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The integration of renewable energy units into power systems brings a huge
challenge to the flexible regulation ability. As an efficient and convenient flexible
resource, energy storage systems (ESSs) have the advantages of fast-response
characteristics and bi-directional power conversion, which can provide flexible
support for the power system. This paper establishes an optimization model for
the ESS based on a bi-level programming model. The upper-level model
optimizes the decision strategy of ESS configuration planning. The lower-level
model is based on scenario analysis theory to simulate the operation of typical
daily scenarios. Flexibility requirement constraints are added to characterize the
required flexibility resources of the power system. In addition, the conditional
value-at-risk (CVaR) is applied to characterize the risk of wind curtailment and
load shedding during operation. To simplify the model, a set of association
constraints is introduced to convert the original bi-level programming model
into a direct-solvable single-level mixed-integer linear programming (MILP)
model. Finally, the effectiveness of the proposed model is verified through
case studies.
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1 Introduction

Gradually advancing renewable energy generation represents a significant initiative in
the establishment of a new power system and is pivotal in achieving the dual-carbon goal
(Mitra and Nguyen, 2022). In recent years, rapid development has been witnessed in the
sphere of renewable energy generation, notably in the forms of wind and solar power
(Aaslid et al., 2022). Although renewable energy offers substantial environmental benefits,
its inherent randomness and uncertainty have contributed to increasingly complex
operating conditions within traditional power systems (Han et al., 2022). The scarcity
of flexible resources within the power system has resulted in commonplace occurrences of
wind power curtailment and load shedding (Naversen et al., 2022). Consequently, it is of
paramount importance to comprehensively evaluate the flexibility and operational risks of
power systems in order to devise a prudent energy storage system (ESS)
configuration strategy.

Current research on the definition of power system flexibility is generally aligned. The
flexibility characterization system entails the requisite adjustment capacity to promptly
respond to power fluctuations and uphold power balance (Jiang et al., 2023). Flexibility
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serves as a critical attribute of power systems, essential for mitigating
disturbances and ensuring secure and stable operations (Clegg and
Mancarella, 2016; Avramidis et al., 2022). Typically, flexibility
resources are derived from the generation side, known as
operational reserves (Li et al., 2022). In recent studies, a market-
based framework has been proposed to optimize the flexibility of
renewable energy in distribution and transmission systems
(Pourghaderi et al., 2023). Furthermore, novel mathematical
formulations have been introduced to augment flexibility within
the power system, particularly in light of the uncertainty associated
with wind power in stochastic scheduling (Zhou et al., 2021).
Additionally, models have been developed to integrate flexibility
considerations into generation expansion planning, thereby
optimizing the utilization of external flexibility resources and
maximizing the benefits for distribution network operators
(Oikonomou et al., 2020; Dai et al., 2021). Notably, a security-
constrained economic dispatch (SCED) model has been formulated
to mitigate wind power curtailment by leveraging the potential
flexibility of high-voltage direct current (HVDC) systems (Huang
et al., 2021). However, the majority of existing literature overlooks
the impact of uncertain renewable energy output on the flexibility

planning of power systems. Conditional value-at-risk (CVaR) has
emerged as a commonmethod to quantify risk losses associated with
wind power and load shedding (Zhang et al., 2018). Leveraging the
advantages of CVaR, this paper proposes a planning model that
integrates flexibility requirements and operational risks.

ESS devices serve as a flexible resource for the power system,
offering rapid responsiveness and bi-directional conversion capabilities
to provide essential support to the power system (Zhou et al., 2023).
Recent studies have proposed a two-stage active distribution network
management approach, incorporating power flexibility considerations,
to facilitate the provision of flexibility to the higher-level power grid
through the ESS (Kalantar-Neyestanaki and Cherkaoui, 2021).
Similarly, a model has been developed to structure flexibility within
microgrids, focusing on flexibility services and collaborative network
operations, thereby enhancing the flexibility and economic
competitiveness of microgrids through the utilization of hybrid ESS
devices (Garcia-Torres et al., 2021). Furthermore, a multi-stage robust
optimization operation model has been proposed, integrating the ESS
into power system operations to enhance system resilience while
neglecting the potential of flexibility resources (Shi et al., 2021).
Additionally, a two-stage adaptive robust planning model has been

FIGURE 1
Model solving process.
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developed, incorporating the ESS and dynamic thermal rating systems
to optimize the integration of wind power into the power system
(Dehghan et al., 2020). Other studies have focused on modeling large-
scale renewable energy entities to reduce the flexibility demand of power
systems and investigated coordinated operation strategies for ESSs and
pumped storage power stations (Teng et al., 2019). Moreover, a
framework for flexibility recovery guarantees for the ESS has been
proposed, aiming to ensure full cycle capacity and accurate loss
accounting (Evans et al., 2022). Notably, existing literature is
predominantly centered on the planning and optimal operation of
the ESS within distribution networks (Alharbi andAlmutairi, 2021) and
microgrids (Shen et al., 2021), warranting further research into the
configuration strategy of the ESS within the transmission system to
bolster the flexibility resource reserve of the power system.

The contributions of this paper can be summarized below.

• The key innovation of this research lies in the comprehensive
modeling of flexibility requirements within the power system.
Traditional power systems were predominantly designed to
accommodate centralized and dispatchable generation
sources, with limited consideration for the dynamic and
decentralized nature of renewable energy integration. By
incorporating a robust modeling framework for flexibility
demands, this research contributes to a more nuanced
understanding of the operational challenges imposed by
renewable energy integration and provides a foundation for
optimizing ESS configuration to meet these demands.

• The application of CVaR to characterize operational risks in
power system operations represents a significant advancement
in quantifying andmanaging uncertainties. CVaR provides amore
comprehensive risk assessment framework than traditional risk

FIGURE 2
System structure diagram.
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measures, offering insights into the potential downside risk
associated with operational decisions. By leveraging CVaR, this
research enhances the capability to assess andmitigate operational
risks, thereby improving the decision-making process for ESS
configuration under uncertain operating conditions.

• An optimization bi-level model for ESS configuration is
proposed. Compared to traditional ESS configuration
models, this bi-level optimization model introduces a novel
and effective approach to ESS planning. By simultaneously
considering the strategic planning of the ESS at the upper level
and simulating daily operations under typical scenarios at the
lower level, this research facilitates a holistic and integrative
perspective on ESS configuration, aiming to optimize both
long-term planning and short-term operational
considerations. By adding a set of association constraints,
the bi-level model is simplified into a directly solvable
single-level mixed-integer linear programming (MILP) model.

The remainder of the paper is organized as follows: in Section 2,
a bi-level programming model is formulated; The solutionmethod is
shown in Section 3; Section 4 presents case studies based on the
historic data; and Section 5 concludes the paper.

2 Bi-level programming model

2.1 Framework of the bi-level
programming model

To enhance the rationality of the planning scheme, a bi-level
programming model shown as Eq. 1 is adopted, which takes the
planning and operation layers into consideration. In addition, the

volatility of wind power, constructing several typical scenarios based
on the Monte Carlo sampling method (Vongsing and Raphisak,
2021) and K-means clustering method, is considered (Liu
et al., 2021).

min
xinv

F xinv , xoprs( ) � Cinv + Copr

s.t.G xinv( )≤ 0
H xinv( ) � 0

min
xoprs

fs xinv, xoprs( ) � Copr

s.t. gs xinv , xoprs( )≤ 0
hs xinv , xoprs( )≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (1)

where s is the index of scenarios, xinv is the variable sets in the
planning layer, xopr s is the variable sets in the operation layer of
scenario s, Cinv is the cost of the planning layer, Copr is the cost of the
operation layer, G and H are the constraints in the planning layer,
and gs and hs are the constraints in the operation layer.

2.2 Flexibility requirement and
operational risks

The flexibility requirements of the power system are calculated
using the net load curve of each scenario. Equation 2 is the formula
of net load; Eq. 3 is the formula of flexibility requirement.

Pt,s
ln � PL

t − PW
t,s , (2)

Fd
t,s � Pt+1,sln − Pt,s

ln, (3)

where t is the index of the time period, Pt,s
ln is the net load during time

period t and scenario s; PL
t is the load during time period t; PLcur

t,s is
the load shedding during time period t and scenario s; PW

t,s and P
Wcur
t,s

FIGURE 3
Site selection cost of candidate nodes.
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are the wind power output and wind power curtailment,
respectively, during time period t and scenario s; and Fd

t,s is the
flexibility requirement during time period t and scenario s.

Flexible resources can suppress the impact of uncertainty in
the renewable energy output of the power system. Thermal power
units are the most important flexibility resources in the power
system. For operating thermal units, the flexibility resources are
determined by the ramping rate and the gap between the current
output and limits of the output. The charging and discharging
characteristics of the ESS can provide flexibility for bi-directional
adjustment. The upward and downward flexibility resource
supply capacity of the power system during time period t
shown as Eqs 4, 5, respectively.

F+
th,i,t � min Pmax ,th

i − Pth
i,t, R

+
th,it{ }

F+
ess,j,t � min Pmax ,dis

j − Pdis
j,t ,

Sessj,t − Smin ,ess
j( )ηdis − Pdis

j,t t

t

⎧⎨⎩ ⎫⎬⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (4)

F−
th,i,t � min Pth

i,t − Pmin ,th
i , R−

th,it{ }
F−
ess,j,t � min Pmax ,ch

j − Pch
j,t,

Smax ,ess
j − Sessj,t( ) − ηchP

ch
j,tt

ηcht

⎧⎨⎩ ⎫⎬⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (5)

where F+
th,i,t and F+

ess,j,t are the upregulated flexibility resources of
thermal power unit i and ESS j, respectively, during time period t;
F−
th,i,t and F−

ess,j,t are the downregulated flexibility resources of
thermal power unit i and ESS j, respectively, during time period t;

FIGURE 4
Predicted power of the wind farm and total loads: (A) wind farm; (B) total load curve.
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Pmax ,th
i and Pmin ,th

i are the maximum and minimum power output
of thermal unit i, respectively; Pth

i,t is the power output of thermal
unit i during time period t; R+

th and R−
th are the ramping limits of

thermal unit i; Pmax ,dis
j and Pmax ,ch

j are the maximum discharging
and charging power of ESS j, respectively; Pdis

j,t and Pch
j,t are the

discharging and charging power of ESS j, respectively, during
time period t; Smax ,ess

j and Smin ,ess
j are the maximum and

minimum storage capacities of ESS j, respectively; and ηdis and
ηch are the discharging and charging efficiencies of the ESS,
respectively.

In the power system, the prediction deviation of the wind power
output will pose risks to the safety, stability, and economic operation
of the system. Therefore, CVaR is applied to measure the impact of
uncertainty in the wind power output. As a common risk
measurement method, CVaR is developed based on the model
and foundation of value-at-risk (VaR) (Ran et al., 2023). VaR
refers to the maximum expected amount of a financial asset or
its combination within a certain confidence level and interval. CVaR
refers to the conditional expectation that a loss amount exceeds VaR,
which represents the average level of excess loss. CVaR evaluates the
probability and magnitude of system losses to measure the operation
risks. Therefore, based on the expected cost of wind curtailment and
load shedding, the operation risks of the wind curtailment and load
shedding are shown as Eqs 6, 7, respectively.

CCVaR,W � β ξW + 1
1 − α

∑S
s�1
πsη

W
s

⎛⎝ ⎞⎠, (6)

CCVaR,L � β ξL + 1
1 − α

∑S
s�1
πsη

L
s

⎛⎝ ⎞⎠, (7)

where CCVaR,W and CCVaR,L are CVaRs of wind power curtailment and
load shedding, respectively; β is the risk avoidance parameter; α is
the unit confidence level; ξW, ξL, ηW, and ηL are the auxiliary variables
to calculate CVaR; and πs is the probability of scenario s.

2.3 Planning model

The decision variables of the upper-level model are the location and
quantity of ESS devices. The objective function of the planningmodel is
to minimize the investment cost and operational risks of the system,
which is shown in Eq. 8. Equation 9-11 are formulas of investment cost
of ESS, returen on investment, and site collection cost of ESS
respectively. The planning period for the ESS is 1 year.

minCinv � Cinvest + Csite + Com + 365* CCVaR,W + CCVaR,L( ), (8)

Cinvest � λ∑Ness

j�1
cessσk, (9)

λ � r 1 + r( )TN

1 + r( )TN − 1
, (10)

Csite � ∑K
k�1

csitek σk, (11)

where Cinvest is the investment cost of the ESS; Csite is the site
selection cost; TN is the service life of the ESS; λ is the return on
investment; cess is the unit investment cost of the ESS; σk is a binary
variable, indicating whether to install the ESS at node k, where
1 means installation and otherwise, 0; r is the discount rate; and csitek

is the site cost coefficient of the ESS at node k.
Constraint (12) limits the maximum planned number of ESSs in

the power grid.

∑K
k�1

σk ≤Ness, (12)

where Ness is the maximum number of ESSs allowed to be installed
in the power grid.

2.4 Operation model

The lower-level model simulates the sub-problems of operation
in each typical scenario. The optimal operation strategy can be
obtained by solving this model. The objective function is to

TABLE 1 Parameters.

Parameter Value

cess 5,000,000 ¥

Ness 20

Pmax,dis/Pmax,ch 300 MW

Smax,ess 500 MWh

ηdis/ηch 0.95/0.95

α 0.9

β 0.5

λW/λL 200 ¥/200 ¥

r 0.05

TN 10

TABLE 2 Result comparisons before and after energy storage system (ESS) configuration.

Parameter Condition 1 Condition 2 Condition 3

Investment cost (¥) - 8,526,056.63 5,899,432.39

Operation cost (¥) 255,068,360.64 258,043,596.80 255,406,573.57

Conditional value-at-risk (CVaR) (¥) 532,101.61 74,696.99 87,527.24

Wind curtailment (MWh) 8,653.90 673.03 839.38

Load shedding (MWh) 1,176.23 0 0
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minimize the operational cost of the system, which is shown in Eq.
13. The operation costs of ESS and thermal power units are
calculated by Eqs 14, 15, respectively.

minCopr � Com + Cth + ∑24*365
t�1

CCVaR,W
t + CCVaR,L

t( ), (13)

Com � ∑K
k�1

∑24*365
t�1

com Pdis
k,t,s + Pch

k,t,s( ), (14)

Cth � ∑K
k�1

∑I
i�1
ci,kP

th
k,i,t,s, (15)

FIGURE 5
Energy storage system (ESS) planning results under conditions 2 and 3. (A) Condition 2 and (B) condition 3.

FIGURE 6
Flexibility under different conditions: (A) condition 1; (B) condition 2; and (C) condition 3.
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where Com is the operation cost of the ESS, com is the operation cost
coefficient of the ESS, Cth is the operation cost of thermal power
units, and ci,k is the operation cost coefficient in power output range i
of the thermal power unit at node k.

The constraints of the operation model are shown below.

2.4.1 Node power balance constraint
In the power system, the generation and consumption of

electricity need to be consistent all the time. In extreme cases,
there is a risk of wind power curtailment and load shedding. The
amount of wind power curtailment and load shedding is represented
by a node power balance constraint. Equation 16 is node power
balance constraint.

∑K
k�1

Pth
k,t,s + PW

t,s − PWcur
t,s +∑K

k�1
Pdis
k,t,s − Pch

k,t,s( ) � ∑K
k�1

PL
k,t,s − PLcur

k,t,s( ). (16)

2.4.2 Constraints of thermal power units
The operational constraints of thermal power units include

climbing restrictions, shown as Eq. 17, and power output
restrictions, shown as Eq. 18.

R−
th ≤Pth

k,t,s − Pth
k,t−1,s ≤R+

th, (17)
Pth,min
k ≤Pth

k,t,s ≤Pthmax
k . (18)

2.4.3 Constraints of the wind turbine
For a wind turbine, the sum of the wind power output and wind

power curtailment is the predictedwind power. Equation 19–20 are limit
constraints for wind power out andwind power curtailment, respectively,
Eq. 21 is the power balance equation for wind power output.

0≤PW
t,s ≤PW,pre

t,s , (19)
0≤PWcur

t,s ≤PW,pre
t,s , (20)

PW
t,s + PWcur

t,s � PW,pre
t,s , (21)

where PW
t,s is the actual wind power during time period t and scenario

s, PWcur
t,s is the wind power curtailment during time period t and

scenario s, and PW,pre
t,s is the predicted wind power during time

period t and scenario s.

2.4.4 Constraints of the ESS
The constraints of the ESS include discharging and charging

power limitations, shown as Eqs 22–24, the power balance constraint,
shown as Eq. 25, and state of charge constraints, shown as Eqs 26, 27.

0≤Pdis
k,t,s ≤ μ

dis
k,t,sP

max ,dis, (22)
0≤Pch

k,t,s ≤ μchk,t,sP
max ,ch, (23)

μdisk,t,s + μchk,t,s ≤ 1, (24)

Sk,t+1,s � Sk,t,s + ηchP
ch
k,t,s −

Pdis
k,t,s

ηdis
, (25)

Sk
min ≤ Sk,t,s ≤ Skmax, (26)

FIGURE 7
Net load curve before and after ESS configuration.

FIGURE 8
Thermal power generation curves before and after ESS configuration: (A) unit 5 and (B) unit 7.
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Sk,1,s � Sk,T,sF
d,−
t,s ≤ ∑

i∈Nth

F−
th,i,t,s + ∑

j∈Nth

F−
ess,j,t,s, (27)

where μdisk,t,s is a binary variable, where 1 means discharging and
otherwise, 0; μchk,t,s is a binary variable, where 1 means charging and
otherwise, 0; and Sk,t,s is the capacity of the ESS at node k during time
period t and scenario s.

2.4.5 Line flow constraint
When the transmission system operates safely and stably, the

power through the line cannot exceed the transmission capacity.
Because the focus of this paper is on the flexibility of active power, it
is assumed that each node has sufficient reactive power. Considering
that the reactance of the transmission network system is much
greater than the resistance, DC power flow is adopted. The line flow
constraint based on the DC power flow is shown in Eq. 28:

−PL,max
l ≤∑N

n�1
Gl−nPth

n,t,s +∑K
k�1

Gl−k PW
k,t,k − PWcur

k,t,k( )
−∑Z

z�1
Gl−z PL

z,t,s − PLcur
z,t,s( )≤PL,max

l , (28)

where PL,max
l is the limit of line l and G is the power transfer

distribution factor matrix.

2.4.6 Flexibility requirement constraints
To ensure the smooth operation of the power system, the

planned flexibility resources need to exceed the flexibility
requirements. Equation 29–30 are the up/down flexibility
requirement constraints, respectively.

Fd,+
t,s ≤ ∑

i∈Nth

F+
th,i,t,s + ∑

j∈Nth

F+
ess,j,t,s, (29)

Fd,−
t,s ≤ ∑

i∈Nth

F−
th,i,t,s + ∑

j∈Nth

F−
ess,j,t,s. (30)

2.4.7 Auxiliary constraints to calculate CVaR
Equation 31–32 are auxiliary constraints for wind power

curtailment and load shedding to calculate CVaR, respectively.

∑
t�1

λWPWcur
t,s − ξW ≤ ηWs , (31)

∑
t�1

λLPLcur
t,s − ξL ≤ ηLs , (32)

where λW and λL are punishment coefficients of wind power
curtailment and load shedding, respectively.

3 Solution method

The optimization configuration model for the ESS is divided into
the upper-level planning model and lower-level operation model. The
optimal strategy of the bi-level model needs to be obtained by
continuously iterating between the upper-level model and the lower-
level model, which is a complex solutionmethod. Therefore, association
constraints shown as Eqs 33, 34 are introduced to simplify the entire bi-
level model into an easily solved single-level MILP model.

μdisk,t,s ≤ σk, (33)
μchk,t,s ≤ σk. (34)

The converted single-level model is as follows:

min
xinv

F xinv , xoprs( ) � Cinvest + Csite + Com + Cth

+365*TN CCVaR,W + CCVaR,L( )
s.t.G xinv( )≤ 0
H xinv( ) � 0
gs xinv , xoprs( )≤ 0
hs xinv , xoprs( )≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (35)

FIGURE 9
Comparison of the line load rate of lines (9–11) before and after
ESS configuration.

TABLE 3 Comparison of maximum line load rates before and after energy storage system (ESS) configuration.

Maximum line load rate (%)

Line (start node–end node) Before configuration After configuration

7–8 62.67 54.10

9–11 59.32 22.92

1–15 33.71 25.61

3–15 64.61 62.91

37–38 73.14 27.75
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By solving the model (Eq. 35), an optimized configuration plan
for the ESS can be obtained. The solving process is shown
in Figure 1.

4 Case study

In this section, using the configuration model formulated in
Section 2, the optimal planning strategy of the IEEE-57 system is
obtained, which can be found in the MATPOWER toolbox. The
optimization model is modeled using the YALMIP language and
solved using Gurobi in MATLAB R2018b.

4.1 Basic data

The system structure is shown in Figure 2. The thermal power
units are located at nodes 1, 2, 3, 6, 8, 9, and 12. The wind farm is
located at node 14. There are 26 candidate ESS nodes, and the site
selection costs for each candidate nodes are shown in Figure 3. The
K-means method is used to reduce scenarios and ultimately retain
five typical wind power scenarios. The predicted power curves for
the wind farm and load are shown in Figure 4. The other
parameters are shown in Table 1.

4.2 Analysis of the ESS configuration results

To verify the effectiveness of the model established in this
paper, the model is solved under three conditions: condition 1 is
before configuration, condition 2 is after configuration
considering flexibility requirement constraints, and condition
3 is after configuration without considering flexibility
requirement constraints. The result comparisons of these three
conditions are shown in Table 2.

Observing the results given in Table 2, although the investment
cost and operation cost under condition 2 are larger than that under

condition 1, the operational CVaR of condition 2 is only 14% of the
CVaR of condition 1 which is reduced by 457,404.62 ¥. This
indicates that the configuration of the ESS significantly reduces
the operational risks of the power system. In addition, the total wind
power curtailment and load shedding under condition 2 is only
6.85% of condition 1. Although the investment and operation costs
under condition 3 are lower than that under condition 2, condition
3 will face a higher CVaR and wind power curtailment. This
indicates that the configuration of the ESS considering flexibility
requirement constraints is beneficial for increasing the consumption
of renewable energy and reducing load shedding.

The results of ESS planning under conditions 2 and 3 are shown
in Figure 5, while the flexibilities of the three conditions are shown in
Figure 6. The overall ESS planning amounts for conditions 2 and
3 are 13 and 8, respectively. In contrast to condition 2, due to the fact
that condition 3 does not require consideration of flexibility
requirements, it will strive to optimize the equilibrium between
planning expenses and system operating costs. This signifies that the
system exhibits a predisposition toward selecting nodes with
reduced site selection costs and endeavoring to minimize the
number of ESS installations. To meet the flexibility requirements
of the system, more ESS devices will be configured under condition
2 than under condition 3. Although this may result in heightened
investment and operational expenses, it concurrently mitigates the
operational risks encountered by the system.

Under condition 1, it is observed that the flexibility demand of the
power system surpasses the available flexibility resource, consequently
resulting in significant wind curtailment and load shedding. Such a
scenario is evidently detrimental to the economic operation of the
power system. Upon the integration of the ESS, the system exhibits an
enhanced capacity to swiftly modify its charging and discharging
states, thereby effectively storing surplus power and significantly
augmenting the overall flexibility resources. As a result, under
condition 2, the system consistently ensures that the flexibility
demand remains within the available flexibility resource.
Nonetheless, it is important to note that without considering the
constraints of flexibility requirements, which is condition 3, there
exists the potential for the flexibility demand to exceed the available
flexibility resource at specific instances.

4.3 Analysis of operational flexibility

4.3.1 Improvement of the net load curve
Figure 7 shows a comparison of the net load curve before and

after ESS configuration. Before ESS configuration, the daily net
load difference in the peak to the valley is 1,523 MW, which
accounts for 61% of the peak load. After ESS configuration, the
ESS is charged during periods of high wind power generation and
nighttime low-level load, which promotes the consumption of
renewable energy. The difference in the peak to the valley of the
net load curve is reduced to 1,456 MW, alleviating the scheduling
pressure of the power system.

4.3.2 Improvement of thermal unit power output
Figure 8 shows the thermal power generation curves before and

after ESS configuration. Before ESS configuration, thermal power
units were limited by the capacity of transmission lines and in a low

FIGURE 10
SOC of the ESS on node 9.
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output state. After planning the ESS, the spatiotemporal transfer of
electricity energy in the ESS can be used to increase the power output
of thermal power units and reduce the load shedding.

4.3.3 Improvement of the transmission line
load rate

The integration of wind power into the grid exacerbates the
uncertainty of net load changes, which can lead to uncertainty in the
power flow of the power system. Therefore, it is necessary to leave a
certain margin in the load rate of each transmission line to ensure
the reliability of power supply. Themaximize line load rate is defined
by Ll comparing the maximum value of the active power flow of the
transmission line to the absolute value of the transmission capacity
of the line: Equation 36 is the formula to calculate the maximum line
load rate.

Ll � max PL
l,t

∣∣∣∣ ∣∣∣∣
PL,max
l

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣, (36)

where PL
l,t is the line load rate of line l during time period t.

Once the flexibility requirements of the system are considered,
Table 3 illustrates the maximum line load rates of certain lines pre-
and post-ESS deployment. The maximum line load rates of these
lines notably decrease following the implementation of the ESS,
leading to a reduction in instances of power flow congestion. This
indicates that the incorporation of energy storage devices within
the transmission network can effectively ameliorate instances of
line overloading.

To further elucidate the impact of energy storage on
transmission lines, the case of lines (9–11) is examined. Figure 9
depicts a comparative curve of the line load rates of this line pre- and
post-ESS deployment, while Figure 10 displays the variation in
energy storage system capacity at node 9. It is evident that,
subsequent to the implementation of energy storage devices, the
line load rates of this line consistently remain below 0.3. The
variation in capacity at node 9 is similar to the load fluctuation
curve. This demonstrates that through charging and discharging
activities, ESS devices enhance the power flow distribution of the
system, effectively mitigating instances of line overloading.

TABLE 4 Result comparisons under different values of β

Before configuration β = 0.1 β = 0.3 β = 0.5 β = 0.8 β = 1

Conditional value-at-risk (CVaR)/¥ 532,101.61 78,432.57 76,750.2 74,696.99 73,516.63 71,882.46

Operation cost higher than before configuration/¥ - 2,736,525 2,864,108 2,975,236 2,993,731 3,127,639

Wind curtailment/MWh 8,653.90 781.36 704.39 673.03 619.01 571.06

Load shedding/MWh 1,176.23 0 0 0 0 0

FIGURE 11
Total wind and load shedding curve in different values of β.
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4.4 Comparison of different planning
strategies

The total wind and load shedding curves in different values of β
are shown in Figure 11. Parameter comparisons under different
values of β is shown in Table 4. These curves show that there is a
significant phenomenon of wind power curtailment and load
shedding before configuration. In different values of risk
avoidance parameters, the trend of wind power curtailment and
load shedding in the power system is generally consistent. The
analysis further reveals a marked enhancement in the operational
performance of the power system. Notably, as β increases, there is a
consistent reduction in the operation risk cost, wind power
curtailment, and load shedding. However, this is accompanied by
a corresponding increase in the operational costs of the power
system. Consequently, it becomes imperative for power system
operators to judiciously select an optimal value of β in order to
maximize benefits within the ESS configuration strategy.

5 Conclusion

This paper presents a bi-level ESS configuration optimization
model that incorporates considerations of flexibility requirements
and operational risks within the power system. To analyze the
impact of wind power uncertainty, scenario analysis theory and
CVaR are used. The upper-level model focuses on optimizing the
planning strategy for the ESS in the power system, while the lower-
level model simulates daily operations under typical scenarios. In
order to simplify the original model, a set of coupling constraints is
introduced to transform the bi-level model into a solvable single-
level MILP model.

The findings indicate that following the implementation of
ESS planning, operational risks within the power system are
significantly mitigated. The total amount of wind curtailment
and load shedding represents only 6.85% of the pre-planning
levels, with the CVaR reduced to 14% of the pre-planning values.
Additionally, the flexibility resources experience notable
enhancements. Optimization of wind power consumption and
the peak–valley net load curve contributes to the safe and stable
operation of the power system. Through comparison of results
across various values of risk avoidance parameters, power system
operators are advised to select an appropriate value of β to
achieve a balance between the economic and operational
flexibility aspects of the system. As part of future research, the
impact of flexible ESS configuration on power system line load
rates will be a key focus.
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