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A position allocation approach to
the scheduling of
battery-electric bus charging

Alexander Brown*, Greg Droge and Jacob Gunther

Department of Electrical and Computer Engineering, Logan, UT, United States

Robust charging schedules for a growing market of battery-electric bus (BEB)
fleets are critical to successful adoption. In this paper, we present a BEB charging
scheduling framework that considers spatiotemporal schedule constraints,
route schedules, fast and slow charging options, and battery dynamics, modeled
as a mixed-integer linear program (MILP). The MILP is based on the berth
allocation problem (BAP), a method that optimally assigns vessels for service,
and is adapted in a modified form known as the position allocation problem
(PAP), which assigns electric vehicles (EVs) for charging. Linear battery dynamics
are included to model the charging of buses while at the station. To account
for the BEB discharges over their respective routes, we assume that each BEB
experiences an average kWh charge loss while in transit. The optimization
coordinates BEB charging to ensure that each vehicle maintains a state-of-
charge (SOC) above a specified level. Themodel alsominimizes the total number
of chargers utilized and prioritizes slow charging for battery health. The validity
of themodel is demonstrated using a set of routes sampled from the Utah Transit
Authority (UTA) for 35 buses and 338 visits to the charging station. The model is
also compared to a heuristic algorithm based on charge thresholds, referred
to as the Qin-modified method. The results show that the MILP framework
encourages battery health by assigning slow chargers to BEBs more readily
than the Qin-modified method. The MILP utilized one fast charger and six slow
chargers, whereas the Qin-modified method utilized four fast chargers and six
slow chargers. Moreover, the MILPmaintained a specifiedminimum SOC of 25%
throughout the day and achieved the required minimum SOC of 70% at the end
of the working day, whereas the Qin-modified method failed to maintain the
SOC above 0% without any constraints applied. Furthermore, it is shown that
the spatiotemporal constraints are met while considering the battery dynamics
and minimizing both the charger count and consumption cost.

KEYWORDS

berth allocation problem, position allocation problem, mixed-integer linear program,
battery-electric bus, scheduling
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1 Introduction

The public transportation system is crucial in any
urban area; however, the increased awareness and concern
over the environmental impacts of petroleum-based public
transportation have fueled efforts to reduce the pollution footprint
(De Filippo et al., 2014; Xylia and Silveira, 2018; Guida andAbdulah,
2017; Li, 2016). One key solution is the electrification of public bus
transportation via battery power, i.e., battery-electric buses (BEBs),
which has received significant attention (Li, 2016). Although this
technology provides benefits beyond a reduction in emissions, such
as lower driving costs, lowermaintenance costs, and reduced vehicle
noise, battery-powered systems introduce new challenges, such
as higher upfront costs and, potentially, long “refueling” periods,
which can last several hours (Xylia and Silveira, 2018; Li, 2016).
Furthermore, the problem is exacerbated by the constraints of the
transit schedule to which the fleet must adhere, the limited number
of chargers available, and the adverse effects of fast charging on
battery health (Lutsey and Nicholas, 2019). This paper aims to
remedy these problems by presenting a framework for optimally
assigning BEBs to charging queues, assuming fixed routes, while
considering multiple charger types and utilizing linear charging
dynamics. This method also ensures that the state-of-charge (SOC)
remains above a specified percentage throughout the day and
ensures a minimum SOC at the end of the working day.

Recently, many efforts have been made to simultaneously
solve the problems of route scheduling, charging fleets, and
determining the infrastructure upon which they rely (Wei et al.,
2018; Sebastiani et al., 2016; Hoke et al., 2014; Wang X. et al.,
2017). Several simplifications are made to make these problems
computationally feasible. Simplifications to the charge scheduling
model include utilizing only fast chargers while planning (Wei et al.,
2018; Sebastiani et al., 2016; Wang Y. et al., 2017; Zhou et al., 2020;
Yang et al., 2018; Wang X. et al., 2017; Qin et al., 2016; Liu and
Ceder, 2020). If slow chargers are used, they are only used at the
depot and not at the station (He et al., 2020; Tang et al., 2019).
Some approaches also simplify by assuming that full charge is always
achieved (Wei et al., 2018; Wang X. et al., 2017; Zhou et al., 2020;
Wang Y. et al., 2017). Others have assumed that the charge received
is proportional to the time spent on the charger (Liu andCeder, 2020;
Yang et al., 2018), which can be a valid assumption when the battery
SOC is below 80% (Liu and Ceder, 2020).

This work builds upon the position allocation problem (PAP)
(Qarebagh et al., 2019), a modification of the well-studied berth
allocation problem (BAP), as a means to schedule the charging of
electric vehicles (Buhrkal et al., 2011; Frojan et al., 2015; Imai et al.,
2001; Rodrigues and Agra, 2022). The BAP is a continuous time
model that solves the problem of allocating space for incoming
vessels to be berthed and serviced. Each arriving vessel requires both
time and space for service and, thus, must be carefully assigned
to avoid delay (Imai et al., 2001). Vessels are lined up parallel to
the berth to be serviced and are horizontally queued, as shown
in Figure 1. As the vessels are serviced, they move from left to
right, creating space for the queued vessels, which move vertically
downward into their respective berthing locations. The PAP utilizes
this queuing concept for scheduling vehicles to be charged, as
shown in Figure 2. The vehicles are queued in several lines and
move from left to right to receive their charge before exiting the

FIGURE 1
(A) Example of berth allocation. Vessels are docked in berth locations
(horizontal) and queued over time (vertical). The vertical arrow
represents the movement direction of the queued vessels, and the
horizontal arrow represents the direction of departure. (B) Example of
position allocation. Vehicles are placed in queues to be charged and
move in the direction indicated by the arrow.

FIGURE 2
Example of the rectangle packing problem. The large square
represented by O indicates the constrained area that the set of shaded
rectangles 𝕆must be placed within.

system. The PAP is formulated as a rectangle packing problem and
assumes that each vehicle has a predefined charge time, and the
number of vehicles that can be charged at any given moment is
limited by the physical width of each vehicle and the length of the
charging block.ThePAP also assumes that each vehicle in the system
is unique (Qarebagh et al., 2019).

The main contribution of this work is the extension of the
PAP’s novel approach to BEB charger scheduling.This incorporates a
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proportional charging model into the mixed-integer linear program
(MILP) framework, considers multiple charger types, and considers
each route in the schedule. The last contribution is of importance
because both the BAP and PAP consider each arrival to be unique;
thus, the tracking of battery charge fromone visit to the nextmust be
considered. Furthermore, the input parameters for the model can be
predefined in such a manner as to minimize the number of fast and
slow chargers utilized and minimize the energy consumption. That
is, the model will simultaneously minimize the number of chargers
and the total consumed energy. The result is a MILP formulation
that coordinates charging times and charger type for every visit while
considering a dynamic charge model with scheduling constraints.

The remainder of the paper is structured as follows: in Section 2,
the PAP is introduced with a formulation of the resulting MILP;
Section 3 constructs the MILP for BEB scheduling, including
modifications to the PAP queuing constraints and the development
of a dynamic charging model; Section 4 demonstrates an example of
using the formulation to coordinate 35 buses over 338 total visits to
the station; and Section 5 presents the concluding remarks.

2 Position allocation problem

This section provides a brief overview of the BAP and a detailed
formulation of the PAP, as presented by Qarebagh et al. (2019).

2.1 Overview of the BAP

TheBAP is a rectangle packing problemwhere a set of rectangles,
denoted as 𝕆, are optimally placed in a larger rectangle, denoted
as O, as shown in Figure 3. The rectangle packing problem is
an NP-hard problem and can be used to describe many real-life
problems (de Bruin, 2013; Murata et al., 1995). In some of these
problems, the dimensions of 𝕆 are held constant, such as in the
problem of packing modules on a chip, where the widths and
heights of the rectangles correspond to the physical widths and
heights of the modules (Murata et al., 1995). Other problems,
such as the one presented in this work, allow either the horizontal
or vertical edge of each rectangle in 𝕆 to vary. For example,
suppose the vessel lengths are predefined (i.e., vertical edges are
static), but the service time is allowed to vary (i.e., horizontal edges
are dynamic) (Buhrkal et al., 2011).

The BAP solves the problem of optimally assigning incoming
vessels to berthing positions in order to be serviced, as shown in
Figure 1. To relate to the rectangle packing problem, the width and
height of O represent the time horizon T seconds and the berth
length L meters, respectively. Similarly, the widths and heights of
each element in𝕆 represent the time spent to service vessel i and the
space taken by docking vessel i, respectively. In the BAP, the vessel
characteristics (length of the vessel, arrival time, handling time, and
desired departure time) are assumed to be known for all vessels. A
representation of a BAP solution is shown in Figure 4. The x- and
y-axes represent the time horizon and berthing space, respectively.
The gray squares, labeled A, B, C, andD, represent scheduled vessels.
The width of the boxes represents the time spent being serviced, and
the height of the boxes represents the amount of space the vessel
requires on the berth. The vertical line adjacent to the “arrival time”

FIGURE 3
Representation of the berth–time space. The x- and y-axes represent
time and space, respectively. Along the y-axis, the dashed lines
represent discrete berthing locations. These locations may be chosen
to be continuous. The shaded rectangles represent scheduled vessels
to be serviced. The height of each shaded rectangle represents the
space taken on the berth, and the width represents the time required
to service the said vessel. The vertical dashed lines are associated with
vessel D and represent the arrival time, berthing time, service
completion time, and departure time. Note that the arrival time may
be before the berthing time and the completion time may be before
the departure time.

represents the time at which the vessel arrives and is available to be
berthed. The “berthing time” is the time the vessel is berthed and
begins to be serviced. The “completion time” represents the time at
which the berthing space becomes available again.

2.2 PAP formulation

The BAP forms the basis of the PAP; however, there are some
differences in the way the variables are interpreted. The relevant
variables are given inTable 1.The starting service time,ui s, is viewed
as the initial charge time, and the service time is the total elapsed
time spent on the charger. Similarly, for the spatial term, vi ∈ [0,L],
the berth location is interpreted as the initial position on the charger.
There are also a few clarifying concepts about how the system is
modeled.The PAPmodels the set of chargers as one continuous line;
that is, the natural behavior of the PAP model is to allow vehicles
to be queued anywhere along [0,L]. Similarly, the charge times are
continuous and can be placed anywhere on the time horizon, [0,T],
as long as the allocated times do not interfere with other scheduled
charge times.

The PAP formulation’s parameters can be divided into two
categories: input parameters and decision variables. The following
parameters are assumed to be known inputs for the MILP. L defines
the length of the charger inmeters. As stated previously, it ismodeled
as a continuous bar, meaning that a vehicle can be placed anywhere
in the range [0,L]. It is assumed that the time horizon, T s, is
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FIGURE 4
Examples of different methods of overlapping. Space overlap: vk1 <
vi + li∴ψk1i

= 0. Time overlap: uk1
< uj + sj∴σk2 j = 0. Both space and time

overlap: σk3i = 0 and ψk3 j
= 0.

known so that vehiclesmay be placed temporarily in the range [0,T].
The total number of visits to the station over the time horizon is
represented by nV. The arrival time for each visit is represented by
ai s, and the required charge time is represented by si s.The width of
vehicle i is represented by li m.

The decision variables provide the means by which the solver
may optimize the problem. The initial and final charge times for
vehicle i are ui and di s, respectively. The starting position on the
charger is denoted as vi ∈ [0,L]m.The temporal ordering of vehicles
i and j is determined by σij ∈ {0,1}, where σij = 1 ⇒  i arrives
before j for all 1 ≤ i, j ≤ nV. Similarly, ψij ∈ {0,1} determines the
relative position of vehicles i and j on the charger:ψij = 1 ⇒ vi <
vj for all 1 ≤ i, j ≤ nV.

To determine the values for each of these decision variables, a
MILP was formulated by Qarebagh et al. (2019). The formulation is
shown in its entirety for completeness. The problem to be solved is

min 
nv
∑
i=1
(di − ai) , (1)

subject to

uj − ui − si − (σij − 1)T ≥ 0, (2a)

vj − vi − li − (ψij − 1)L ≥ 0, (2b)

σij + σji +ψij +ψji ≥ 1, (2c)

σij + σji ≤ 1, (2d)

ψij +ψji ≤ 1, (2e)

si + ui = di, (2f)

ai ≤ ui ≤ (T− si) , (2g)

σij ∈ {0,1} , ψij ∈ {0,1} , (2h)

vi ∈ [0,L] , (2i)

i, j = 1…nV; i ≠ j. (2j)

The objective function, Equation 1, minimizes the idle and service
time by summing over the differences between the departure time,
di, and arrival time, ai, for all visits. In other words, the objective
function is to search for the schedule that removes each vehicle from
the service queue as quickly as possible.

Equations 2a–e are used to ensure that individual rectangles
do not overlap. In terms of the PAP, this implies that there are
no conflicts in the schedule spatially or temporally. Equation 2a
establishes temporal ordering when active (σij = 1) in the manner
described previously by utilizing big-M notation. Similarly,
Equation 2b establishes spatial ordering when active (ψij = 1).
Equations 2c, e enforce spatial and temporal ordering between
each queue/vehicle pair. Equation 2d and Equation 2e enforce the
validity of the assignments. For example, if Equation 2d resulted in a
value of 2, that would imply that both vehicles i and j are scheduled
before and after each other temporally, which is impossible. In
the case of Equation 2e being equal to 2, it would mean that vehicles
i and j are scheduled both before and after one another on the
charging strip, which is again impossible.

The last constraints force relationships between arrival time,
initial charge time, and departure time. Equation 2f states that the
initial charge time, ui, plus the total charge time, si, must equal the
departure time, di. Equation 2g enforces the arrival time, ai, to be
less than or equal to the service start time, ui, which, in turn, must
be less than or equal to the latest time the vehiclemay begin charging
and stay within the time horizon. Equation 2h simply states that σij
and ψij are binary terms. Equations 2i, 2j ensures that the assigned
value of vi is within the range [0,L].

3 Rectangle packing formulation for
BEB charging

Applying the PAP to BEB charging requires four fundamental
changes. The first is that the time that a BEB spends charging
must be allowed to vary. That is, ui, di, and si become variables of
optimization. This is done primarily because chargers of various
speeds are to be introduced. Second, in the PAP, each visit is assumed
to be a different vehicle. For the BEB charging problem, each bus
maymakemultiple visits to the station throughout the day.Thus, the
resulting SOC for a bus at a given visit is dependent upon each of the
prior visits. The third fundamental change is related to the first two.
The SOC of each bus must be tracked to ensure that charging across
multiple visits is sufficient to allow each bus to execute its route
throughout the day. Finally, as previously stated, the PAPmodels the
charger as one continuous bar. For the BEB, it will be assumed that a
discrete number of chargers exist. Moreover, it is assumed that these
chargers may have different charge rates.

A few assumptions are made in the derivation of the algorithm.
As this work is not focused on estimating the discharge of a BEB
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TABLE 1 Notation used throughout the paper. Values and units are provided when available.

Variable Value Units Description

Input value

nB 35 Number of buses

M An arbitrarily large number

nV 338 Number of total visits

nQ 65 Number of queues

nC 30 Number of chargers

𝕍 Set of visit indexes,𝕍 = {1,…,nV}

𝔹 Set of bus indexes, 𝔹 = {1,…,nB}

ℚ Set of queue indexes,ℚ = {1,…,nQ}

i, j Indexes used to refer to visits

b Index used to refer to a bus

q Index used to refer to a queue

Problem definition parameter

Γ Γ:𝕍→𝔹 with Γi used as a shorthand to denote bus b for visit i

αb 90 % Initial charge percentage time for bus b

βb 70 % Final charge percentage for bus b at the end of the time horizon

ϵq Cost of using charger q per unit time

ϒ ϒ:𝕍→𝕍mapping a visit to the next visit by the same bus with ϒi being the shorthand

κb 388 kWh Battery capacity for bus b

Δi kWh Discharge of visit over route i

νb % Minimum charge allowed for bus b

τi s Time visit imust depart the station

ζb 38 kW Discharge rate for bus b

ai s Arrival time of visit i

i0 Indexes associated with the initial arrival for every bus in 𝔹

i f Indexes associated with the final arrival for every bus in 𝔹

mq Cost of a visit being assigned to charger q

rq kW Charge rate of charger q per unit time

Decision variable

ψij Binary variable determining spatial ordering of vehicles i and j

ηi kWh Initial charge for visit i

σij Binary variable determining temporal ordering of vehicles i and j

(Continued on the following page)
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TABLE 1 (Continued) Notation used throughout the paper. Values and units are provided when available.

Variable Value Units Description

di s Ending charge time for visit i

giq s Linearization term, represents the multiplication of siwiq

si s Amount of time spent on the charger for visit i

ui s Starting charge time of visit i

vi Assigned queue for visit i

wiq Binary assignment variable for visit i to queue q

during its route, the discharge for each routewill be pre-calculated by
assuming a fixed discharge rate kWmultiplied by the route duration
in hours. Second, it is assumed that the initial SOC of each BEB at
the beginning of the day, αbκb, is larger than the minimum required
SOC at the end of the day, βbκb. Therefore, it must be assumed that
the difference in the SOC can reach αbκb by the beginning of the next
working day.

The discussion of the four changes is separated into two
sections. Subsection 3.1 discusses the changes in the spatiotemporal
constraint formulation to form a queuing constraint. Subsection 3.2
discusses the addition of bus charge management. This section
ends with a brief discussion of a modified objective function
and the statement of the full problem in Subsection 3.3.
The notation is explained throughout and summarized in
Table 1.

3.1 Queuing constraints

The queuing constraints ensure that the buses entering the
charging queues are assigned feasibly. There are three sets to
differentiate between different entities. 𝔹 = {1,…,nB} is the set
of bus indexes, with index b used to denote an individual bus,
ℚ = {1,…,nQ} is the set of queues, with index q used to denote
an individual queue, and 𝕍 = {1,…,nV} is a set of visits to the
station, with i and j used to refer to individual visits. The mapping
Γ:𝕍→𝔹 is used to map a visit index, i, to a bus index, b. The
notation Γi is used as a shorthand to refer to bus index b for
visit i.

The actual physical dimensions of the BEB are ignored, and it
is assumed that each BEB will be assigned to charge at a particular
charger. Because of this assumption, the PAP spatial variable, li,
may be removed, and vi is made to be an integer corresponding to
which queue visit i will be used, vi ∈ ℚ. That is, the queue position
is now discretized over nQ queues, where a BEB occupies a single
charge queue. Thus, when ψij = 1, vehicle j is placed in a charging
queue with a larger index than that of vehicle i, i.e., vj > vi. The
charger length L is likewise replacedwith nQ. Note that nQ = nB + nC,
where nB is the number of buses and nC is the number of chargers.
The rationale for adding additional idle queues is to allow BEBs to
be “set aside” if no additional charge is required. Adding one idle
queue for each BEB ensures that the constraints will be satisfied if

multiple buses sharing overlapping times at the station are placed
in idle queues. This method will be applied when defining the
parameters in Section 4. The modified queuing constraints can be
written as shown in Equation 3:

vi − vj − (ψij − 1)nQ ≥ 1 (3a)

di ≤ τi, (3b)

si ≥ 0, (3c)

vi ∈ ℚ. (3d)

The constraint in Equation 3a is nearly identical to Equation 2b,
but rather than viewing the charger as a continuous strip of length
L, it is discretized into nQ queues, each with a width of unit length
1. A BEB is also assigned a unit length of 1, which is reflected in
Equation 3a by ⋅ ≥ 1. Equation 3b ensures that the time the BEB
is detached from the charger, di, is before its departure time, τi s.
Note that the introduction of the new variable τi exists to allow
the final charge time to be independent, similar to the manner
in which to the initial charge time is independent of the arrival
time, ai ≤ ui ≤ di ≤ τi. Equation 3c ensures that the change time is
non-negative. Equation 3d defines vi to be an element from the
set of queues.

3.2 Battery charge dynamic constraints

This section introduces the battery dynamic constraints. Two
constraints are enforced on the SOC for each BEB: the SOC must
always remain above a specified percentage to guarantee sufficient
charge to execute their respective routes, and each bus must end
the day with a SOC above a specified threshold, in preparation for
the next day.

The SOC upon arrival for visit i is denoted as ηi kWh. Because
the SOC for visit i is dependent on its previous visits, the mapping
ϒ:𝕍→𝕍⋃{∅} is used to determine the next visit that corresponds
to the same bus, with ϒi being the shorthand notation. Thus, Γj and
Γϒi

, for ϒi = j, would both map to the same bus index as long as ϒi
is not the null element, ∅. The null element is reserved for BEBs that
have no future visits.

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1347442
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Brown et al. 10.3389/fenrg.2024.1347442

To define the time spent on the charger, si, as well as the initial,
final, and intermediate bus charges for each visit i, the sets for the
initial and final visits must be defined. Let the mapping of the first
visit by each bus be denoted as Γ0:𝔹→𝕍. The resulting value of
the mapping Γ0 represents the index for the first visit of bus b.
Similarly, let Γ f :𝔹→𝕍 map the indexes for the final visits for each
bus b ∈ 𝔹. Let the shorthand for each mapping be denoted as Γ0b
and Γ f

b. The initial and final bus charge percentages, α and β, can
then be represented by the constraint equations ηΓ0b = αbκb and ηΓfb

=
βbκb, respectively. The intermediate charges must be determined
during runtime.

It is assumed that the charge received is proportional to the time
spent charging. The rate for charger q is denoted as rq kW. Note that
a value of rq = 0 corresponds to a queue where no charging occurs.
A bus in such a queue simply waits at the station for the departure
time. The queue indexes are ordered such that the first nB queues
have rq = 0 to allow an arbitrary number of buses to sit idle at any
given moment in time.The next nC queues are reserved for the slow
and fast chargers. The amount of discharge between visits i and ϒi,
the next visit of the same bus, is denoted as Δi kWh. If visit i occurred
at charger q, the SOC of the BEB’s next arrival, ϒi, would be ηϒi

=
ηi + sirq −Δi.

The binary decision variablewiq ∈ {0,1} is introduced to indicate
the active charger for visit i in vector form.The form of the SOC for
the next visit, ϒi, can be written using the following constraints:

ηϒi
= ηi +

nQ
∑
q=1

siwiqrq −Δi, (4a)

nQ
∑
q=1

wiq = 1, (4b)

wiq ∈ {0,1} . (4c)

Where Equation 4a represents the SOC for the next visit of BEB
b, Equation 4b ensures that the BEB for visit i is assigned to a single
queue, and Equation 4c specifies that wiq is a binary value.

The choice of queue for visit i becomes a slack variable and is
defined in terms of wiq as

vi =
nQ
∑
q=1

qwiq. (5)

Maximum and minimum values for the charges are included
to ensure that the battery is not overcharged and guarantee
sufficient charge for subsequent visits. The upper and lower
battery charge bounds for bus b are κb and νbκb, respectively,
where κb is the battery capacity and νb is a percent value. The
upper and lower bounds for the current SOC are written as
follows:

ηi +
nQ
∑
q=1

siwiqrq ≤ κΓi , (6a)

ηi ≥ νΓiκΓi . (6b)

Equation 6a ensures that the BEB SOC does not exceed the
battery capacity, and Equation 6b ensures that the initial SOC for
each visit is above the threshold of νΓiκΓi . Note that the term siwiq is a
bilinear term. A standardmethod for linearizing a bilinear term that

contains an integer variable is by introducing a slack variable with
an either/or constraint (Chen et al., 2010; Rodriguez and Vecchietti,
2013). Allowing the slack variable giq s to be equal to siwiq, giq can
be defined as

giq =
{
{
{

si wiq = 1

0 wiq = 0
. (7)

Equation 7 can be expressed as a mixed-integer constraint using
big-M notation with the following four constraints:

si − (1−wiq)M ≤ giq, (8a)

si ≥ giq, (8b)

Mwiq ≥ giq, (8c)

0 ≤ giq, (8d)

where M is a large unitless value. If wiq = 1, then Equations 8a, b
become si ≤ giq and si ≥ giq, forcing si = giq, with Equation 8c being
inactive. Ifwiq = 0, Equation 8a is inactive, and Equations 8c, d force
giq = 0.

3.3 BEB charging problem

The goal of the MILP is to utilize chargers as little as possible
to reduce energy costs, with fast charging being penalized more
to avoid its adverse effects on battery health and to account for
the higher usage costs. Thus, assignment cost mq and usage cost ϵq
are associated with each charger, q. These unitless weights can be
adjusted based on the charger type or time of day when the visit
occurs. The assignment term takes the form wiqmq, and the usage
term takes the form giqϵq. The resulting BEB charging problem is
defined in Equation 9:

min
N

∑
i=1

nQ
∑
q=1
(wiqmq + giqϵq) , (9)

subject to the constraints

uj − ui − si − (σij − 1)T ≥ 0, (10a)

vj − vi − (ψij − 1)nQ ≥ 1, (10b)

σij + σji +ψij +ψji ≥ 1, (10c)

σij + σji ≤ 1, (10d)

ψij +ψji ≤ 1, (10e)

si + ui = di, (10f)

ηΓ0b = αΓiκΓi , (10g)

ai ≤ ui ≤ (T− si) , (10h)

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1347442
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Brown et al. 10.3389/fenrg.2024.1347442

FIGURE 5
(A) Charging schedule generated by the Qin-modified algorithm. (B) Charging schedule generated by the MILP PAP algorithm.

di ≤ τi, (10i)

ηi +
nQ
∑
q=1

giqrq −Δi = ηγi , (10j)

ηi +
nQ
∑
q=1

giqrq −Δi ≥ νΓiκΓi , (10k)

ηi +
nQ
∑
q=1

giqrq ≤ κΓi , (10l)
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FIGURE 6
(A) Number of fast chargers for Qin-modified and MILP PAP methods. (B) Number of slow chargers for Qin-modified and MILP PAP methods.

ηΓfb
≥ βΓfκΓf , (10m)

si − (1−wiq)M ≤ giq, (10n)

si ≥ giq, (10o)

Mwiq ≥ giq, (10p)

0 ≤ giq, (10q)

vi =
nQ
∑
q=1

qwiq, (10r)
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FIGURE 7
(A) Bus charges for the Qin-modified charging schedule. The charging scheme of the Qin charger is more predictable during the working day. (B) Bus
charges for the MILP PAP charging schedule. The MILP model allows for guarantees of minimum/maximum changes during the working day and
charges at the end of the day.
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FIGURE 8
Amount of power consumed by the Qin-modified and MILP schedules over the time horizon.

nQ
∑
q=1

wiq = 1, (10s)

wiq,σij,ψij ∈ {0,1} , (10t)

vi,qi ∈ ℚ, (10u)

i ∈ 𝕍. (10v)

Equations 10a–i are reiterations of the queuing constraints
from Equation 2; Equation 3. Equations 10g–m provide the battery
charge constraints. Equations 10n–q define the charge duration of
every visit/queue pairing. Equations 10r, 10s are reiterations of
Equation 4b andEquation 5, respectively. Equations 10t–v define the
sets of valid values for each variable.

4 Example

We present an example to demonstrate the utility of the
developed MILP charge scheduling technique. A description of
the scenario is first presented, followed by a description of an
alternative heuristic-based planning strategy called Qin-modified
method, which is used as a comparison with the MILP PAP. The
results are then presented, analyzed, and discussed for each of the
planning strategies.

4.1 BEB scenario

To display the capabilities of the model, an example scenario is
presented. The scenario was run over a time horizon of T = 24 h,

utilizing nB = 35 buses with nV = 338 visits divided between the nB
buses. As stated before, the route times are sampled from a set of
routes provided by the Utah Transit Authority (UTA). Each bus has
a battery capacity of κb = 388 kWh, which is required to stay above
an SOC of νb = 20% (77.6 kWh) ∀b ∈ 𝔹 to ensure that each BEB
can complete its next route while maintaining battery health. Each
bus is assumed to begin the working day with an SOC of alphab =
90% ∀i ∈ 𝕍 (349.2 kWh). Additionally, each bus is required to end
the day with a minimum SOC of βb = 70% (271.6 kWh) ∀b ∈ 𝔹.
This assumes that overnight charging can account for the 20% SOC
deficit. Furthermore, the value selected for βb ∀b ∈ 𝔹 is primarily
for illustrative purposes and has no particular significance other
than to demonstrate the user’s ability to specify the desired end-
of-day SOCs. Each bus is assumed to discharge at a rate of ζb =
30 kW. Note that many factors play a role in the rate of discharge;
however, for the sake of simplicity, since the discharge calculation
is beyond the scope of this work, an average rate is used. A total
of nC = 30 chargers are utilized, where 15 of the chargers are slow
charging (30 kW) and 15 are fast charging (911 kW).The technique
to minimize the total charger count is used.

To encourage the MILP PAP to utilize the fewest
number of chargers, the value of mq in the objective
function, Equation 9, is set as follows: ∀q ∈ {1,2,…,nB};mq = 0 and
∀q ∈ {nB + 1,nB + 2,…,nB + nC};mq = 1000q. The charge duration
scalar, ϵq, is defined as ϵq = rq to create a consumption cost term,
giqϵq kWh. By consumption cost, it is meant that the total energy
consumed by the charge schedule will be accounted for in the
objective function. This method encourages the model to minimize
active charger times, particularly for the fast chargers.

Another heuristic-based optimization strategy, referred to as the
Qin-modified method, is also used to compare the results of the
MILP PAP. The Qin-modified strategy is based on the threshold
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FIGURE 9
Total accumulated energy consumed by the Qin-modified and MILP schedules throughout the time horizon.

strategy proposed by Qin et al. (2016). The strategy has been
modified slightly to accommodate the case of multiple charger types
without an exhaustive search for the best charger type.The heuristic
is based on a set of rules that revolve around the initial SOC of the
bus visit i. There are three different thresholds, low (85%), medium
(90%), and high (95%). Buses below the low threshold (SOC ≤ 85%)
are prioritized to fast chargers and are then allowed to utilize slow
chargers if no fast chargers are available. Buses between the low and
medium threshold (85% < SOC ≤ 90%) prioritize slow chargers first
and utilize fast chargers only if no slow chargers are available. Buses
above the medium threshold and below the high threshold (90% <
SOC ≤ 95%) will only be assigned to slow chargers. Buses above the
high threshold (SOC > 95%) will not be placed in a charging queue.
Once a bus has been assigned to a charger, it remains on the charger
for the duration of the time it is at the station or reaches an SOC of
95% charge, whichever comes first.

The total number of constraints resulted in 7,511 continuous and
328,282 integer/binary constraints.The optimizationwas performed
using the Gurobi MIP solver (Gurobi Optimization, LLC, 2021) on
a machine equipped with an AMD Ryzen 9 5900 × 12 Processor
(24 core) running at 4.95 GHz. The solver was allowed to run
for 7.200 s.

4.2 Results

The schedule generated by the Qin-modified strategy and the
MILP PAP is shown in Figures 5A, B, respectively. The x-axis
represents the time in hours. The y-axis represents the assigned
charging queue. Rows between 0 and 14 are active times for
slow chargers, and rows in the range of 15 and 29 are active
times for fast chargers. The unique color/symbol-styled vertices

represent the starting charge time for a bus b, with the line to
the vertical tick signifying the region of time the charger is active.
The lines connecting the points represent the charge sequence for
each BEB.

The first observation is in the choice of preferred chargers
between the Qin-modified andMILP scheduler. Figures 6A, B show
that the Qin-modified schedule uses at most four fast chargers and
three slow chargers at the same time, whereas the MILP schedule
uses at most one fast charger and six slow chargers at the same time.
Both the Qin-modified andMILP schedule used the fast chargers in
short bursts (˜0.2–0.5 h). The main difference lies in the utilization
strategy of the slow chargers. The Qin-modified method, for the
most part, opted for shorter bursts for the slow chargers (˜0.3–0.7 h),
most heavily placed on the first slow charger. The MILP utilized
the slow chargers in short bursts; however, the solver recognized
moments where a BEB being placed in a slow-charging queue for a
longer durationwasmore cost-effective (with respect to the objective
function) than the BEB placed in a fast-charging queue. Although
one of the objectives of the MILP was to minimize the amount of
chargers used, the Qin-modified schedule ended up using fewer
chargers than the MILP. Note that the MILP schedule packed the
first queue for the fast and slow chargers more effectively than
the Qin-modified schedule. Although both schedules generated are
valid, no comparison of the quality of the schedule can be made
directly from Figures 5A, B.

Figures 7A, B depict the charge for every bus over the time
horizon for the Qin-modified and MILP schedules, respectively.
Every vehicle begins with a SOC of αb = 90%, finishes with a
SOC of βb = 70% in the MILP PAP schedule, and never goes
below 20% in the intermediate arrivals, as stated in Equation 10.
There is no guarantee for this in the Qin-modified strategy, which
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can be observed by some intermediate charges reaching a SOC
of 0% and the distribution of final charges, the minimum being
0% and the maximum being 94.845%. It is of note that the SOC
plummeting to 0% is due to the reactive nature of the Qin-modified
method. Specifically, the schedule utilized in this example contains
some BEBs that begin with routes that deplete the SOC by small
amounts but do not fall below the threshold. These routes are
followed by small charge windows, which are then preceded by
large routes depleting the SOC by a significant amount, resulting
in the SOC reaching 0%. The only guarantee that the Qin-modified
method supplies is its predictability for the intermediate visits due
to its heuristic nature (i.e., if the BEB charge is within the low
threshold, a fast charger will be prioritized), whereas MILP places
a bus in the queue that “makes sense” in the context of the larger
picture. The MILP PAP does not have an obvious decision-making
process because its weighted objective function is affected by the
accumulation of previous decisions.

Another important measure for the chargers is to compare the
amount of power and energy consumed. Figure 8 depicts the power
consumption throughout the time horizon. It can be seen that the
Qin-modified power consumption is steadily less or the same as
that of the MILP schedule. This can be accounted for by the MILP’s
constraints to keep the bus SOC above 20% and to reach a final SOC
of 70% at the end of the working day. Similarly, the accumulated
energy consumed is shown in Figure 9. The MILP schedule is more
efficient up until about the 11th hour. Again, this can be accounted
for by the fact that the MILP accommodates the extra constraints.
Due to these constraints, the MILP PAP consumes approximately
0.1 ⋅ 104 kWh more than the Qin-modified method. The overlap of
the MILP PAP can be accounted for by referencing Figures 6A, B.
Between the 5th and 10th hours, the MILP schedule mainly uses
slow chargers, increasing the rate at which power is being consumed.
Afterward, the MILP schedule continues to use at least the same
number of chargers as the Qin-modified schedule. However, due
to the added constraints, the MILP schedule must utilize more
resources to remain within the specified bounds.

5 Conclusion

This work developed a MILP scheduling framework that
optimally assigns fast and slow chargers to a BEB fleet, assuming a
constant schedule. The BAP was briefly introduced, followed by a
description and formulation of the PAP. The PAP was modified to
allow the charge time to be variable. Because the modified PAP no
longer requires a predefined charge time, linear battery dynamics
were introduced to model the propagation of each BEB’s SOC.
Additional constraints were also introduced to provide upper and
lower limits for the battery dynamics.

An example of the MILP PAP formulation was then presented
and compared to a heuristic-based schedule, referred to as the Qin-
modified method. The MILP PAP optimization was run for 7,200 s
to a non-optimal solution. The Qin-modified and MILP schedule
utilized four and one fast charger(s), respectively. Furthermore,
the MILP and Qin-modified method utilized the fast chargers for
similar durations ranging from approximately 0.2 to 0.5 h; however,
the MILP schedule demonstrated battery health considerations
by recognizing visits that could utilize slow chargers for longer

durations while satisfying the constraints. The MILP PAP schedule
utilized approximately 0.1 ⋅ 104 kWh more than the Qin-modified
method, but the SOC for the MILP schedule remained above the
constrained minimum SOC of 20% and charged all the buses to
70% at the end of the working day. That is, the constraints applied
to the MILP model consumed more energy to satisfy the SOC
threshold requirements. The Qin-modified schedule, on the other
hand, allowed the SOC of certain BEBs to decrease to 0%. The SOC
at the end of the day for the Qin-modified method varied from 0%
to 94.85%, whereas the results of the MILP showed that the BEBs
converged to the specified minimum SOC of 70%.

Further fields of interest include utilizing the formulation
(Equation 9; Equation 10) with nonlinear battery dynamics,
calculation and utilization of the demand and consumption cost
in the objective function, and utilizing this formulation in a
metaheuristic solver. Furthermore, “fuzzifying” the initial and final
charge times is of interest to allow flexibility in the arrival and
departure times.
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