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In recent years, the global installed capacity of wind power has grown rapidly. Wind
power forecasting, as a key technology in wind turbine systems, has received
widespread attention and extensive research. However, existing studies typically
focus on the power prediction of individual devices. In the context of multi-turbine
scenarios, employing individual models for each device may introduce challenges,
encompassing data dilution and a substantial number ofmodel parameters in power
generation forecasting tasks. In this paper, a single-modelmethod suitable formulti-
device wind power forecasting is proposed. Firstly, this method allocates multi-
dimensional random vectors to each device. Then, it utilizes space embedding
techniques to iteratively evolve the random vectors into representative vectors
corresponding to each device. Finally, the temporal features are concatenated
with the corresponding representative vectors and inputted into the model,
enabling the single model to accomplish multi-device wind power forecasting
task based on device discrimination. Experimental results demonstrate that our
method not only solves the data dilution issue and significantly reduces the
number of model parameters but also maintains better predictive performance.
Future research could focus on using more interpretable space embedding
techniques to observe representation vectors of wind turbine equipment and
further explore their semantic features.
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1 Introduction

Since the Industrial Revolution in the 18th century, with the advancement of technology
and social progress, the demand for energy has grown rapidly (Wang et al., 2019).
Conventional energy sources such as oil, coal, and natural gas not only have limited
reserves but also contribute to environmental pollution and global warming (Wang et al.,
2019). Wind energy, as a clean and widely distributed renewable energy, has gained global
attention in recent years (Liu and Chen, 2019; Wang et al., 2021; Yang et al., 2021).
However, the fluctuation of wind energy leads to the instability of power output in wind
farms, which imposes additional burdens on energy storage devices and potentially affects
the reliability of power supply (Parsons et al., 2004).
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Incorporating efficient wind power forecasting methods into
power control systems can effectively reduce operational costs and
significantly enhance the reliability of wind power systems (Contaxis
and Kabouris, 1991; Kariniotakis et al., 1996). Existing wind power
forecasting methods mainly focus on individual devices. However,
in practical applications, multiple wind turbines often operate in
parallel within a wind power system. Assigning independent
forecasting models to each device would result in two problems:
firstly, dividing the dataset based on devices would lead to limited
training data for each model, causing data dilution; secondly, each
device having an independent model would result in a large number
of total parameters, making accurate forecasting of wind turbine
power generation increasingly challenging. In this paper, we propose
a training method for prediction models applicable to multi-device
scenarios, aiming to address the challenges of data dilution and
excessive parameters.

2 Relevant work

The existing time series forecasting methods can be mainly divided
into two categories: one consists of classical statistical methods with
high interpretability and theoretical foundations, while the other
category comprises more efficient methods based on artificial neural
networks. The method proposed in this paper combines deep neural
networks with space embedding technology from the field of natural
language processing, aiming to effectively address the issue of multi-
device wind turbine power generation forecasting.

2.1 Traditional wind power
forecasting methods

The traditional wind power forecasting methods include physics-
based models and statistic-based methods. The physics-based models
play an crucial role in traditional forecasting methods, which consider
meteorological factors (such as pressure, humidity, and temperature)
from numerical weather prediction (NWP) and local topography for
forecasting (Jung and Broadwater, 2014; Fang and Chiang, 2016; Hu
et al., 2020). In terms of short-term forecasting capability, thesemethods
generally performmoderately well, and their results aremore suitable as
a reference for long-term forecasting (Hu et al., 2020;Wang et al., 2021).
The Autoregressive Integrated Moving Average (ARIMA) model,
which is based on the theory of differencing, transforms non-
stationary processes into stationary ones to address prediction
problems (Ariyo et al., 2014). However, this method can only model
individual attributes and fails to consider the correlations among
multiple attributes at different time steps. In addition, ARIMA has
high computational costs and is rarely applied to modeling and
forecasting tasks involving long sequences.

2.2 Time-series forecasting methods based
on deep learning

The commonly used wind power forecasting methods based on
deep learning include two methods: Recurrent Neural Networks
(RNN) and Transformer models. In comparison to the classical

RNNmodel, its variants, such as Long Short-TermMemory (LSTM)
(Hochreiter and Schmidhuber, 1997)and Gated Recurrent Unit
(GRU) (Cho et al., 2014), are more prevalent. LSTM was
proposed to address the problem of vanishing gradients caused
by long sequence backpropagation. GRU, compared to LSTM,
reduces the number of gate units and parameters, making it
easier to train it to convergence. Additionally, it exhibits similar
performance to LSTM in multiple tasks (Chung et al., 2014). Lai
et al. advocated for forecasting models that encompass the impacts
of both long-term patterns (such as day-night and season) and
short-term patterns (like cloud fluctuations and wind direction).
Building upon this concept, they introduced LSTNet, a variant of
Convolutional Recurrent Neural Network (CRNN) (Lai et al., 2018).
RNN possesses inherent capability in modeling time series data.
However, the issue of gradient explosion has not been entirely solved
yet. Moreover, their auto-regressive output mode not only extends
the output time for long sequence forecasting tasks, but also
increases training time due to challenges in parallel training.

The Transformer architecture was initially proposed for
machine translation tasks (Vaswani et al., 2017). Although the
Transformer model exhibits excellent performance in the field of
NLP, its drawbacks are also evident: the model structure is complex,
it has a large number of parameters, and it requires a relatively long
time to produce outputs. Informer (Zhou et al., 2021) is a variant of
the Transformer model designed for time series forecasting tasks. It
incorporates the ProbSparse attention mechanism to reduce
sampling time and introduces a generative decoder that can
output the entire prediction sequence in a single step,
significantly reducing the time complexity of the forecasting task.
AutoFormer (Wu et al., 2021) introduces a novel attention
mechanism called Auto-Correlation, which has stronger
information aggregation capability, enabling it to achieve superior
forecasting performance compared to variants such as Informer.
However, the main advantage of the Transformer architecture lies in
its multi-head attention mechanism, which exhibits permutation
invariance. Even with the addition of positional encoding in the
data, the application of attention mechanisms inevitably results in
the loss of temporal information. In the field of natural language
processing, semantics and word order are not entirely bound, but in
the domain of time series forecasting, the output results are highly
correlated with the temporal order. Zeng et al., 2023 have
demonstrated that in some time series prediction tasks, a single-
layer linear neural network outperforms Transformer-based
networks and offers significant advantages.

2.3 Feature engineering

Feature engineering is the process of transforming raw data into
features that better represent the essence of the problem. Effective
feature engineering can consistently enhance the forecasting
accuracy of the model. Two-dimensional Discrete Wavelet
Transform (2D-DWT) and the 2D Fast Discrete Orthonormal
Stockwell Transform (2D-FDOST) method are used to extract
new effective dynamic features from dynamic electrical signals
(Karasu and Sarac, 2019; Karasu and Saraç 2022). Compared to
the Fourier transform, these methods exhibit stronger adaptability
and noise resistance, allowing for localized analysis in different
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frequency domains and thereby capturing detailed features more
effectively. However, these methods have a high computational
complexity and are not suitable for scenarios requiring real-time
processing. The Multi-Objective Grey Wolf Optimizer (MOGWO)
is commonly used to extract a small set of useful features from a large
volume of dynamic electrical signals, improving data quality and
reducing computational overhead (Karasu and Saraç, 2020). The
Grey Wolf algorithm has fewer parameters, is easy to implement,
and requires less computational time, but the solutions found may
not always be optimal. A feature selection method based on
Sequential Floating Forward Selection (SFFS) has been used to
reduce the historical operating data of lots of wind turbines in a
wind farm environment to 660 effective features (Peng et al., 2021).
This not only reduces the computational overhead of the forecasting
model but also enhances its forecasting accuracy. However, the
hyper-parameters of this algorithm are not adaptive, making it
highly dependent on empirical expertise.

Methods for extracting dynamic features from historical power
data are commonly used to assist neural network models in
forecasting. However, the static features of wind turbine
equipment have received less attention from researchers. Static
factors, such as the type of wind turbine components, geographic
environmental conditions, equipment layout, and equipment failure
status, can also have a long-term impact on the power generation
patterns of wind turbines, making them not entirely dependent on
measurable internal conditions and weather factors.

Mikolov et al. (2013a), Mikolov et al. (2013b) both schemes infer
the properties of words based on the distributional order of words in
sentences. In natural language, there exist semantic and syntactic
correlations between words, and deep learning models need to
discover the semantic features hidden beneath the distributional order
of words to accurately predict their sequence. However, apart from
geographical location, there is no obvious distributional correlation
among wind turbine devices. Therefore, CBOW and Skip-gram
schemes are not suitable for the task of feature representation for
wind turbines. The graph embedding technique (Grover and
Leskovec, 2016) requires the model to predict the connectivity
structure between nodes in the graph. Then, it utilizes gradient
descent algorithm to infer high-dimensional vector representations of
nodes or the entire graph. However, in a distributed wind farm, the
geographical positions of wind turbines do not conform to the structure
of a graph because there is no explicit connection between the nodes
representing the wind turbines. Therefore, graph embedding techniques
cannot be directly applied to the representation of wind turbine devices,
nor can they directly uncover the hidden static features that influence the
device’s own power generation patterns. Position Embedding (Vaswani
et al., 2017), which is a manually specifiedmethod for encoding sequence
order, utilizes a fixed calculation approach without neural networks or
gradient descent algorithms. This method is applied in the position
encoding of Transformer models. However, the hidden features of wind
turbines are more complex than sequential order, and representation
vectors calculated using manually specified algorithms based on device
identifiers are unable to effectively reflect the characteristics of wind
turbine devices.

Considering the complexity of static factors that influence wind
turbine power generation patterns and the implicit correlations among
turbines, this paper sets the task of training device representation vectors
as power generation forecasting. To achieve this, the gradient descent

algorithm is employed to evolve randomly initialized data into vectors
that represent the static factors of the devices. This method directly
uncovers hidden static factors that impact device power generation
patterns. Different from traditional space embedding methods:

(1) Traditional space embedding methods are commonly used
to generate generic representation vectors that are not
specific to particular business scenarios. As a result, they
fail to capture representation information in specific task
scenarios. The proposed space embedding technique in
this paper specifically addresses the task scenario of
distributed wind turbine power forecasting, generating
representation vectors that are exclusively applicable to
this task scenario.

(2) In traditional space embedding methods, the tasks of
generating entity representation vectors and the subsequent
tasks of using these vectors often differ. The proposed space
embedding method in this paper, however, aligns the task of
generating vectors with the subsequent task, both of which is
power generation forecasting.

2.4 Work presented in this paper

Classical statistical models, recurrent neural networks, and deep
neural networks based on the Transformer architecture are all
forecasting models designed for single devices. However, in
multi-device scenarios, allocating independent prediction models
for each device would result in data fragmentation, significantly
reducing the available dataset for each model, while substantially
increasing the total number of parameters. This paper presents an
innovative method for wind power forecasting: instead of splitting
the dataset according to devices or providing independent models
for each device, a single model is trained to predict the power
generation for each individual wind turbine device. The static
characteristics of individual devices have an impact on the power
generation patterns. However, a single prediction model cannot
differentiate between different devices or take into account the
differences in device operating patterns, leading to a loss in
forecasting accuracy. To address this issue, this paper utilizes
space embedding technology to infer the hidden features of each
device and applies it to represent the wind turbines. The essence of
space embedding technology is the same as that of neural networks,
both of which are derived from causal effects and use gradient
descent algorithms to calculate the static attributes that effectively
affect the target task. Therefore, this article aims to propose a
method that does not rely on expert knowledge and complex
modeling processes to obtain the static properties of wind
turbine equipment (including inherent equipment features and
some long-term climate characteristics that do not change).
During the power generation forecasting process, the
representation vectors are concatenated with the temporal data
and inputted into the neural network model. This approach
enables the model to consider both the dynamic historical data
and the inherent static characteristics of the devices. Experimental
validation shows that the proposed method achieves a superior
forecasting performance while reducing the parameter quantity to
only 0.74% of the comparative method.
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The main contributions of this paper are as follows:

(1) Proposed a method that utilizes the complete dataset for
model training and employs a single model for wind power
forecasting across multiple wind turbines. This method
addresses the issue of data dilution and significantly
reduces the number of model parameters.

(2) Introduced a space embedding technique specifically
designed for wind turbines. This technique is used to
represent the impact of hidden static features of the
devices on power generation patterns, addressing the issue
of predictive performance loss caused by an individual
model’s inability to differentiate between devices.

(3) The experiments demonstrate that the single-model method
using the complete dataset not only significantly reduces the
number of parameters but also improves predictive
performance. Building upon this foundation, the utilization
of wind turbine embedding technology further enhances
prediction accuracy. This paper verifies a positive
correlation between the dimension of representation
vectors and the accuracy of power generation forecasting.
However, there is limited improvement in performance when
the dimension becomes excessively large.

3 Theoretical background

3.1 Long Short-Term Memory

Long Short-TermMemory (LSTM) is a special type of Recurrent
Neural Network (RNN). Compared to traditional RNN, LSTM

alleviates the issues of vanishing and exploding gradients in
modeling long sequences. When receiving input from the upper
layers of the network, the LSTM layer needs to unfold itself
horizontally to match the shape of the input data. The data flow
mechanism of LSTM makes it naturally suitable for modeling
sequential data, but also hinders parallel computation. The
diagram below illustrates the data propagation and internal
structure of LSTM during horizontal unfolding.

In Figure 1, the LSTM layer consists of multiple blocks, where
each block shares the same parameters, and data propagation
occurs strictly in linear order. Each LSTM block includes a
forget gate ft, an input gate it, and an output gate ot. The
forget gate ft controls whether historical information in the
memory cell should be forgotten. The input gate it determines
whether the input data Xt should be written into the memory cell.
The output gate ot decides the extent to which information from
the previous time step is transmitted to the next LSTM block. The
formulas for these three gate units and the memory cell are
as follows:

ft � σ Wf · Xt, ht−1[ ] + bf( ) (1)
it � σ Wi · Xt, ht−1[ ] + bi( ) (2)
ot � σ Wo · Xt, ht−1[ ] + bo( ) (3)

~Ct � tanh Wc · Xt, ht−1[ ] + bc( ) (4)

In the formulas,W and b represent the learnable parameters and
bias terms for each gate unit. σ stands for applying the sigmoid
activation function after performing matrix multiplication between
the input data and the network parameter matrix. The formula for
the sigmoid activation function is as follows:

FIGURE 1
Illustration of LSTM layer structure.
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sigmod x( ) � 1
1 + e−x

(5)

The activation function will map the input data to a value
between 0 and 1. The closer the value is to 0, the smaller the
influence of the mapped data will be in the subsequent matrix
multiplication. The formulas for the cell state Ct and hidden state ht
calculations are as follows:

Ct � ft · Ct−1 + it · ~Ct (6)
ht � ot + tanh Ct( ) (7)

The derivative of Ct with respect to Ct−1 is represented as
∂Ct
∂Ct−1 � ft + Ct−1 ∂ft

∂Ct−1 + ∂it
∂Ct−1

~Ct+it ∂ ~Ct
∂Ct−1, where ft falls between

0 and 1. Therefore, the internal structure of LSTM can effectively
prevent the occurrence of gradient explosion or gradient vanishing.

3.2 Space embedding technology

Space embedding technology is a technique that computes the
continuous vector representation of entities in a high-dimensional
space. It originated from word embedding in the field of Natural
Language Processing (NLP). Typically, space embedding technology
evolves the vector representation based on the distribution
phenomena or behavioral patterns of entities in specific tasks,
evolving random data into high-dimensional vectors with
representational capabilities. In the field of NLP, performing
space embedding computation is an upstream task. This task is
not specific to particular business scenario but rather aims to convert
abstract natural language into a more easily processable data format.
Conversely, downstream tasks are tailored to specific business
scenarios and rely on the representations vector generated by
upstream tasks. Figure 2 illustrates the relationship between
upstream and downstream tasks.

Regarding the word embedding technology, predicting word
distribution tasks are considered upstream tasks, while using
evolved word vectors for tasks such as machine translation,
sentiment analysis, or named entity recognition is referred to as

downstream tasks. The distributional hypothesis proposed by Harris
in 1954 serves as the theoretical foundation of word embedding
technology. This hypothesis posits that words with similar contexts
also have similar meanings and should correspond to similar high-
dimensional continuous representation vectors (Harris, 1954).
Word embedding technology derives high-dimensional
continuous vector representations based on the phenomenon of
word distribution. Typically, researchers train a deep neural network
to predict word distributions and employ the gradient descent
algorithm to update network parameters and word vector
matrices simultaneously. After training the neural network until
convergence, the high-dimensional vector representations
corresponding to words have evolved from their random initial
states to appropriate states. These representations can be used to
describe the hidden features associated with each word.
Representative models of this technology include word2vec, Elmo
(Sarzynska-Wawer et al., 2021), Bert (Devlin et al., 2018).

After word embedding technology, embedding techniques have
further developed into graph embedding for graph structures
(Grover and Leskovec, 2016), position embedding for sequential
order (Vaswani et al., 2017), and data embedding architecture
known as data2vec for multi-modal data (Baevski et al., 2022),
among other techniques or approaches.

It is crucial to recognize that power fluctuation patterns are
influenced by both dynamic factors, such as changes in internal
turbine states and meteorological conditions, and the static
attributes of the turbine equipment. The design of turbine blades
and the control strategy significantly affect energy capture and
conversion efficiency, while the geographical and climatic context
of the equipment directly impacts power generation fluctuations.
Additionally, the static attributes of the turbine have a lasting impact
on its power generation patterns, making its power output not
entirely dependent on real-time internal and meteorological data.
Even turbines of the same types may exhibit differences in their
power generation patterns due to variations in environment, layout,
and maintenance conditions.

However, characterizing the static features of turbines faces
three challenges:

FIGURE 2
Diagram illustrating the association between upstream and downstream tasks.
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1. Although common SCADA datasets include a wealth of
dynamic data from the operational phase, hey do not record
details on common static features such as blade shape, wind
adaptability, altitude, climate, and geographical environment.

2. It is challenging to analyze the correlation between a single
static feature and power fluctuations, which limits our ability to
discern and rank the relationship between static features and
power fluctuations.

3. Analyzing the correlation between a single static feature and
power fluctuations is challenging, which limits researchers’
ability to distinguish and rank the extent of correlation between
static features and power fluctuations.

In the absence of effective features, researchers can predict
the distribution of entities by training models to ensure the
models capture the static hidden features of the entities. The
Word2vec model infers the hidden semantic features of words
based on the order of word distribution, and the graph
embedding model node2vec infers the hidden features of
nodes based on their connectivity structure in the graph. To
overcome the challenges mentioned above and effectively
capture the static features of turbine equipment, it is feasible
to consider inferring potential static features based on the
turbine power patterns.

We considered training models to infer hidden turbine features
during the process of forecasting wind speed or direction. However,
the static feature vectors generated in this way only reflect the
climatic characteristics and do not represent the equipment
characteristics (such as conversion efficiency, wind adaptability,
or fault conditions). Constructing correlation graphs based on
the similarity of power fluctuation patterns between turbines and
using graph embedding techniques can also capture the static
features of turbine nodes, though the static features obtained this
way tend to represent inter-device correlations more. To
comprehensively characterize the static factors affecting the
equipment’s power pattern, we set both upstream and
downstream tasks as the same, namely, the turbine power
forecasting task. The representation vector generated based on
this describes the static factors that affect the power fluctuation
pattern. The vector semantics are not limited to climatic factors,
equipment models, operational strategies, etc., but may also include
other related factors that have not been researched but have a
tangible correlation.

This paper presents an embedding technique that does not rely
on entity distribution correlation. Specifically, when performing
wind power forecasting tasks using neural networks, this paper
utilizes the gradient descent algorithm to iteratively evolve randomly
initialized vectors into high-dimensional representations of the wind
turbine’s hidden static factors. Traditional space embedding
techniques rely on predicting the distribution patterns of entities.
However, in our method, we generate representation vectors by
predicting the target attribute, i.e., Active power, directly. This
method is not only applicable for generating representation
vectors of entities without specific distribution phenomena, such
as turbine generators, but also directly discovers hidden features that
are highly correlated with the target attributes. The representation
vectors generated by embedding technology are derived from longer
segments of the training dataset, which allows them to encompass

features from a wider time span. In contrast, the wind power
forecasting task only accesses data from a limited number of
historical time steps. The representation vectors provide
additional evidence for the forecasting task. Subsequent
experiments evaluated the impact of different dimensional
representation vectors on the forecasting model, and verified the
capability of embedding techniques to enhance the performance of
the forecasting models.

4 Methodology

4.1 Task description

Wind power forecasting tasks fall into the category of time
series forecasting tasks, which require models to predict future
time steps based on historical time step data. Each time step
corresponds to a sampling for factors such as turbine power,
wind attributes, and internal device states. Typically, such tasks
involve input data X ∈ RK×T, where K and T represent the
number of historical time steps and the number of features
per time step, respectively. After being processed by the
forecasting model, the model’s output is denoted as Y ∈ RN×T,
where N is the specified number of forecasting steps for the task.
Specifically, in the scenario of single-property forecasting tasks,
the model’s output is Y ∈ RN×1. In time series forecasting tasks,
we aim for minimal discrepancy between the model’s
predictions and actual measurement values.

In the proposed method, each wind turbine contains a vector
hi ∈ RM to represent its own characteristics, where M represents the
number of attributes contained in the representation vector. The
representation vector of the wind turbine will be concatenated with
the dynamic temporal data and sent as part of the input data into the
model. In this scenario, the input data of the model is X ∈ RK×(T+M),
and the model output is Y ∈ RN×1.

4.2 Overview of method

In the proposed method of this paper, the wind power
forecasting task is decomposed into two tasks: an upstream
embedding task to infer the hidden features of wind turbines,
and a downstream task to forecast power generation based on
the hidden features.

The upstream and downstream tasks are not completely
independent. As shown in Figure 3, the same data processing
method and model architecture are used for model training in
both the upstream and downstream tasks. The hidden static
features generated by the upstream task are used as additional
features, which will be concatenated with the historical time steps
in the downstream task, and inputted into the LSTM model. In the
proposed method, after the input data pass through the LSTM layer,
Dropout layer, and linear projection layer, only the data
representing future time steps is used as output, while the
content representing historical time steps is discarded. The
discarded portion does not contribute to the calculation of the
loss function and does not have a positive effect on the
optimization of the model parameters.
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4.2.1 Concatenation of blank time steps
In time series forecasting tasks, historical data is inputted into a

neural network model, which then generates future data as output.
In classical scenarios, researchers commonly utilize a sliding window
approach to predict a limited number of time steps. Taking Figure 4

as an example, 4 previous time steps are used to forecast
1 subsequent time step, resulting in the generation of an entire
time-series through multiple autoregressive iterations.

This paper argues that the method of the sliding window
results in wastage of computational resources and time, as it
requires inputting K historical time steps into the model for
each prediction, and a long sequence needs multiple iterations
to be fully generated. Therefore, this paper concatenates
additional blank data with the historical time step to align
the output format with the expected format. As shown in
Figure 5, the prediction model needs to output data for N

FIGURE 3
Overview of the method architecture.

FIGURE 4
Diagram of autoregressive prediction method.

FIGURE 5
Diagram of the novel prediction method.
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future time steps, with the number of blank time steps matching
the desired output.

Due to the fact that LSTM can propagate data through the cell
state Ct and hidden state ht when unfolded, inputting blank time
steps into the LSTM model does not cause interruption in
information transmission.

4.2.2 Replication and concatenation of
hidden features

The proposed hidden feature space embedding method aims to
extract the hidden static features of the wind turbine devices thereby
uncovering the latent factors that influence the operation patterns of
the wind turbines.

As shown in Figure 6, in the process of pre-training, the hidden
feature vector hi ∈ RM corresponding to wind turbine i will be
replicated K + N times. It is concatenated directly with historical
time steps Xh

i ∈ RK×T and blank time steps Xb ∈ RN×T, forming an
input matrix Input(K+N)×(T+M) with a shape of (K +N) × (T +M),
which is then inputted into the LSTM model. This paper adopts the
unique spatial dynamic wind power forecasting dataset, SDWPF (Zhou
et al., 2022), provided by Longyuan Power Group Co., Ltd. This dataset
contains a total of 134 wind turbines, so the hidden feature embedding
matrixH ∈ R134×M contains the representation vectors of 134 turbines.
It is essential to ensure that the hidden feature vector hi and the
historical time step Xh

i are from the same turbine.
The hidden features, as input data, participate in computation

and obtain corresponding gradients through a backward
propagation process. Subsequently, multiple rounds of iteration
are performed using the gradient descent algorithm. The
randomly initialized vectors gradually evolves into representation
vectors that capture the hidden static features of the wind turbine
devices. The algorithmic procedure is illustrated in Algorithm 1.

4.3 Evaluation metrics

This paper employs four performance evaluation metrics for
forecasting models: Mean squared error (MSE), Mean Absolute

Error (MAE), Pearson correlation coefficient (Corr), and
coefficient of determination (R2). The formulas for calculating
these metrics are as follows:

MSE � 1
n
∑n

1
ŷi− yi( )2 (8)

MAE � 1
n
∑n

1
ŷi− yi
∣∣∣∣ ∣∣∣∣ (9)

Corr � Cov ŷ, y( )															
Var ŷ( ) × Var y( )√ � ∑n

i (ŷi− ŷ) × yi − �y( )																					∑n
1 ŷi− ŷ( )2 × ∑n

1 yi − �y( )2√ (10)

R2 � SSR

SST
� ∑n

1 ŷi− �y( )2∑n
1 yi − �y( )2 (11)

In the above equations, ŷ represents the predicted values
generated by the model, while y represents the measured
values. The metrics of Mean Squared Error (MSE) and Mean
Absolute Error (MAE) measure the discrepancy between the
predicted values and the measured values, where smaller values
indicate better performance.The Correlation (Corr) metric describes
the degree of correlation between the predicted sequence and the
actual sequence, with its value ranging from −1 to 1. A larger value
indicates a stronger positive correlation, while a smaller value
indicates a stronger negative correlation. The R-squared (R2)
metric quantifies the fitting degree of the predicted values to the
actual values, with a value ranging between 0 and 1. Ideally, it
should approach 1.

The forecasting model is prone to generating a straight line at the
mean of the actual values as the prediction result, which exhibits a
poor correlation with the actual values. Although theMSE andMAE
metrics have small values in this case, the R-squared (R2) metric
approaches zero, indicating the model’s limited ability to capture
volatility.

Furthermore, this paper introduces a custom comprehensive
evaluation metric called Mean Standardized Score (MSS). It is
calculated using the following formula:

Score x( ) � Corr x( ) + R2 x( ) −MSE x( ) −MAE x( ) (12)

FIGURE 6
Replication and Concatenation process of hidden feature vectors.
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MSS � Mean
Score x( ) −Mean Score x( ), 0( )

Std Score x( ), 0( ) , 1( ) (13)

The calculation of the MSS metric consists of three steps:

(1) First, the original four evaluation metrics are summed
according to the principle of adding positive gains and
subtracting negative gains. This yields the total score of
each model across all criteria.

(2) Then, the scores for each task are normalized. Due to the
differences in task difficulty, the dimensions of the scores are
inconsistent, resulting in tasks with higher scores having a
greater impact on the final evaluation. Through the
normalization operation, we ensure that the scores of each
task have the same dimension, eliminating the influence of
task difficulty on the final evaluation. Here,
“Mean(Score(x), 0)” and “Std(Score(x), 0)"”mean taking
the mean and standard deviation of the scores for different
models under the same task.

(3) Finally, the scores of each task under the same model are
averaged to determine the overall score of the model.

5 Experiment and analysis

5.1 Data preprocessing

This paper utilizes the unique spatial dynamic wind power
forecasting dataset, SDWPF (Zhou et al., 2022), provided by
Longyuan Power Group Co., Ltd. The dataset spans a period of
184 days and includes sampled data from 134 wind turbines. The
SCADA system compiles the collected data at 10-min intervals, with
each wind turbine accounting for 184 (days) × 24 (hours) × 6
(intervals), resulting in a total of 26,496 time steps. The entire dataset
contains 26,496 × 134 (units), summing up to 3,550,464 time steps.

Each time step is associated with 13 dynamic features, including data
from internal features of the wind turbine equipment as well as
climate-related data.

The content and format of the dataset are presented in
the Table 1.

During the data preprocessing stage, the following steps were
conducted on the dataset in this paper:

1. The feature of turbine ID was discarded. This paper employed
space embedding technique to obtain a multi-dimensional
vector representation of the hidden features of turbines.
This method can provide richer turbine feature information
for the model, whereas the turbine ID does not contain
descriptive information about the static features of the device.

2. The feature of operating days was discarded. This feature is
used to identify the sequential relationship between data.
However, recurrent neural networks have the inherent
ability to model time series data. Additionally, the data in
the test set and validation set belong to future data, and this
feature differs from the training set in terms of mean and
variance, which can affect the model’s judgment. Therefore,
this paper chooses to remove this feature.

3. Recoding the time feature. The format of this feature is “hour:
minute,” and its content is not numerical, making it unsuitable
for direct input into the model. In this paper, the timestamp
was split to create two new dimensions.We hope themodel can
recognize the pattern of the relationship between power
generation and the time variation within a day.

Figure 7 shows the data preprocessing process in a more
intuitive way after preprocessing, the attributes of the dataset and
their descriptions are shown in the Table 2.

This paper explores the correlation between multidimensional
features and active power (Prtv), as shown in the heat map.

As depicted in Figure 8, a strong correlation is evident between
active power (feature 10) and wind speed (feature 1), located at
coordinates (1, 10). Additionally, there is an insignificant correlation
between the active power (feature 10) and the temperature inside the
turbine nacelle (feature 4), corresponding to coordinates (4, 10).
Furthermore, the heatmap exhibits a strong negative correlation
between the active power (feature 4) and the pitch angle of the three
blades (feature 6, 7, and 8), corresponding to coordinates (7, 10), (7,

TABLE 1 Overview of dataset contents.

Index 0 1 2 . . .. . .

TurbID 1 1 1 . . .. . .

Day 1 1 1 . . .. . .

Tmstamp 0:00 0:10 0:20 . . .. . .

Wspd 12.23 11.58 11.21 . . .. . .

Wdir −0.83 −3.32 −1.38 . . .. . .

Etmp 29.08 29.01 29.17 . . .. . .

Itmp 41.9 42.01 42.24 . . .. . .

Ndir −23.73 −23.7 −28.84 . . .. . .

Pab1 1.07 1.06 1.04 . . .. . .

Pab2 1.07 1.06 1.04 . . .. . .

Pab3 1.07 1.06 1.04 . . .. . .

Prtv −0.21 −0.25 −0.25 . . .. . .

Patv 1549.53 1549.71 1534.77 . . .. . .

FIGURE 7
Diagram of data feature processing and normalization scheme.
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10) and (8, 10) respectively. The time feature (feature 10 and 11)
shows few correlation with other features.

5.2 Comparison between the improved
method and traditional methods

In this research, 80% of the dataset is used as the training set,
while the remaining 20% is allocated for the validation and test sets.
Apart from the time feature, each dimension of the features is
normalized using mean and standard deviation. The proposed
method in this paper for multi-device power generation
forecasting is not dependent on a specific neural network model,
but can complement the improved methods of neural network
models. Choosing an appropriate neural network model can

improve the accuracy of power generation forecasting tasks in
specific application scenarios. Conventional neural network
models include but are not limited to Transformer and its
variants, as well as recurrent neural network models such as
LSTM or GRU. We adopts the LSTM as the experimental object
and compares the performance difference between the traditional
method and the single-model method that integrates space
embedding technology. Table 3 displays the best results obtained
from three experiments under the same conditions. Bold in the table
is used to highlight the best results under the same experimental
conditions, and the following table is the same.

The “Multi LSTM”method in the table does not utilize the space
embedding technique to obtain device representation vectors.
Instead, it assigns a independent LSTM model to each turbine
device for power generation forecasting. Since each device has an
independent model, the dataset is also divided by devices. In the
“Single LSTM & 8 Hidden Features”method, we use a single model
and an undivided training set to forecasting the power generation of
134 turbine devices. At the same time, we introduce an 8-
dimensional vector to represent the hidden static features of the
turbine devices. The “ARIMA” scheme employs the classical
statistical model ARIMA for power generation forecasting. The
data in the table represents the average performance of all
turbines’ predictions.

Based on the table results, it can be observed that the forecasting
model using hidden features has fewer model parameters and
demonstrates significant advantages across all four metrics.
Particularly noteworthy is the 23.6% improvement in the MSE
metric for ultra-short-term forecasting (1 h, 6 time steps).
Compared to traditional approaches that merely input historical
power data into neural network models, the method presented in
this paper utilizes hidden features to represent the impact of wind
turbine static attributes on their power generation patterns, enabling
the forecasting model to make more accurate predictions based on
the inherent properties of the equipment. Additionally, in traditional
methods, since neural network models cannot distinguish which

TABLE 2 Display of dataset features and descriptions.

Column Column name Description

1 Wspd (m/s) The wind speed recorded by the anemometer

2 Wdir (°) The angle between the wind direction and the position of turbine nacelle

3 Etmp (℃) Temperature of the surrounding environment

4 Itmp (℃) Temperature inside the turbine nacelle

5 Ndir (°) Nacelle direction, i.e., the yaw angle of the nacelle

6 Pab1 (°) Pitch angle of blade 1

7 Pab2 (°) Pitch angle of blade 2

8 Pab3 (°) Pitch angle of blade 3

9 Prtv (kW) Reactive power

10 Patv (°) Active power (target variable)

11 Hour Hour of the record

12 Minute Minute of the record

FIGURE 8
Heat map for attribute correlation analysis of the dataset.
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device the time series data originates from, separate forecasting
models are assigned to each device. The dataset consists of
134 turbines, and the parameter size of the traditional method
would reach 134 times that of the proposed method. This leads
to wastage of computational resources without yielding significant
performance improvements. However, the approach in this paper
distinguishes devices based on hidden features which represent the
differences between turbines, allowing the entire dataset to be used
for model training. The augmentation of data also supports
enhancements in forecasting accuracy. Additionally, due to the
high randomness of the data, the performance of the statistic-
based model ARIMA is not satisfactory.

We selected Wind Turbine NO. 1 and uses a 1-h ahead
prediction to assess the short-term effectiveness of the forecasting
model. By comparing Figure 9 and Figure 10, two advantages of the

model trained with hidden features and the complete dataset can
be observed:

• Higher accuracy: The results shown in Figure 10 demonstrate
a stronger correlation between the orange line and the blue
line. This observation aligns with the model’s superior
performance over the traditional models in terms of
correlation (Corr) and determination coefficient (R2)
indicators.

• Higher certainty: Compared to Figure 9, the predicted values
in Figure 10 exhibit smaller short-term fluctuations.

It should be noted that, the measured values from time step 700 to
1600 in the graph are displayed as 0, which is actually a result of data set
incompleteness and filled with 0 instead of real measurements.

TABLE 3 Performance comparison between improved method and traditional method.

Model Params (Million) Metrics Horizon Count

6 12 24 48 96 144

ARIMA - MSE 0.8245 0.8252 0.8262 0.8283 0.8339 0.8398 0

MAE 0.7296 0.7295 0.7298 0.7300 0.7313 0.7332

Corr 0.0003 -1e-5 −0.0010 −0.0021 −0.0027 −0.0033

R2 0.0392 0.0556 0.0778 0.1137 0.1410 0.1470

Multi LSTM 6.8 MSE 0.2149 0.2983 0.4646 0.5730 0.6811 0.7489 2

MAE 0.3140 0.3753 0.4566 0.5513 0.6260 0.6421

Corr 0.8601 0.8000 0.6912 0.5196 0.3174 0.2688

R2 0.6382 0.5413 0.4314 0.2734 0.1556 0.1172

Single LSTM & 8 Hidden Features 0.104 MSE 0.1584 0.2572 0.4033 0.5953 0.6596 0.6703 23

MAE 0.2552 0.3313 0.4376 0.5428 0.5730 0.5981

Corr 0.8957 0.8284 0.7085 0.5120 0.3990 0.3322

R2 0.7819 0.6262 0.5834 0.3956 0.2708 0.2063

FIGURE 9
Forecasting performance of traditional method on wind
turbine #1.

FIGURE 10
Forecasting performance of the Single Model method with
8 Hidden Features on wind turbine #1.

Frontiers in Energy Research frontiersin.org11

Man et al. 10.3389/fenrg.2024.1346369

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1346369


5.3 Performance evaluation on hidden
feature dimensions

The above experiment compared the performance between the
traditional method and the improved method that utilizes 8-
dimensional hidden features. We will further examine the impact
of additional dimensions of hidden features on the efficacy of the
forecasting model in this research.

There are similarities in the power generation patterns among
different wind turbines. Therefore, training the model using data from
other wind turbines can enhance its emphasis on the conversion pattern
between climate factors and power generation, thus reducing the risk of
overfitting. The experiment demonstrates that even when the dimension
of device representation vectors is 0, the forecasting performance of a
single model is still superior to the traditional method of assigning
independent models to each device. This implies that the negative
impact caused by the inability of the model to differentiate between
devices is smaller than the positive gain achieved through dataset
augmentation. This phenomenon verifies the similarity in power
generation patterns among wind turbine devices. In addition, the
advantages of the forecasting model are more significant when the
dimension of the device representation vector is higher. This
phenomenon confirms the existence of differences in the power
generation patterns among different devices. The information
contained in the device representation vector provides additional
features to the forecasting model, enabling more accurate predictions.

From Table 4, it can be observed that different dimensions of hidden
features exhibit varying gain effects on the model. Among them, the 8-
dimensional hidden features contribute the highest gain to themodel. It is

worth noting that Table 4 only explicitly compares the optimal
performance under different conditions, without considering the
negative impact of non-optimal attributes (non-bolded fields) on the
performance of the method. Therefore, in order to compare the relative
differences in model performance under different scenarios, we adopts
the comprehensive scoring criterion MSS, aiming to comprehensively
evaluate the methods.

As shown in Table 5, it can be observed that although the 12-
dimensional hidden feature model does not perform as well as the 8-
dimensional model in terms of the number of optimal score
quantity, its negative impact on non-optimal scores is less severe
compared to the 8-dimensional hidden feature model. This results in
a small difference in overall scores between the two models.

The above performance differs from the space embedding task
in natural language processing (NLP) tasks. In NLP tasks, word
vectors usually have higher dimensions (512–1024 dimensions),
while the dimensions of the hidden features of wind turbines are

TABLE 4 Comparative results of models with different dimensions of hidden features on four criteria.

Dimension Metrics Horizon Count

6 12 24 48 96 144

0 MSE 0.1641 0.2586 0.3899 0.6156 0.6622 0.7032 3

MAE 0.2581 0.3396 0.4253 0.5724 0.5906 0.6272

Corr 0.8935 0.8234 0.7175 0.4906 0.3794 0.2774

R2 0.7154 0.6597 0.5897 0.3892 0.2259 0.1770

4 MSE 0.1614 0.2652 0.3974 0.5935 0.7026 0.7091 2

MAE 0.2547 0.3390 0.4454 0.5534 0.5991 0.6178

Corr 0.8938 0.8186 0.7121 0.5166 0.3416 0.2631

R2 0.7622 0.7140 0.4774 0.4146 0.2737 0.1576

8 MSE 0.1584 0.2572 0.4033 0.5953 0.6596 0.6703 14

MAE 0.2552 0.3313 0.4376 0.5428 0.5730 0.5981

Corr 0.8957 0.8284 0.7085 0.5120 0.3990 0.3322

R2 0.7819 0.6262 0.5834 0.3996 0.2708 0.2063

12 MSE 0.1627 0.2645 0.3994 0.6017 0.6549 0.7102 5

MAE 0.2554 0.3430 0.4388 0.5437 0.5749 0.6162

Corr 0.8934 0.8188 0.7111 0.5300 0.4057 0.3016

R2 0.7380 0.6781 0.5473 0.4266 0.2783 0.2661

TABLE 5 Score table ofmodels with different dimensions of hidden features
under the MSS criterion.

Model MSS

Multi LSTM −1.69729642

Single LSTM & 0 Hidden Features 0.09489346

Single LSTM & 4 Hidden Features 0.14731688

Single LSTM & 8 Hidden Features 0.72910813

Single LSTM & 12 Hidden Features 0.72597795
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much lower than this range. 8-bit binary numbers can encode
256 entities, while the representation vectors generated by space
embedding technique exhibit excellent representational capacity.
Given that there are only 134 wind turbines, the number of hidden
features should not differ significantly from 8 ([log1342 ] + 1). The gain
of the model exhibited a turning point when the dimension of the
representation vector was 8. This indicates that there is a certain
degree of coupling between the static factors among wind turbines
and their power generation patterns, and the number of
independent influential factors is not substantial. The following
figure demonstrates the iterative process of inferring the 12-
dimensional representation vectors for wind turbines.

From Figure 11 and Figure 12, it can be observed that after being
initialized with a normal distribution, some representation vectors
exhibit the convergence of multiple features to the same point. This

phenomenon confirms the existence of certain coupling between
hidden static feature representations. Therefore, it can be concluded
that a 12-dimensional hidden feature is not the most compact
embedding representation for wind turbines. Excessive hidden
features not only increase computational burden, but may also
lead to overfitting of the prediction model. This paper argues
that in this task scenario of distributed wind farm power
generation forecasting, the number of hidden features should not
be excessive. The results of the experiment demonstrate the
effectiveness of static features in assisting forecasting, indicating
that detailed features that affect the target task can be inferred to a
certain extent without relying on specific expert knowledge and on-
site detail modeling. However, the correspondence and
representation effect between hidden features and real features in
the on-site environment still need further research.

The hyperparameters used in the forecasting model for the
experiment will be displayed in Table 6.

6 Conclusion

This paper investigates the problemofmulti-device power generation
forecasting in distributed power grid scenarios and proposes a
forecasting method that combines space embedding techniques from
the field of natural language processing. This method utilizes space
embedding techniques to uncover hidden static features of each power
generation device and uses these features as device identifiers. This
allows a single model to distinguish between devices and accurately
predict the power generation of multiple devices. The proposedmethod
is independent of experimental models and does not rely on specific
neural network architectures. It complements the improvements made
in neural network algorithms. The experiments have shown that the
proposed forecasting method, which integrates space embedding
technology, not only significantly reduces the number of model
parameters but also achieves higher prediction accuracy. The
experimental results also indicate that the gain of representation
vectors varies across different dimensions. The gain utility becomes
less apparent, When the dimension of device representation vector is
excessively large in the scenario described in this paper.

The proposed method in this paper focuses on using a single
model to perform forecasting tasks for devices within the entire
distributed power grid. However, there are several aspects that can
be improved in the future:

(1) This paper confirms the compatibility of LSTM and space
embedding technology. The subsequent investigation should
involve considering the use of variants of the Transformer
architecture to replace the classical LSTM model and verify
the compatibility of space embedding technology with
Transformer models in time series forecasting tasks.

(2) The representation vector of the wind turbine device is static
data and does not vary with the time series, which is different
from the temporal data. Currently, we concatenate the
representation vector with the time steps data directly. In
the future, we will consider using a more robust approach to
integrate the device representation vector with the
temporal data.

FIGURE 11
The 12-dimensional hidden features of Wind Turbine 6 converge
to 8 points.

FIGURE 12
The 12-dimensional hidden features of Wind Turbine
80 converge to 7 points.
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(3) The proposed prediction method integrates space
embedding technology without relying on specific
neural network architectures. Combining space
embedding technology with models specific to the
business scenario may lead to even better performance.
In future work, we consider incorporating convolutional
operations and attention mechanisms into the neural
network to further enhance the accuracy of
forecasting models.

Input:

H � h1 ,h2 , . . . ,h134{ }, hidden features Matrix, includes

hidden features of 134 turbines.

X � x1
1,x

1
2 , . . . ,x

1
K ,x

2
1 ,x

2
2, . . . ,x

2
K , . . . ,x

134
1 ,x134

2 , . . . ,x134
K{ },

Historical data of 134 wind turbines, each sequence

containing K time steps.

Y � y1
1,y

1
2 , . . . ,y

1
N ,y

2
1 ,y

2
2 , . . . ,y

2
N , . . . ,y

134
1 ,y134

2 , . . . ,y134
N{ }, Future

data of 134 wind turbines, each sequence containing N

time steps.

lr, the learning rate

Output: hidden features Matrix H.

1 for epoch in range (1, 10), do:

2 for i in range (1, 134), do:

3 input � concat(repeat(hi ,K, dim � 0),Xi , dim � 1)
4 ŷi = LSTM (input)
5 loss = MSELoss(ŷi ,yi)
6 loss.backward

7 LSTM.parameters = LSTM.parameters −
LSTM.parameters.grads × lr

8 hi = hi− hi.grad × lr

9 end for

10 end for

11 return H

Algorithm 1. Turbine Embedding.
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