module and the output vector
T × nclass of length y � (y1, y2,/, yT), where nclass is the number of
sub-row character categories of the secondary device terminal.

3.4 Multi-head attention hybrid mechanism

This article presents a model in a lengthy attention mechanism
that supplements the Bi-LSTM module. This helps the Bi-LSTM
module better address the correlation characteristic of long time-
series data mining as the problem of long sequences making it easier
to lose information arises during the training process. The output
vector is transformed into three input matrices of dimension dk by
three different mapping operations, Q (Query), K (Key), and V
(Value), and the attention output matrix is given by Eq. 15:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V, (15)

where dk is the feature dimension of each key, which is used for
weight scaling, and softmax is normalized to the interval [0,1].

The multi-head attention hybrid mechanism divides the time series
into an I subspace, and each head performs self-attention calculation on
the subspace to enhance its expressive power. Then, the results of head I
are spliced and integrated to obtain multiple heads, and each head is
splice to obtain the final through linear trans formation, that is Eq. 16, 17.

headsi � Attention QWQ
i , KWK

i , VW
V
i( ), (16)

where WQ
i , W

K
i , and WV

i represent the weight matrix of Q, K,
and V, respectively.

MultHead Q,K,V( ) � Concat head1,/, headI( )Wo, (17)
where Wo represents the weight of the linear transformation; headi
represents head i in the bull attention module; and Concat
represents the splicing operation. MultHead(Q,K,V) is the final
output result, which can learn more feature information from
different spaces, and its model structure is shown in Figure 7:

3.5 Transcription layer

The problem of difficult-to-align input and output is a common
occurrence in the text recognition sector. Thus, in this article, the
recurrent neural network is decoded using CTC, and the Bi-LSTM
output is transformed into a sequence format.

π is defined as the text sequence path composed of the Bi-LSTM
output. For the Bi-LSTM module, the probability of output x given
input l is calculated by the following Eq. 18:

p l|x( ) � ∑
π∈β−1 l( )

p π x|( ), (18)

where β is a multi-to-one mapping function, the purpose of which is to
remove duplicate labels and blank labels. π ∈ β−1(l) represents all l
paths that are π after transformation, and any path, as shown in Eq. 19.

p π x|( ) � ∏T
t�1

yt
πt
,∀π ∈ L′T, (19)

where T represents the length of the input sequence and l is the label
of the output. πt represents the output character corresponding to
path π at time t, which corresponds to the probability of obtaining
the character at time t.

FIGURE 7
Structural diagram of the multi-head attention
hybrid mechanism.

FIGURE 6
Structural diagram of the bidirectional (Bi)-LSTM.
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In Eq. 20, the training process of CTC is to adjust the parameter
∂p(l | x)

∂ω of Bi-LSTM through the gradient ω so that π ∈ β−1(l) is
maximized when the input sample p(l | x) is obtained as

h x( ) � argmax
l∈L≤T

p l x|( ). (20)

4 Analysis of experimental results

4.1 Experimental environment

In this paper, the operating system used for model training is
Windows 10 with a 64-bit processor. Intel(R) Core(TM) i5-10200H
CPU @ 2.40 GHz 2.40 GHz is used as hardware. Running memory
was 12 GB. PyTorch is chosen as the deep learning framework. The
programming language is Python 3.6. The CUDA version is 11.6.

4.2 Evaluation index

In this paper, precision (P), recall (R), and mean average
precision (mAP) are used as evaluation indicators for text
detection, as shown in Eqs 21–24.

TABLE 2 Comparison of experimental results for text detection.

Model P/% R/% Mean average precision (mAP)@0.5/% Model size/MB FPS (f/s)

YOLOXs (Yin et al., 2023) 95.58 79.14 87.21 16.4 86.90

YOLOv4-tiny (Zhao et al., 2023) 83.57 73.06 74.30 22.5 77.41

YOLOv5s (Han et al., 2024) 91.67 79.35 85.66 14.5 83.95

YOLOv7-tiny 94.91 84.82 92.15 12.2 103.42

Improved YOLOv7-tiny 97.39 89.62 95.07 12.08 95.87

The bold values represents the improved experimental results of this paper.

TABLE 3 Comparison of methods.

Model P/% R/% mAP@0.5/%

YOLOv7-tiny 94.91 84.82 92.15

YOLOv7-tiny + BiFPN 94.89 87.42 93.16

YOLOv7-tiny + SimAM 96.16 87.01 93.36

YOLOv7-tiny + BiFPN + SimAM 97.39 89.62 95.07

The bold values represents the improved experimental results of this paper.

FIGURE 8
Comparison of the terminal strip text detection effect.

Frontiers in Energy Research frontiersin.org08

Zhijun et al. 10.3389/fenrg.2024.1345574

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1345574


P � TP

TP + FP
× 100%, (21)

R � TP

TP + FN
× 100%, (22)

AP � ∫
1

0

P R( )dr, (23)

mAP �
∑s
j�1
APj

S
, (24)

whereTP stands for true positive, indicating the samples that the network
detects following detection and classification match samples that have
been labeled. False negatives or labeled samples that the network did not
detect or classify—also known as missed detection—are represented by
FN and FP, respectively. False positives are incorrectly classified detection
samples that are not included in the labeled samples or false detection.
The average precision (AP) of a single class is the area measured between
the P(R) curve and the axis. Averaging the APs of all categories yields the
mAP, where S is the total number of categories.

Average loss (Loss) and character recognition accuracy (Acc) are
often used evaluation metrics for text recognition. Eq. 25, which
illustrates the condition of incorrect recognition and multiple
recognitions, shows that Acc is the ratio of the number of characters
identified by model A to the total number of characters identified by
model B. The average loss of character recognition is shown in loss. The
better the model, the larger the Acc, and the smaller the loss.

Acc � A

B
. (25)

4.3 Text detection experiment and
result analysis

The dataset employed in the text detection module within this
paper is sourced from a collection of 1,000 high-resolution images

(1,024 × 1,024), depicting terminal rows of secondary equipment in
substations. The division of data in this set follows a 8:2 ratio for
training and testing subsets, respectively; moreover, the training
subset itself is further stratified into a training set and a validation set
according to a 9:1 allocation principle.

In the experiment, the epoch is set to 200, batch size is 8, the
Adam optimizer is used to update the optimization gradient, and the
cosine annealing algorithm is used to dynamically adjust the
learning rate attenuation strategy. The initial learning rate of the
model is 0.001, the weight attenuation parameter is 0.0005, and the
learning rate momentum parameter is 0.937.

To confirm that the revised model presented in this work is
superior, Table 2 compares the revised model with lightweight
models like YOLOXs (Yin et al., 2023), YOLOv4-tiny (Zhao
et al., 2023), YOLOv5s (Han et al., 2024), and YOLOv7-tiny
based on the terminal strip wiring dataset of secondary devices.
The enhanced model in this study has an average accuracy (mAP) of
95.07%, which is 7.86%, 20.77%, 9.41%, and 2.92% greater than that
of YOLOXs, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny,
respectively, based on the experimental findings shown in
Table 2. With a memory occupation of only 12.08 MB, the
upgraded model outperforms the YOLOv4-tiny model by 46.3%.
In order to guarantee accuracy, the enhancedmodel outperforms the
other models in terms of accuracy and recall rate, that is, by 97.39%
and 89.62%, respectively. The average detection speed (FPS) of the
enhanced model is 95.87 f/s, which is marginally slower than the
quickest detection speed of YOLOv7-tiny; nevertheless, this model
performs better in other detection algorithm performance tests.
Therefore, the upgraded model in this research still exhibits
significant improvements in the identification of speed and
accuracy with respect to the total detection performance of
the model.

An array of ablation experiments was created for comparison
analysis in order to confirm the efficacy of the modified YOLOv7-
tiny model suggested in this paper. The trials were carried out using
the same training conditions to guarantee the accuracy of the
experiments. The comparative findings are shown in Table 3 for
the original model, each upgraded module, and the test set.

Table 3 shows how the precision rate, recall rate, and mAP
increased by 1.25%, 2.91%, and 1.21%, respectively, when the
SimAM was added to the original model. It demonstrates that
compared to the original model, the SimAM module is more
capable of feature extraction and expression. The precision,
recall, and mAP of the model improved to 94.89%, 87.42%, and
93.16%, respectively, after the FPN module was swapped out for the
BiFPN module in the neck network. This improvement was

TABLE 4 Comparison with other methods.

Model ACC (%) Loss

CRNN+CTC 85.4 0.0981

MAH-CRNN+CTC (Guo et al., 2022) 87.59 —

Improved MAH-CRNN+CTC 91.2 0.0329

The bold values represents the improved experimental results of this paper.

TABLE 5 Comparison of recognition renderings of the model.

Picture CRNN+CTC Improved MAH-CRNN+CTC

2-32KK1-0 2-3ZKK1-6

J04/Y0:13/WGZJ1-181 J04/YD:13/WGZJ1-131

JCOM/YD:3/WGZJ1-131 JC0M/YD:3/WGZJ1-131

The bold values represents the improved experimental results of this paper.
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attributed to the superior ability of the BiFPN module to fuse multi-
scale weighted feature information while maintaining lightweight.

Figure 8 compares the text detection effectiveness of the terminal
strip. The detection effect of the previous model is on the left, and
the detection effect of the improved algorithm is on the right.
Figure 8 shows that the old model had low detection accuracy
and more missed detections for text information in densely
dispersed terminal strips and occluded terminal strips. The
improved model has high detection accuracy, and only the
significantly obstructed portion is undetected. The remaining
portion does not show error detection or missed detection. As a
result, compared to the original model, the improved
YOLOv7 model has better detection accuracy.

4.4 Text recognition experiment and
result analysis

Four-hundred images of the terminal strip of the secondary
equipment in the substation make up the dataset utilized by the text
recognition module in this work. The partition of the dataset into
training and test data follows the 8:2 concept, while the training data
are split into training and validation sets using the 9:1 approach.

In this experiment, we specified certain parameter
configurations, where the epoch is set to 300 and the batch size
is configured as 8. For gradient optimization, the Adam optimizer
was employed, alongside a cosine annealing algorithm that

dynamically tunes the learning rate decay strategy. The initial
learning rate of the model is assigned a value of 0.0008, the
weight decay parameter is set at 0.0001, and the momentum for
the learning rate is 0.937.

This study presents the optimization of the CNN module using
the original CRNN model, with a modified activation function
(Leaky ReLu) and a single-layer BN at the network end. To avoid
losing sequence information from taking too long, the sequence
prediction module incorporates the MAH mechanism. In order
to accommodate the secondary device terminal labeling dataset,
the number of Bi-LSTM hidden layer cells in the RNN portion is
set at 512. Table 4 shows that the improved MAH-CRNN+CTC
model has a character recognition accuracy of 91.2%, which is
5.8% higher than that of the traditional model, and has a low
average loss at the same time. The traditional CRNN+CTCmodel
cuts character recognition accuracy to only 85.4%. Furthermore,
the improved MAH-CRNN+CTC model in this paper still has
higher identification precision that that presented by Guo
et al. (2022).

Table 5 displays the recognition effect in real time. The classical
paradigm has issues with character recognition loss and simple
recognition mistakes of related characters, such as misrecognizing
“Z” as “2,” “3” as “8,” and “D” as “0.” In an effort to enrich the variety
within the dataset, supplementary fuzzy images are incorporated.
Experimental findings demonstrate that the model maintains strong
recognition capabilities even when dealing with instances
characterized by indistinct recognition features. This highlights
the superior generalization performance of the improved model
to its predecessor.

The performance of the detection and recognition of terminal
rows in practical applications, as presented in this paper, is shown in
Figure 9. The experimental findings indicate that our proposed
detection and recognition model consistently achieves strong
detection capability and high accuracy across various real-world
scene images.

5 Conclusion

This work proposes a terminal strip detection and
recognition model based on the improved YOLOv7-tiny and
MAH-CRNN+CTC models to address the issue of confined
arrangement and varying terminal block lengths of secondary
equipment in substations. First, the SimAM and BiFPN
attention mechanism modules were added to improve the
model capacity for feature extraction and information
fusion, increase the model detection accuracy, and increase
its accuracy rate, summon rate, and mAP to 97.39%, 89.62%,
and 95.07%, respectively. Second, the MAH mechanism was
introduced to address the low recognition accuracy of the
CRNN. This improves the model capacity to predict and
process character sequence information, minimizes the loss
of character feature information, and increases the model
recognition accuracy to 91.2%, which is 5.8% higher than
that of the traditional model. The findings demonstrate the
good detection and identification effects for terminal strips of
the improved YOLOv7-tiny and MAH-CRNN+CTC
approaches presented in this work.

FIGURE 9
Detection and recognition performance on terminal blocks.
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