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With the aggregation of renewable energy in the power system, the uncertainty
caused by the renewable energy affects the planning and operation of power
systems. Meanwhile, the existing planning models fail to consider renewable
energy uncertainty methods, specifically concerning renewable energy
confidence and future possible scenarios; thus, a confidence-based scenario
cluster method is presented. A novel generator, network, load, and energy
storage (GNLS) co-planning model is proposed in the paper. First, a
confidence-based scenario cluster is built, which can reflect uncertainties by
clustering and analyzing wind, solar, and load. Second, the proposed model
focuses on load and energy storage co-planning, and in addition, relevant flexible
indices are used to assess the model. Finally, the GNLS co-planningmodel is built
as a bi-level stochastic model on continuous time scales. The model is solved
using the Benders decomposition algorithm. Themethod in this paper is validated
using an IEEE RTS 24-bus and a real test system in China to demonstrate the
reduction in renewable energy curtailment and optimization of economic factors
in power system planning.
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1 Introduction

1.1 Background

The power industry facilitates carbon emission, and relevant new power systems ensure
power security and high proportional renewable energy consumption. Traditional
generators focus on power output controllable thermal power units, hydropower units,
and generators with load regulation. Meanwhile, with large-scale renewable energy and
distribution generators, the regulation capacity of generators is insufficient; therefore, the
proportion of generators with high uncertainty increases, the tertiary industry and residents
increase, and relevant network load characteristics deteriorate. Thus, the difference in the
system peak and valley is enlarged, and the load rate decreases. Following this, power system
uncertainty increases, and in this situation, flexible supply and demand balance is a
challenge. Adequately regulating the flexibility of generator, network, load, and energy
storage (GNLS) resources could ensure timely system response when the supply and
demand vary (Saeed et al., 2021). Therefore, a secure system and reliable operational
requirements are satisfied.
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1.2 Literature review

GNLS co-planning is a crucial issue in new power systems; Yang
et al. (2021) proposed generation–network–load planning
containing various scenario requirements. In addition, high-
proportional renewable energy integration in transmission grid
expansion planning (Qiu et al., 2017; Zhuo et al., 2021) is
illustrated from generation–network co-planning, network flexible
planning, and transmission network planning perspectives.
Coordinated with distribution network aspects (Zhuo et al.,
2020), a transmission network planning framework is proposed
based on high-proportional renewable energy integration. In
generation-network co-planning (Yi et al., 2020) under an
electricity market situation, the objective is maximum social
welfare, generator-network co-planning model. With network
expansion planning and coal-fired power units flexible retrofit
(Wang et al., 2019; Wang et al., 2020a) co-planning model. In
addition, for wind farms, the energy storage and transmission co-
planning model proposed by Zhang et al. (2020) combines tie line
control and unit commitment. For flexible planning targets,
coordinated generation and energy storage expansion planning
could ensure sufficient demand response. Existing studies
consider flexible resources, flexible demand, and response balance
in generation–network–energy storage planning models. For

example, an investment decision and operational iteration model
was proposed based onmulti-timescale flexible planning (Rintamäki
et al., 2024), and a co-planning model was constructed from four
aspects, namely, from generation–generation co-planning,
generation–energy storage co-planning, generation–network co-
planning, and generation–load co-planning. Flexible assessment
indices are embedded into the planning model, and flexible post-
probability assessment indices (Abdin and Zo, 2018) are proposed
after power system planning. In addition, Hamidpour et al. (2019)
proposed a flexible index to increase flexibility by constructing a
generator–network co-planning model with energy storage and
demand side response.

Traditional power system planning primarily involves load
prediction, generator planning, a transmission grid, and
distribution grid (Liu et al., 2022a; Liu et al., 2022b). New power
systems involve diverse structures, flexible resources, and vagueness
between the generator and load; therefore, new power systems should
consider multi-scenario, probabilistic, co-planning perspectives to
satisfy higher security (Zhang et al., 2023; Zhang et al., 2021)
requirements in future prospects. For scenario generation, Ziaee
et al. (2018) correlated between wind and demand scenarios,
specifically (Han et al., 2019), mid-to-long-term wind and
photovoltaic power generation prediction are based on copula
function. In summary, existing methodologies fail to consider the
wind and solar output spatial–temporal correlation and seasonal
difference; therefore, a seasonal multi-wind and solar output co-
planning model is a gap that needs to be filled.

For uncertainty in planning, methods are primarily classified
into two types: stochastic optimization approaches (Zhang et al.,
2017) and robust optimization approaches (Zhang and Conejo,
2018; Liu et al., 2019). Stochastic planning (Li et al., 2022; Li
et al., 2023a) converts an uncertainty optimization issue to a
certain optimization issue at scenario sets. Different from
stochastic planning, robust planning reflects uncertain factors as
a bounded uncertain set and obtains decisions based on the worst
scenarios. The above two approaches are adapted to cope with
renewable energy uncertainty, load uncertainty, and fault
uncertainty. Comparatively, stochastic planning is more mature
than robust planning. Chance constraint (Chen et al., 2018; Li
et al., 2023b) is involved in transmission grid expansion planning
containing wind farms besides the joint consideration of the Monto
Carlo simulation and analytic methods to acquire wind output
probabilistic distribution. Chen et al. (2018) proposed a
Wasserstein distance-based distributionally robust generation
expansion planning that involves the uncertainty concerns and
improves robust planning for conservative issues.

Rintamäki et al. (2024) and Wang et al. (2020b) proposed a
short-time operational model of source-side planning that is
adapted to large-scale renewable energy integration. While the
above work focuses on the source side (Li et al., 2024) or
transmission line co-planning, energy storage and load-side
flexible resources have not been considered. However, the
continuous-time renewable energy operational characteristics of
diverse seasons are not adequately considered, and a multi-level
self-adaptive robust planning model (Abdin et al., 2022) is
presented, which utilizes bounded intervals to indicate the
uncertainty of renewable energy. An adaptively stochastic method
(Li et al., 2020; Li et al., 2021) is involved in two-layer planning.

FIGURE 1
Confidence-based wind and solar power output scenario cluster
and reconstruction process.
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1.3 Contributions and organization of
the paper

The paper solves the issue of configuring flexible resources (Jin
et al., 2021) for supporting the carbon target. This paper first
constructed future reconstructed scenarios considering

multi-seasonal scenarios according to flexible indices in multi-
seasonal scenarios and analyzed flexible variation trends in multi-
operational scenarios; then, when the objective function is the
minimum of investment and operational cost, it constructs
multi-flexible resources and a GNLS co-planning model, which is
then solved by the Benders decomposition algorithm.

FIGURE 2
Co-planning model solution algorithm.
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The paper fills the gap where renewable energy uncertainty is
not considered both in historical and future scenarios; moreover,
renewable energy operational characteristics of diverse seasons are
not adequately considered on continuous time. In addition, case
studies of existing research hardly contain a real test case; thus, the
application limitations of the generator–network–load–energy
storage model are obvious. Overall, the novelty of this paper is
as follows:

1) A novel bi-level GNLS co-planning model is proposed on a
continuous-time scale that incorporates uncertainty. The
model involves energy storages, demand response, and
renewable energy as decision variables in long time scale
constraints, and it also imbeds short time scale operational
simulation.

2) A spring, summer, autumn, and winter scenario cluster is first
built. Wind, solar, and load are then clustered and analyzed to
reflect uncertainties.

3) In addition to the IEEE case study, this paper innovatively
contains a real 301 node large-scale test system that reflects the
GNLS mode in industrial application.

2 Uncertainty model and
flexible indices

The uncertainty model refers to a confidence-based wind and
solar power output scenario cluster and reconstruction model.
Flexible indices refer to flexible deficiency index, flexible
deficiency time index, and flexible deficiency expectation index.

FIGURE 3
IEEE case spring scenario generators/load graph.

FIGURE 4
IEEE case summer scenario generators/load graph.
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2.1 Uncertainty model

The uncertainty model considers the spatial–temporal
correlation of wind and solar power output. Specifically, it
considers wind output temporal self-correlation, solar output
temporal self-correlation, and wind and solar spatial inter-
correlation.

The confidence-based wind and solar power output scenario
cluster and reconstruction process is depicted in Figure 1. First, a
k-means cluster approach is applied to the wind, solar, and load
scenario cluster. The cluster approach is used for historical
scenarios. Data preprocessing is necessary; abnormal values are
deleted, and the existing wind, solar, and load continuous time
data are made up. Data integrity and accuracy is the pre-requisites
for cluster analysis; the Gaussian filtering method is applied to delete
abnormal data with a large difference, and the interpolation method

is then used to make up missing data. Finally, the k-means cluster is
used to obtain clustered wind, solar, and load data.

The second stage is wind and solar power output scenario
reconstruction. First, historical scenario data are collected and
processed. Then, the copula function is utilized to obtain the
wind and solar output correlation model. Subsequently, joint
probability distribution function is used at various time scales to
sample, follow up, and cluster the sampled results, and obtain a
typical-day scenario with wind and solar power output. Finally,
wind and solar credibility is calculated after reconstruction, as in
Eq. 1. If the calculation results cannot satisfy the credibility
assessment, feedback is provided to the process to regulate
parameters.

∑
t∈T

Rt Pn,t + ∑
g∈G

Cg, dt

⎧⎨⎩ ⎫⎬⎭ � ∑
t∈T

Rt Cc + ∑
g∈G

Cg, dt

⎧⎨⎩ ⎫⎬⎭, (1)

FIGURE 5
IEEE case autumn scenario generators/load graph.

FIGURE 6
IEEE case winter scenario generators/load graph.
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where Rt is the system reliability, Pn,t is renewable energy at site
n, Cg is the capacity of traditional power units, dt is the load at time
t, and Cc is renewable energy credible capacity.

2.2 Flexible indices

(1) Flexible deficiency index (Eq. 2):

Pgcd t( ) � Pr ∑N
i�1
Prd i, t( )< − ΔL t( )

Δt
⎧⎨⎩ ⎫⎬⎭, (2)

where Prd(i, t) is the ramp rate and ΔL(t)
Δt is the speed of net load

variation. The index refers to assess renewable energy curtailment.
The available down-ramp speed is less than load-drop speed, thus
rendering renewable energy curtailment.

(2) Flexible deficiency times index (Eq. 3):

Pfdt � Pr Fup t( )<Dup t( ), Fdown t( )<Ddown t( ){ }, (3)

where the flexible deficiency time index simultaneously
considers the total probability of upregulation deficiency and
downregulation deficiency. F is the regulation capability and D is
the demand.

(3) Flexible deficiency expectation index (Eq. 4):

Efde � ∑M
m�1 ΔLflex,m

∣∣∣∣ ∣∣∣∣
n · Pren

,ΔLflex,m < 0, (4)

where ΔLflex,m refers to the lack of flexibility, n is the flexible
deficiency period, and Pren is the power system renewable energy
installed capacity. The flexible deficiency expectation index accounts
for the deficiency proportion where the flexible resource regulation
capacity is less than the net load regulation requirement. Specifically,
the system suffers load-shedding risk when up-flexible deficiency
appears, and on the contrary, the system suffers renewable energy
curtailment risk when down-flexible deficiency appears.

TABLE 1 IEEE case co-planning scheme with various flexible resources.

Type Energy storage + demand response Demand response Energy storage

Annual investment cost of lines (0.1 billion) 0.4 0.4 0.4

Annual investment cost of units (0.1 billion) 3.88 3.88 3.88

Annual energy storage investment cost (0.1 billion) 2.96 0 4.16

Annual load-shedding cost (0.1 billion) 0 0 0

Annual renewable energy curtailment cost (0.1 billion) 0.00 0.59 0.43

Annual demand-response investment cost (0.1 billion) 0.54 2.18 0

Annual investment cost (0.1 billion) 6.88 3.92 8.08

Annual operational cost (0.1 billion) 71.54 74.65 72.06

Annual total cost (0.1 billion) 78.42 78.57 80.14

Renewable energy consumption rate 100.00% 82.77% 87.56%

TABLE 2 Network real-case boundary.

Year boundary Existing set Candidate set

Lines/number 537 420

Units/number 122 30

Wind/number 12 12

Solar/number 14 14

Coal-fired power units/p.u. 122 26

Wind power units/p.u. 41.2 42.2

Solar power units/p.u. 42.2 43.2

Hydropower units/p.u. 1.5 0

Gas power units/p.u. 1.5 2.9

Nuclear power units/p.u. 21.8 11.9

Power from outside/p.u. 81.8 85.8

Pumped energy storage/p.u. 14.3 16.8

Energy storage contains lithium-ion batteries and pumped energy storage.

TABLE 3 Planning parameters.

Total reserve proportion 15%

Rotate reserve proportion 5%

Wind investment cost 5,500 yuan/kW

Solar investment cost 4,000 yuan/kW

Energy storage investment cost 5,000 yuan/kW

Load-shedding cost 25 yuan/kWh

Renewable energy curtailment cost 0.5 yuan/kWh

Energy storage charge efficiency 0.95

Energy storage discharge efficiency 0.9
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3 GNLS co-planning model

The objective of the model is mainly the minimization of the
generator cost, line cost, and energy storage cost. In view of its
complexity, the constraints of the continuous-time scale GNLS co-
planning model are classified into long-term constraints and short-
term constraints. Decision variables and state variables are set such
as whether to adopt demand responses, the capacity and location of

renewable energy, energy storages, thermal power units, hydraulic
power units, and transmission lines.

3.1 Objective function

Objective function Eqs 5, 6 is the minimum investment cost finv,
operational cost foper, and fcurt.

TABLE 4 Real-case historical year flexible indices.

Type Flexible deficiency
index (%)

Flexible deficiency time
index

Flexible deficiency expectation
index (%)

Clustered spring scenario 1.56 3 1.32

Clustered summer
scenario

1.04 2 0.55

Clustered autumn
scenario

1.04 2 0.63

Clustered winter scenario 2.08 4 1.54

TABLE 5 Real-case reconstruction year flexible indices.

Type Flexible deficiency
index (%)

Flexible deficiency time
index

Flexible deficiency expectation
index (%)

Reconstructed spring scenario 1.04 2 0.48

Reconstructed summer
scenario

0.52 1 0.23

Reconstructed autumn
scenario

0.52 1 0.25

Reconstructed winter scenario 1.04 2 0.51

TABLE 6 Co-planning scheme with various wind and solar installed capacities.

Type Wind and solar installed
capacity: low

Wind and solar installed
capacity: medium

Wind and solar installed
capacity: high

Annual investment cost of lines
(0.1 billion)

79.17 77.95 74.55

Annual investment cost of units
(0.1 billion)

217.3 179.83 167.46

Annual energy storage investment cost
(0.1 billion)

0 10.8 12.2

Annual renewable energy maintenance
cost (0.1 billion)

4.87 9.65 11.95

Annual demand-response cost
(0.1 billion)

0.08 0.52 2.32

Annual investment cost (0.1 billion) 537.95 717.52 804.12

Annual operational cost (0.1 billion) 5,028.9 4,880.79 4,795.22

Annual total cost (0.1 billion) 5,566.85 5,598.31 5,599.34

Renewable energy consumption rate 100.00% 100.00% 99.44%
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minftotal � finv + foper + fshed + fcur. (5)

finv � ∑IN
i�1

xicIi +∑KN

k�1
xkcIk +∑EN

e�1
xecIe

foper � ∑NS

s�1
ωs ∑IN

i�1
ΔPicMi + picEi( ) +∑NB

b�1
pDR
ls,b,sc

DR
b

⎛⎝ ⎞⎠
fshed � ∑NS

s�1
ωs∑NB

b�1
pls,b,scLy

fcur � ∑NS

s�1
ωs∑NR

r�1
prc,r,scRz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (6)

The scenario data on the four seasons given in Section 2 are
applied in this section as wind and solar input data. s is the scenario
numeral order, ωs is the scenario weight coefficient, and Ns is the
number of scenarios. Decision variables are conventional
generators and renewable energy investment xi, lines
investment xk, and energy storage investment xe; IN is the
number of conventional units and renewable energy, cIi is the
annual investment cost of generator units, cIk is the annual
investment cost of lines, cIe is the energy storage annual
investment cost, cEi is the operational cost of various generators,
cDR
b is the demand-side response cost, cLy is the load-shedding
penalty cost, and cRz is the cost of renewable energy abandonment.
IN, KN, and EN are the number of candidate power supply, lines,

and energy storage, respectively. NB is the number of buses, and
NR is the number of renewable energy fields.

3.2 Long-term constraints

1) Policy constraints:

ΔPi ≤Pmax
i

ΔPj ≤Pmax
j

ΔPk ≤Pmax
k

⎧⎪⎨⎪⎩ , (7)

where Eq. 7 is the various candidate units and flexible resources
that are limited to the district resource endowment constraint. Here,
Pi

max is the maximum limit of units, Pj is the energy storage
capacity, and the DR capacity is independent each year. Pk is the
demand response capacity.

∑n
i�1
HiΔPi

∑m
i�1
HiΔPi

≥ α. (8)

The above is the energy policy constraint, where ∑n
i�1
HiΔPi and

∑m
i�1
HiΔPi are non-fossil energy generation and total generation,

TABLE 7 Real-case co-planning scheme with various flexible resources.

Type Energy storage + demand response Demand response Energy storage

Annual investment cost of lines (0.1 billion) 77.95 75.66 76.48

Annual investment cost of units (0.1 billion) 179.83 189.2 189.2

Annual energy storage investment cost (0.1 billion) 10.8 0 9.83

Annual load-shedding cost (0.1 billion) 0 0 0

Annual renewable energy curtailment cost (0.1 billion) 0.31 0.42 0.31

Annual demand-response investment cost (0.1 billion) 0.52 1.02 0

Annual investment cost (0.1 billion) 717.52 714.75 722.85

Annual operational cost (0.1 billion) 4,880.79 4,885.31 4,883.64

Annual total cost (0.1 billion) 5,598.31 5,600.06 5,606.49

TABLE 8 Co-planning scheme of various load cases.

Type Basic load *1.1 Basic load Basic load *0.7

Annual investment cost of lines (0.1 billion) 77.95 77.95 47.56

Annual investment cost of units (0.1 billion) 226.86 179.83 162.45

Annual energy storage investment cost (0.1 billion) 28.57 10.8 2.83

Annual demand-response cost (0.1 billion) 205.6 0.52 0.02

Annual investment cost (0.1 billion) 783.27 717.52 662.73

Annual operational cost (0.1 billion) 6,699.78 4,880.79 3,271.42

Annual total cost (0.1 billion) 7,483.05 5,598.31 3,934.15

Renewable energy consumption rate 100.00% 100.00% 99.25%
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respectively, and α is the non-fossil energy generation minimum
proportion.

Rmax
i − Ri( )
Rmax
i

≤ χ. (9)

The renewable energy sustainable development policy
constraint Eq. 9 is diverse wind and solar curtailment upper
limits in diverse districts. Here, Ri, Rmax

i , and χ are diverse
renewable energy actual generation, maximum generation, and
maximum wind and solar curtailment proportion, respectively.

2) Total reserve constraint (Eq. 10):

∑XgPψ,max + λ∑Pr,Install ≥ 1 + α( )∑
b∈Ξ

D, (10)

where λ is the renewable energy confidence capacity, α is a
system reserve factor, Pr,Install is the installed capacity of renewable
energy r, and D is the peak load.

3.3 Short-term constraints

3) The node power balance constraint Eq. 11 is the balance
between units, energy storage output, renewable energy
output, and demand response power and load.

∑
g∈Gg

p̂g,t,i + ∑
l∈L to l( )�b|

fl,s,t,i − ∑
l∈L fr l( )�b|

fl,s,t,i + ∑
w∈Gw

p̂w,t,i − pΔw
w,t,i( )

+ ∑
pv∈Gpv

p̂pv,t,i − pΔpv
pv,t,i( ) + ∑

s∈Gs
pdch
s,t,i − pch

s,t,i( ) + pd
t � dt,∀t

.

(11)

∑
l∈L

fl,s,t,i −∑
l∈L

fl,s,t,i is the inflow and outflow power of the lines. p̂w,t,i

and p̂pv,t,i are the predicted power output based on operational

scenario reconstruction. ∑
w∈Gw

(p̂w,t,i − pΔw
w,t,i) and ∑

pv∈Gpv

(p̂pv,t,i −

pΔpv
pv,t,i) are the renewable energy power outputs considering wind.∑

s∈Gs

(pdch
s,t,i − pch

s,t,i) is the energy storage charge and discharge

power. pd
t is the node load-shedding.

4) Existing line direct power flow constraint:

fmn i( ) − rmn i( ) θm − θn( ) � 0. (12)

5) Candidate line direct power flow constraint:

fmn i( ) − rmn i( ) θm − θn( )≤M 1 − Xi( ), (13)

wheremn(i) is the admittance of line headm and endn, θ is the phase
angle, M is the big number, and Xi is the decision variable of the lines.

6) Power unit output up/down limit constraint:

δmin
i pPi ≤Pi,t ≤ δmax

i pPi, (14)

where δmin
i , δmax

i , and Pi,t are the minimum and maximum
output coefficient of normal units and the operational actual output
of the units at various times. The units mainly refer to thermal power
units, biomass, and hydropower units.

FIGURE 9
Real-case four-season demand-response cost.

FIGURE 7
Real-case four-season wind curtailment with no
flexible resources.

FIGURE 8
Real-case four-season energy storage investment cost.
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7) Rotate reserve constraint:

∑ Pg,max − Pg,s,t( ) +∑△Pcur
g,s,t+∑ Pe,rate − pdch

s,t + pch
s,t( )≥ 1 + α( ) × dt

, (15)

where Pg,max is the maximum power output of unit g and α is the
system rotate reserve coefficient, which is normally 6%. In addition
to considering thermal power units, renewable energy curtailment
power Pcur

g,s,t and energy storage are also involved as part of the rotate
reserve. Renewable energy curtailment and energy storage possess
upregulation capacity at the load variation time.

8) Unit ramp constraints:

Pi,t − Pi,t−1 ≤R
up
i

Pi,t−1 − Pi,t ≤Rdown
i

{ . (16)

9) Renewable energy output constraint:

PW
i,t + PW,cur

i,t � PW,fore
i,t

PPV
i,t + PPV,cur

i,t � PPV,fore
i,t

⎧⎨⎩ , (17)

where PW
i,t and PPV

i,t indicate wind and solar actual output at various
time scales, respectively; PW,cur

i,t and PW,fore
i,t are wind curtailment and

predicted maximum output, respectively; and PPV,cur
i,t and PPV,fore

i,t are
solar curtailment and predicted maximum output, respectively.

10) Renewable energy operational constraints:

0≤ΔPcha
s,j,t ≤xcha

s,j,tΔPs,j,t

0≤ΔPdis
s,j,t ≤x

dis
s,j,tΔPs,j,t

{ , (18)

Ej,t − Ej,t−1 � ηs,j,tΔPcha
s,j,t − ΔPdis

s,j,t/ηs,j,t
0≤Ej,t ≤Hs,j,tΔPs,j,t

Ej,t�0 � Ej,t�NT

⎧⎪⎨⎪⎩ , (19)

Shows energy storage charge and discharge power constraints and
storage capacity constraints of all time scales.xcha

s,j,t andx
dis
s,j,t are the energy

storage state variables of charge and discharge, respectively; ΔPcha
s,j,t and

ΔPdis
s,j,t are energy storage charge and discharge power, respectively; Ej,t

and Ej,t−1 are energy in two subsequent time scales; Ej,t�0 and Ej,t�NT

indicate the constant of energy in the operational period of energy
storage; and ηst,j is the efficiency of charge and discharge.

11) Demand-response operational constraint:

Pk,t

∣∣∣∣ ∣∣∣∣≤Pk

∑NT

t�1
Pk,t � 0

, (20)

FIGURE 11
Summer scenario generators/load graph.

FIGURE 10
Spring scenario generators/load graph.
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where Eq. 20 indicates DR response power in operational
progress less than the maximum. Simultaneously, the transferred
energy remains constant.

12) Line transfer capacity constraint:

fl,s,t � Bl θfr l( ),s,t − θto l( ),s,t( ), (21)
Fmin
l ≤fl,s,t ≤Fmax

l , (22)

where Bl denotes the susceptance of line l. Fmin
l and Fmax

l denote the
maximum andminimum transfer power of line l, respectively. θfr(l) and
θto(l) denote the start and end node phase angle of line l, respectively.

In sum, Eqs 11−22 are short-term constraints.

3.4 Solution algorithm

The model is solved using bi-level Benders decomposition. A
mixed-integration linear programming (MILP) approach is utilized
for the proposed GNLS co-planning model, and the Gurobi
commercial toolbox is used to solve the problem.

According to the Benders decomposition,models can be divided into
main problems and subproblems as in Figure 2. The main problem is

min F IX( ) + β, (23)

where Eq. 23 IX is the investment decision variable and F(IX) is
the investment cost. The constraint conditions are simplified as R
(IX)≤ 0, W (IX)≤ 0, V(IX)≤ β, and β≥ 0. R (IX)≤ 0 is the
investment constraint, W (IX)≤ 0 is the Benders cut when there
is no feasible solution to the subproblem, and V(IX)≤ β is the
Benders cut when there is an optimal solution to the subproblem.
The subproblem Eq. 24 is

V IX( ) � minF OY( ), (24)
where OY is the operating state variable and F(OY) is the

operating cost. The constraint conditions are simplified as
G(IX,OY)≤ 0, which is required for the normal operation of the
power system.

Figure 1 presents the flowchart of the bi-level stochastic
algorithm for solving the proposed model.

We compare the solution time for the single-level and bi-level
models. The solution time for the single-level model is 31,324 s, and
the solution time for the bi-level model is 1,758 s. The results
demonstrate that the bi-level model is far more effective in
increasing model solution efficiency.

FIGURE 13
Winter scenario generators/load graph.

FIGURE 12
Autumn scenario generators/load graph.
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4 Case study

4.1 IEEE RTS 24-bus

The IEEE-RTS 24-bus standard case is used to verify the model.
The annual investment cost of power units is 180,000 yuan/MW,
and the annual investment cost of lines is 500,000 yuan/km. The
wind curtailment cost is 2,000 yuan/MWh. The load-shedding cost
is 25,000 yuan/MWh. The total renewable energy capacity is
1,000 KW, which is distributed at 10 nodes.

The Table 1 compares the planning results of the system with
different flexibility resources, where the basic plan includes both
energy storage and demand response. The results show that the
enhancement of the renewable energy consumption rate minimizes
the operating cost of the basic plan and optimizes the overall
economic cost of the basic plan.

In order to observe the role of flexible resources in the power
system, the following Figures 3−6 shows the system output graph
in the four seasons of spring, summer, autumn, and winter. The
load is the least from midnight to dawn, and during this time, the
wind power consumption capacity is insufficient; thus, energy
storage charge is required. Moreover, during noon, when the
wind and solar output is large, energy storage charge also exists.
From nightfall to midnight, the load is high and requires energy
storage discharge, which decreases the load peak demand through
demand-side response. When there are no flexible resources,
curtailment of renewable energy appears due to insufficient
system flexibility.

4.2 Real case study in China

The real case is a large-scale 500-kV power grid in China with a
basic year and a planning year. Table 2 shows the 500-kV network
real-case boundary, Table 3 shows planning parameters. In this case,
wind power is equivalent to 12 nodes, and photovoltaic is equivalent
to 14 nodes. At the same time, each node supports demand-side
response, and the energy storage capacity to be built is 100 MW.

Tables 4 and 5 show the real-case basic year and planning year
flexible index calculation results.

Table 4 is based on historical data, with four clustered
operational scenarios concerning spring, summer, autumn, and
winter. The flexible deficiency index, flexible deficiency time
index, and flexible deficiency expectation index are separately
compared. Multi-clustered scenario flexibility increases from the
basic year to the planning year.

Table 5 is based on the predicted data of the planning year, and
four operational scenarios concerning spring, summer, autumn, and
winter are reconstructed. The flexible deficiency index, flexible
deficiency time index, and flexible deficiency expectation index
are separately compared. Multi-clustered scenario flexibility
increases from the basic year to the planning year. Compared to
historical data of the basic year, relevant flexible indices are
improved because of the involvement of flexible resources.
Taking the flexible deficiency expectation index in scenario four
as an example, it can be seen that the indices decrease from 1.54% in
the basic year to 0.51% in the planning year, and flexible deficiency
is improved.

In Figures 7–9, spring and winter show large wind curtailment,
which is lack of flexibility. So, when considering flexible resources,
energy storage and demand response are of high demand, especially
in spring and winter.

According to the Table 6, when wind and solar installed capacity
increases, energy storage increases to store more energy in the
renewable energy-abundant time span, and the demand-response
cost increases to respond to the load peak time span. With the
increase in wind and solar installed capacity, the power supply
demand of traditional units decreases, so the investment cost of
traditional units also decreases. However, the increase in demand for
renewable energy consumptionwill lead to an increase in energy storage
and demand-side response, so the investment cost will also increase.
Meanwhile, with the increase in wind and solar installed capacity and
renewable energy generation, the fuel cost of traditional units will be
reduced, so the operating cost will be reduced. According to the wind
and solar installed capacity sensitivity analysis, the economic cost will
increase when installing more wind and solar systems.

The Table 7 above shows that when considering energy storage
and demand responses, the investment cost is more when only
considering the demand response, but it is less when only
considering energy storage. Meanwhile, when considering energy
storage and demand response, the operational cost is relatively
lower; this is because with flexible resources involved, flexibility
is ensured. When not considering energy storage or demand
response, flexibility decreases, and the operational cost is more.
So, the total cost is optimal when simultaneously considering energy
storage and demand response.

In the above Figures 10−13, scenario generators and load graphs of
the four seasons are shown to reflect unit flexible deficiency and
renewable energy curtailment. When renewable energy output is
high, energy storage charge is of priority; meanwhile, energy storage
discharges under low renewable energy output and heavy load. While
demand response is used when the load is heavy, the demand response
is used at this time scale to increase system flexibility.

The above Table 8 separately refers to basic load *1.1, basic load,
and basic load *0.7 sensitivity. With load increase, the annual
demand response cost increase from basic load case 0.052 billion
to basic load *1.1 case 22.69 billion. It can be seen that when the load
demand decreases, the new construction cost and total economic
cost of the lines and traditional units also decrease. Meanwhile, the
cost of energy storage and demand-side response also decreased,
indicating that the system demand for flexible resources has
decreased, and the renewable energy consumption has
also decreased.

5 Conclusion

In the context of global warming and carbon emissions, this
paper first proposes a generation–network–load–energy storage co-
planningmodel. The bi-level planning of the continuous-time GNLS
co-planning model is done with the objective of reducing cost and
increasing renewable energy consumption. The model is
comprehensive and valuable in industrial applications. A
confidence-based uncertainty method is also proposed. The
method applies wind and solar power output scenario cluster and
reconstruction to the GNLS co-planning model. The proposed
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method is validated using the IEEE RTS 24-bus test system and a
real-case system. It is concluded that the planning model could
effectively improve the renewable energy consumption rate, and the
total cost decreases to 559.8 billion. All the indices are improved in
the planning year. With load increase, from the flexibility
perspective, energy storage and demand response increase as a
consequence.
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