AUTHOR=Luo Wenbo , Xu Yufan , Du Wanlin , Wang Shilong , Fan Ziwei TITLE=Quantum model prediction for frequency regulation of novel power systems which includes a high proportion of energy storage JOURNAL=Frontiers in Energy Research VOLUME=Volume 12 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2024.1354262 DOI=10.3389/fenrg.2024.1354262 ISSN=2296-598X ABSTRACT=As the proportion of renewable energy generation continues to increase, the participation of new energy stations with high-proportion energy storage in power system frequency regulation is of significant importance for the stable and secure operation of the new power system. To address this issue, this paper proposes an energy storage control method based on quantum walks and model predictive control (MPC). Firstly, historical frequency deviation signals and energy storage chargedischarge state signals are collected. Simulation data is generated through amplitude encoding and quantum walks, followed by quantum decoding. Subsequently, the decoded data is inputted into the MPC framework for real-time control, with parameters of the predictive model continuously adjusted through a feedback loop. Finally, a novel power system frequency regulation model with highproportion new energy storage stations is constructed on the MATLAB/Simulink platform. Simulation verification is conducted with PID and MPC methods as comparative approaches. Simulation results under step disturbances and random disturbances demonstrate that the proposed method exhibits stronger robustness and better control accuracy.