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In the process of decarbonization, the configuration of renewable energy and
energy storage plays a crucial role. In current research, there is often a singular
focus on the isolated optimization of either renewable energy configurations or
energy storage configurations, resulting in limitations within the optimized
outcomes. Therefore, we propose a collaborative configuration approach for
renewable energy and energy storage under fixed investment, considering the
impact of uncertainty on optimization results. By employing the W/S (wind-to-
solar ratio) and E/P (energy-to-power ratio) and constructing a model with an
hourly granularity, we can obtain the configurations of renewable energy and
energy storage at crucial time points. Using the UK as a case study, we calculate
the configurations for renewable energy and energy storage from 2020 to 2050,
offering effective recommendations for the decarbonization efforts in the UK.
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1 Introduction

With the advancement of modernizing the power grid, numerous scholars have delved
into the exploration of novel power systems from various perspectives. For instance, at the
operational and planning levels, Yang pioneered the introduction of an SCUC expert system
based on E-Seq2Seq (Yang et al., 2022a) and delved into various methodologies addressing
the modeling and solving of SCUC-related issues (Yang et al., 2018; Yang et al., 2022b; Yang
e tal. 2022d). Li et al. (2021) focused on the dual-layer operation methodology of multi-
energy microgrids. In the realm of intelligent grid operations, Zhang et al. (2023a); Zhang
et al. (2023b) proposed an economically optimal strategy considering FDI and DoS attacks.
Pertaining to the reliability of renewable energy operations, literature has explored
hydroelectric system modeling and reliability (Xu et al., 2023), rolling bearing fault
diagnosis (Fu et al., 2023), post-disaster recovery (Li, 2023a; Li, 2023b), and risk-averse
restoration (Yang and Li, 2023). In the domain of innovative power system equipment,
research has been conducted on transformers and high voltage conversion gain flyback
converters (Zhu et al., 2023). Market-related investigations include studies on game theory
in multi-energy microgrid energy trading (Li et al., 2023e). In the realm of electrified
transportation, literature has investigated multi-objective coordinated energy dispatch and
voyage planning for multi-energy ship microgrids (Li et al., 2020). In the face of
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unprecedented global climate challenges, the imperative to
decarbonize our energy systems has never been more pressing
(Jafari M et al., 2020; Yang et al., 2022c; Kabeyi and Olanrewaju,
2022). As the world grapples with the consequences of rising
greenhouse gas emissions, nations across the globe are
committing to ambitious climate targets and setting their sights
on a future where carbon neutrality is the norm. The journey
towards decarbonization is a multifaceted endeavor that requires
a delicate balance of numerous factors, chief among them the
integration of renewable energy sources and energy storage
solutions (Huber and Weissbart, 2015).

A comprehensive survey of existing literature indicates a
primary focus on optimizing configurations in a specific context.
Specifically, the research concentrates on optimizing energy storage
configurations given known configurations of renewable energy or
optimizing renewable energy configurations under the assumption
of known energy storage configurations. These studies often
examine how the choice of energy storage configurations can be
optimized to accommodate a given mix of renewable sources
(Arbabzadeh et al., 2019a), how the selection of energy storage
configurations can be optimized given a particular mix of renewable
sources (Gao et al., 2020), long term energy storage in highly
renewable systems (Hargreaves and Jones. 2020)and energy
storage assessments under specific conditions (Li et al., 2023c; Li
et al., 2023d), or planning of distributed renewable energy systems
under uncertainty (Fu et al., 2022). While these approaches have
undeniably contributed valuable insights into each respective
component of the energy landscape, it has often led to a partial
understanding of the broader decarbonization challenge.

For instance, studies focused on optimizing energy storage
configurations may not fully account for the variability of
renewable energy generation, thus potentially leading to
suboptimal solutions. On the other hand, research
emphasizing renewable energy deployment strategies without
considering energy storage may underestimate the potential
benefits of effective storage integration, particularly in
stabilizing energy supply and mitigating intermittency issues.
Moreover, the majority of these studies tend to operate within
deterministic frameworks, which, although informative, may not
capture the full spectrum of uncertainties inherent in future
energy landscapes. The transition to a low-carbon energy
system is fraught with unpredictabilities, including
fluctuations in energy demand, the uncertain pace of
renewable technology development, and evolving policy and
market dynamics. These uncertainties can profoundly
influence the effectiveness of decarbonization strategies, and a
failure to address them adequately could result in
suboptimal outcomes.

In light of these existing research gaps, our study endeavors to
transcend these limitations. We adopt a holistic approach that
amalgamates both renewable energy and energy storage
considerations into a unified framework. Furthermore, we
recognize the indispensable need to accommodate
uncertainties in our analysis, thus offering a more
comprehensive view of the dynamic and multifaceted nature
of energy decarbonization. Therefore, this paper will analyze
Analysis of coordinated optimization method in decarbonization
path from two aspects: (1) The long-term planning of renewable

energy and energy storage configurations. (2) The impact of
predictive uncertainty and technological uncertainty on
coordinated source-load consideration methods. Through our
research, we aim to demonstrate the value of an integrated
approach and underscore its potential to facilitate the rapid
and effective decarbonization of energy systems.

The remaining sections of the article are structured as follows:
Section 2 introduces the long-term planning methods for renewable
energy and energy storage, Section 3 discusses the constraints that
the system needs to satisfy, Section 4 analyzes the impact of various
factors on long-term planning, and Section 5 summarizes the work.

2 The long-term planning of renewable
energy and energy storage
configurations

We employ W/S (wind-to-solar ratio) and E/P (energy-to-power
ratio) to characterize the configurations of renewable energy and
energy storage. Drawing on data from the Department for Business,
Energy and Industrial Strategy (BEIS) in the UK (MacDonald, 2018;
BEIS, 2020), all other variables—such as load growth, system
expansion, and the projected investment scales for energy storage
and renewable energy from 2020 to 2050—remain constant. Capital
expenditures and operational costs for both renewable energy and
energy storage are factored in, aligning with anticipated future trends.

In contrast to the UK National Grid’s proposed Future Energy
Scheme (FES), which independently assesses the ratios of E/P and
W/S, our approach concurrently considers both, dynamically
adjusting investments in energy storage and renewable energy.

We have developed a linear capacity-planning and electricity
dispatch optimization model with hourly temporal granularity,
aiming to minimize both operational expenses and carbon
emissions for a macro-scale electrical system, as outlined in (1).

minf � ∑T
t�1
⎡⎣∑Gen

i�1
lGeni + lemission

i( )PGen
i,t + lPVPPV

i,t + lWindPWind
i,t

+∑ESS
s�1

lESSs Pch
s,tηch,s − Pdisch

s,t /ηdisch,s( )⎤⎦ (1)

where PGen
i,t , PPV

i,t, PWind
i,t represent the power output of the ith

conventional generators, solar PV stations and wind farms at
hour t; Additionally, Pch

s,t and Pdisch
s,t denote the active power for

charging and discharging of the sth energy storage system (ESS)
at hour t; the power exchange efficiencies of the sth ESS are denoted
as ηch,s and ηdisch,s; operational cost and carbon emission cost for the
ith conventional generator are represented by lGeni and lemissioin

i ; lPV

and lWind are the operational cost of solar PV stations and wind
farms; lESSs is the operational cost of the sth ESS; T is the total number
of hours per year, i.e., 8,760.

Concerning capacity planning, the future capacity of wind
and solar is dictated by the investment in renewables and the W/S
ratio. Similarly, the energy and power capacity of ESS are
determined by the ESS investment and the E/P ratio.
Furthermore, these capacity variables impose constraints on
the hourly operation of renewables and ESSs. Consequently,
the optimization of the objective function involves dynamic
adjustments to the E/P and W/S ratios.
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2.1 Definition of W/S and E/P

The W/S ratio is expressed as

RatioW/S,j �
PWind
j

PPV
j

, where

PWind
j � PWind

2020 + RatioW/S,j
InvRESj

L RatioW/S,jC
Wind
j + CPV

j( )
PPV
j � PPV

2020 +
InvRESj

Lt RatioW/S,jC
Wind
j + CPV

j( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

where RatioW/S,j represents theW/S ratio in the yrth year; PWind
j and PPV

j

denote the installed power capacity of wind and solar in the jth year;
PWind

2020 and PPV
2020 signify the installed power capacity of wind and

solar in 2020; InvRESj stands for the investment in both wind and
solar in the jth year; L represents the lifetime of wind and solar; CWind

j

and CPV
j represent the capital expenditure (CAPEX) cost of wind

and solar. The CAPEX cost encompasses all relevant expenses
associated with constructing a generation or energy storage system,
including pre-development costs, construction costs, and
infrastructure costs.

Based on W/S ratio in (2), the hourly power output PPV
i,t and

PWind
i,t should be constrained as shown in Eqs 3, 4:

PWind
i,t ≤AWind

t PWind
j (3)

PPV
i,t ≤APV

t PPV
j (4)

where AWind
t and APV

t are the normalised data of wind and solar
generation.

To model the hourly operation of future decarbonized electricity
systems, it is essential to forecast electricity demand and the variability
of renewable sources. However, over such an extended time horizon,
accurate predictions become challenging. Therefore, we employ the
methodology proposed in (Arbabzadeh et al., 2019b), which utilizes the
historical variation patterns of wind, solar, and load in a past year as a
representation of future behavior. This involves normalizing the
historical data and scaling it by the projected installation capacity or
maximum electricity load. The calculation for the amount of wind/
solar/load in hour-t is as shown in Eqs 5–7:

pwt,j � Pwj
Bw2019,t

Pw2019
(5)

pst,j � Psj
Bs2019,t
Ps2019

(6)

lt,j � Lmj
Bl2019, t
Lm2019

(7)

where Lmj is the maximum electricity demand in year-j; Bw2019,t,
Bs2019,t, and Bl2019,t are the installed capacity of wind and solar and
the electricity demand in hour-t in 2019, respectively; Pw 2019, Pw

2019, and Lm2019 refer to the installed capacity of wind and solar and
the maximum electricity demand in 2019, respectively.

The E/P ratio is expressed as shown in Eqs 8, 9:

RatioE/P,j �
QESS

s,j

PESS
s,j

, where

QESS
s,j � ∑ESS

s�1
QESS

s,2020 + QinvESSs,j( )
PESS
s,j � ∑ESS

s�1
PESS
s,2020 + PinvESSs,j( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(8)

InvESSj � ∑ESS
k�1

cenergyk,j QinvESSk,j + cpowerk,j PinvESSk,j( ) (9)

where RatioE/P,j denotes the E/P ratio in the jth year; QESS
s,j and PESS

s,j

represent the energy capacity and power capacity of the sth ESS in
the jth year; QESS

s, 2020 and P
ESS
s, 2020 signify the energy capacity and power

capacity of the sth ESS in 2020; QinvESS
s,j and PinvESS

s,j indicate the
energy capacity and power capacity of the sth ESS in the jth year;
C energy

j and Cpower
j are the energy-related and power-related

CAPEX costs of the sth ESS in the jth year.
In our study, we categorize long-duration storage (e.g., pumped

hydro energy storage, compressed air energy storage, hydrogen storage)
and short-duration storage (e.g., electrochemical energy storage) as ESS.
The charging/discharging power and the state of charge (SoC) of ESS
must adhere to the following constraints as shown in Eqs 10–13:

0≤Pch
s,t ≤PESS

s,j u
ch
s,t

0≤Pdisch
s,t ≤PESS

s,j u
disch
s,t

(10)

uch
s,t + udisch

s,t ≤ 1 (11)

SoCs,t � SoCs,t−1 +
Pch
s,tηch,s − Pdisch

s,t /ηdisch,s
PESS
s,j

Δt (12)

SoCmin ,s ≤ SoCs,t ≤ SoCmax ,s∑ SoCmax ,s � QinvESSs,j
(13)

where pchs,t and pdischs,t are the real-time active power for charging and
discharging of the sth ESS at hour t; the uchs,t and udischs,t are binary
variables to indicate the charging and discharging status, which
should satisfy (12). The ηch,s and ηdisch,s are the power exchange
efficiencies; the SoCs,t is the SoC value of sth ESS at hour t; the SoCmin,s

and SoCmax,s are the min/max SoC boundaries of the sth ESS.

2.2 Renewble and storage investment

As the FES does not disclose the annual investment amount, we
utilize the estimated capital expenditure cost to approximate the
corresponding investment. The Department for Business, Energy,
and Industrial Strategy (BEIS) periodically updates cost estimates
and technical specifications for various generation technologies in
the Electricity Generation Costs. This data breaks down costs into
detailed expenditures per MW capacity or MWh generation for the
full lifetime of a plant, encompassing planning costs, construction
costs, operating costs, and carbon costs (BEIS, 2020).

Both the CAPEX and operational expenditure (OPEX) costs are
computed as the Levelized Cost of Electricity (LCOE), defined as the
cost per unit of electricity generated (Ioannou et al., 2018; Harvey,
2020). LCOE represents the ratio of the total costs of a generic plant
to the total amount of electricity expected to be generated over the
plant’s lifetime and can be calculated by Eq. 14:

Lcost � ∑ntotal CAPEX andOPEX costs
Cf∑nnet electricity generation

, n � time period (14)

where the Cf refers to the capacity factor of the specified generator.
We incorporate the operational expenditure (OPEX) cost as the

cost coefficient in the objective function. Gas-fired generators stand
out as the most expensive energy resources due to the inclusion of
carbon emission costs in the OPEX cost.

Following the definition of LCOE, we calculate the investment
amount in renewables (i.e., wind and solar) using Eq. 15:
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Iwsj � L CwjPwj + CsjPsj( )
L � 8760*30

(15)

where L is the lifetime of wind and solar which is assumed
as 30 years; Cwj and Csj denote the CAPEX cost of wind and
solar, respectively. Pwj and Psj are the installation capacity
projected in the year of j. Table 1 gives our estimated
investment amount.

The investment amount in energy storages is also not revealed
in the FES. To optimise the E/P ratio under the same investment,
we derived the investment amount by projected cost data. The
Storage Cost and Technical Assumptions for BEIS gives the
projection of CAPEX and OPEX costs in (Mott, 2018).

However, the BEIS calculates the LCOE based on the power
capacity of storage systems. Notably, the costs related to power and
energy capacities for various storage technologies exhibit substantial
variation. To address this, we conducted an extensive literature
review, synthesizing technical and economic characteristics from
sources such as (Grünewald et al., 2012; Hill et al., 2012). The
California Energy Commission designates long-duration storages
with an E/P ratio exceeding 10:1, including Pumped Hydro Storage
(PHS), Compressed Air Energy Storage (CAES), and hydrogen
storage (California Energy Commission, 2020). Batteries are
typically classified as short-duration storages, featuring an E/P
ratio lower than 5:1.

Long-duration storages often have a relatively lower energy-
related cost (CAPEX cost per kWh of energy capacity) compared
to short-duration storages (E/P ratio lower than 10:1). Conversely,
the CAPEX cost per kW of power capacity for short-duration
storages is generally lower than that for long-duration storages.
Additionally, long-duration storages (typically PHS, CAES, and
hydrogen storage) can have independently sized power and energy
capacities, while separating these capacities can be challenging
for batteries.

To project estimated cost data in the future, we adopt the cost
reduction projections outlined in the Storage Cost and Technical
Assumptions for BEIS. Batteries, due to the rapid advancements in
the material industry, show the greatest potential for cost reduction.

Based on this literature review and analysis, we decouple energy-
related and power-related costs with their respective reduction
trends, leading to our formulated cost assumptions.

The capital investment in energy storage is calculated by Eq. 16:

Iesj � ∑4
i�1
Cpi,jPesi,j +∑4

i�1
Cei,jQesi,j (16)

where Cpi,j and Cei,j refer to power-related and energy-related CAPEX
cost of the ith storage technology in year-j; Pesi,j andQesi,j are the power
capacity and energy capacity of the ith storage technology in year-j.

Table 2 gives our estimated investment amount in storages. A total of
17.44 billion £ will be invested by 2050, and the investment sharply
increases in 2030 because new large-scale storage projects are expected
to come online.

Where Cpi,j and Cei,j represent the power-related and energy-
related CAPEX costs of the ith storage technology in year-j; Pesi,j and
Qesi,j denote the power capacity and energy capacity of the i

th storage
technology in year-j. Table 2 presents our estimated investment
amounts in storages. A cumulative investment of 17.44 billion £ is
projected by 2050, with a significant surge in 2030 due to the
anticipated launch of new large-scale storage projects.

3 Constraints of system

3.1 Constraints of unit commitment of
conventional generators

In this study, we consider the commitment and cycling (start-
up, shut-down) of conventional thermal generators. The
constraints applicable to thermal units, such as maximum and
minimum generation limits, ramping constraints, and minimum
on/off time constraints, are also extended to other
conventional units.

Maximum andminimum generation limits: Power output for the
ith conventional generator includes the ramping constraint as
shown in Eq. 17:

AGen
i

· BGen
i,t ≤PGen

i,t ≤ �A
Gen
i · BGen

i,t (17)

whereAGen
i

and �A
Gen
i are the lower and upper limits of power output

for the ith conventional generator. The binary variables BGen
i,t denote

the binary on/off status of the ith conventional unit at hour t.
Ramping constraints: Ramping constraint for the ith

conventional generator is defined as follows:

PGen
i,t − PGen

i,t−1 ≤Rup
i · BGen

i,t−1 + Supi · BGen
i,t − BGen

i,t−1( ) + �A
Gen
i · 1 − BGen

i,t( )
PGen
i,t − PGen

i,t−1 ≥ − Rdown
i · BGen

i,t + Sdowni · BGen
i,t−1 − BGen

i,t( )( )
PGen
i,t ≤ �A

Gen
i · BGen

i,t+1 + Sdowni · BGen
i,t − BGen

i,t+1( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

where Ru
i and Rd

i are the ramp-up and ramp-down limits for ith
conventional generator.

Minimum on/off time constraints: The minimal on/off time
constraints for conventional generator are formulated as follows:

∑Gi
i�1 1 − BGen

i,t( ) � 0

∑t+UTi−1
v�t BGen

i,v( )≥UTi · BGen
i,t − BGen

i,t−1( ) t � Gj + 1, ..., T − UTi + 1

∑T
v�t BGen

i,v − BGen
i,t − BGen

i,t−1( )( )≥ 0 t � T − UTi + 1, ..., T

⎧⎪⎪⎨⎪⎪⎩
(19)

TABLE 1 Investment amount in solar and wind by every 5 years, billion £.

Year 2020 2025 2030 2035 2040 2045 2050

Solar 7.97 2.03 3.63 4.71 2.48 2.47 2.08

Wind 18.18 10.36 8.58 5.08 2.97 5.34 3.11

Total 26.15 12.39 12.21 9.79 5.45 7.81 5.19
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∑Gi
i�1 BGen

i,t( ) � 0

∑t+DTi−1
v�t 1 − BGen

i,v( )≥DTi · BGen
i,t−1 − BGen

i,t( ) t � Gj + 1, ..., T −DTi + 1

∑T
v�t 1 − BGen

i,v − BGen
i,t−1 − BGen

i,t( )( )≥ 0 t � T −DTi + 1, ..., T

⎧⎪⎪⎨⎪⎪⎩
(20)

where DTi and UTi represent the minimal on/off time of the ith

conventional generator, Gi is the time interval to allow for change in
on-off status with respect to the initial conditions.

3.2 System energy balance and reserves
constraints

The analysis of power balance and reserve requirements is
conducted as follows.

Power balance: The system load is equivalent to the sum of the
power output from all generator units, encompassing conventional
generators, wind, solar, hydro, and ESS units, as expressed by:

∑Gen
g�1

PGen
i,t + PPV

i,t + PWind
i,t +∑ESS

s�1
Pch
s,tηch,s − Pdisch

s,t /ηdisch,s( ) � Pload
t ∀t

(21)
where Pload

t is the real-time load consumption at hour t.
Reserve requirements: The uncertainties related to potential

errors in forecasting energy demand and wind power generation
are considered in determining reserve requirements, outlined
as follows:

∑Gen
i�1

�P
Gen
i,t + RWind

i,t + RPV
i,t +∑ESS

s�1
�R
ESS
s,t ≥Pload

t + �R
system
t ∀t (22)

∑Gen
i�1

PGen
i,t

+ RWind
i,t + RPV

i,t +∑ESS
s�1

RESS
s,t

≤Pload
t − Rsystem

t
∀t (23)

where �PGen
i,t and PGen

i,t
are the nameplate capacity and minimal power

output level for the ith conventional generator at hour t; �RESS
s,t and

RESS
s,t

are the upward and downward reserve of ESS at hour t; RWind
i,t

and RPV
i,t are the reserve contribution for wind and solar power at

hour t; �Rsystem
t and Rsystem

t
are the system required upward and

downward reserve margin at hour t.

4 Analysis of the impact of uncertainty
on system operation costs and
energy prices

In this section, we consider the impact of forecasts on
coordinated methods, primarily encompassing: (1) The difference
between incorporating forecasted results and directly using official
forecast data in the model. (2) The influence of forecast uncertainty
on coordination pathways. (3) The influence of economic
uncertainty on coordination pathways.

4.1 The difference between incorporating
forecasted results and directly using official
forecast data in the model

We utilized officially published data from 2015 to 2019 to
conduct load forecasting, integrating the forecasted results into
our model for deriving the decarbonization pathway for the UK.
Following this, we replaced the official forecast data and conducted a
comparative analysis. As illustrated in Figure 1, we observed a nearly
identical pattern of change in optimization results between the two
scenarios. Additionally, we compared the optimization results of our
model with the CO2 emissions from the UK’s FES pathway,
considering the lower carbon emissions achieved by the source-
load model in 2050. The results are as shown in Figure 2.

4.2 The influence of forecast uncertainty on
coordination pathways

We examined the impact of load forecasting errors on
optimization results and compared the effects of a 5% and 10%
increase in load forecasting. The results are as shown in Table 3. The
results indicate that as the load increases, carbon emissions in
2050 also rise. Increasing the proportion of wind and solar power
proves to be more cost-effective, while augmenting investments in
long-term energy storage is more beneficial in mitigating the effects
of load forecasting errors.

TABLE 2 Investment amount in energy storage by every 5 years, billion £.

Year 2020 2025 2030 2035 2040 2045 2050

Investment 1.64 0.87 3.08 4.44 2.73 3.24 1.44

TABLE 3 Investment amount in energy storage by every 5 years, billion £.

Paramrter FES Coordinated pathway

Forecasting error (−5%) Forecasting error (+5%) Forecasting error (+10%)

2050 annual CO2 (Mt) 7.11 0.22 0.16 0.31 0.42

W/S ratio in 2050 1.76 7.55 7.12 8.02 8.66

E/P ratio in 2050 5.02 36.2 35.6 37.5 38.1
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FIGURE 1
The difference between incorporating forecasted results and directly using official forecast data in the model.

FIGURE 2
Two pathways towards a zero-carbon electricity system by 2050 in the UK.
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4.3 The influence of economic uncertainty
on coordination pathways

We investigated the impact of energy storage cost fluctuations on
optimization results, comparing the long-term and short-term storage
investments between the FES pathway and our model. Additionally, we
contrasted the scenario with a 5% increase in energy storage costs, as
depicted in Figure 3. The results indicate that, in comparison to the FES
pathway, the coordinated pathway tends to favor investments in long-
term energy storage. This tendency becomes more pronounced when
energy storage costs increase; with a 5% cost increase, investments in
short-term energy storage are reduced by approximately 8.3%.

5 Conclusion

This paper proposes a coordinated configuration method for
integrating new energy sources and energy storage. Optimization
and comparisons are conducted based on the UK FES pathway, with
an exploration of the impact of uncertainties on optimization
results. The conclusions drawn are as follows:

1) Forecast accuracy affects optimization outcomes, with the
overall trend in this model, compared to the UK’s proposed
FES pathway, being an increase in investments in long-term
energy storage and wind power.

2) Load forecasting errors directly impact optimization results,
leading to higher carbon emissions in 2050 with an increase in
load. This situation also escalates the proportions of wind/solar
power and long-term/short-term energy storage.

3) A 5% increase in energy storage costs results in approximately
an 8.3% reduction in investment in short-term energy storage
in this model.
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FIGURE 3
Comparison of long-term and short-term energy storage investments under different scenarios.
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