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As a new generation of transportation, electric vehicles play an important role in
carbon-peak targets. The development of electric vehicles needs the support of a
charging network, and improper planning of charging stations will result in a
waste of resources. In order to expand the charging network of electric vehicles
and give full play to the low-carbon and efficient characteristics of electric
vehicles, this paper proposed a charging station planning method that
considers the characteristics of carbon emission trends. This paper combined
the long short-term memory (LSTM) network with the stochastic impacts by
regression on population, affluence, and technology (STIRPAT) model to predict
the carbon emission trend and quantified the correlation between the
construction speed of a charging station and the evolution characteristics of
carbon emission by Pearson’s correlation coefficient. A multi-stage charging
station planning model was established, which captures the dynamic
characteristics of the charging demand of the transportation network and
determines the station deployment scheme with economic and low-carbon
benefits on the spatiotemporal scale. The Pareto frontier was solved by using
the elitist non-dominated sorting genetic algorithm. The model and solution
algorithm were verified by the actual road network in a certain area of Shanghai.
The results showed that the proposed scheme canmeet the charging demand of
regional electric vehicles in the future, improve the utilization rate of charging
facilities, and reduce the carbon emission of transportation networks.
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1 Introduction

Road traffic carbon emission is the key object of energy saving and carbon reduction.
Electric vehicles (EVs) are being promoted because of their low carbon emission and high
efficiency (Li et al., 2019). By the end of 2022, the number of new energy vehicles in China
had reached 13.1 million. As the number of EVs continues to increase, EV charging stations
also need to match it. Reasonable allocation of the location and capacity of charging stations
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is conducive to the development of EVs, reducing transportation
carbon emissions and achieving the goal of carbon peak.

In the face of carbon peak target requirements, the policy
promotes the development of EVs and charging facilities to
reduce transportation carbon emissions. At the same time, the
evolution of carbon emissions affects the promotion of EVs and
the construction of charging facilities. Therefore, it is necessary to
consider the evolution characteristics of carbon emissions in the
planning process of charging stations. EV charging station planning
not only involves EV users, charging station investors, and
distribution networks but is also restricted by many influencing
factors. EVs are characterized by both transportation loads and
power loads, and the planning of their charging stations involves
both the transportation and power aspects. The electricity-related
factors include the interaction between the power system and
charging facilities, the current status of the distribution network,
charging configuration, and charging mode. The transportation-
related factors include urban road network planning, traffic flow,
and the scale of EV development (Kavianipour et al., 2021; Frade
et al., 2011; Huang et al., 2018). Most of the charging station
planning models in the existing literature consider the
construction cost of a charging station, user time cost, and
distribution network loss (Lin et al., 2019; Meng et al., 2020; Pal
et al., 2021).

Xie et al. (2018) established a model with the goal of minimizing
the construction and operation cost of charging stations and the
time cost of users. Zhong and Xiong (2021) established a charging
station planning model considering the impact of the charging
station planning scheme on the safety and efficiency of the
distribution network. Zhu et al. (2017) considered the EV users,
distribution network, and charging station investors to establish a
planning model to obtain the optimal planning scheme with the
minimum comprehensive cost. The above studies consider different
utilization subjects for planning, but they ignore the constraint
requirements on carbon emissions.

Few studies consider carbon emission reduction, and most of
them consider carbon emission in terms of economic benefits (Wu
et al., 2022; De Lima et al., 2023; Wu et al., 2023). Saber and
Venayagamoorthy (2011) established an approximate linear model
to calculate the emission reduction benefits of EVs and pointed out
that the coordinated scheduling of EV charge and discharge and
clean energy can reduce carbon emissions. Amer et al. (2021)
established a charging station planning model with the goal of
minimizing the carbon emission generated by EVs during the
journey to the charging station. In essence, the service distance of
the charging station is still considered, but carbon emission is not
directly considered. Although carbon emissions are considered in
the planning process of charging stations in the above literature, the
sources of carbon emissions are not comprehensive, and the
relationship between carbon emissions and the construction of
charging facilities is ignored.

Existing studies on carbon emissions in the planning process of
charging stations only focus on carbon emissions at a single point in
time without considering the evolution trend and characteristics of
transportation carbon emissions over a long time scale. For finding
the evolution trend of carbon emissions, the main method is the
traditional stochastic impacts by regression on population,
affluence, and technology (STIRPAT) model (Kong et al., 2023)

and Kaya identity (Lin et al., 2023). Neural network models (Niu
et al., 2022), support vector regression machine model (Jiang and
Yu, 2023), and other new methods are also used.

The STIRPAT model is an improved IPAT model, which
overcomes the defect that independent variables affect the
dependent variables equally in the IPAT model, and it can also
be customized to add other factor analyses according to research
needs to determine the influencing factors more rigorously. The long
short-term memory (LSTM) model can explore the nonlinear
relationship between variables through deep neural networks to
improve the accuracy of the evolution trend of transportation
carbon emissions. The LSTM model can obtain the carbon
emission trend change with high accuracy when the data sample
is small, but it is limited to a short period of time, and the later results
will be affected by the earlier prediction errors, resulting in error
accumulation.

The purpose of this paper is to improve the rationality and low-
carbon effect of the planning and layout of EV charging stations by
considering the relationship between the evolution characteristics of
carbon emissions and the construction scale of charging facilities and
taking into account the economic cost of the construction of charging
stations. In order to achieve this goal, we establish a newmulti-objective
programming model to resolve the conflict between carbon emissions
and economic costs. The model takes into account a number of factors,
including carbon emissions from transportation and distribution
networks, dynamic demand changes for EVs, and the scale of
charging stations. Finally, the improved genetic algorithm is used to
solve themodel to ensure the rationality and low carbon emission of the
planning layout of charging stations in the process of dynamic changes
in EV charging demand. The contributions of this paper are as follows:

(1) We propose a new EV charging station planning model that
takes into account the correlation of carbon emissions from
transportation networks and distribution networks to the scale of
the construction of charging stations and their internal facilities.
One of the key objective functions in the model is the carbon
emission of the network, which directly affects the planning
results. The model determines the location and capacity of
charging stations by minimizing economic costs and carbon
emissions and takes into account the dynamic changes in
charging demand based on a multi-stage planning process.

(2) In order to improve the accuracy of the future carbon
emission evolution trend, a combined model combining
the advantages of different models was proposed to predict
the traffic carbon emission under a small data sample. By
improving the accuracy of the evolution trend of carbon
emissions, the evolution characteristics were analyzed, and
the correlation between carbon emissions and the
construction of charging facilities was analyzed according
to the constructed two-dimensional evaluation index.

(3) We take a regional road network in Shanghai as the case
study, compare the layout results under different planning
methods, and analyze and discuss them, and the comparison
results show that the method proposed in this paper has good
economic and low-carbon effects.

The rest of this paper is structured as follows: Section 2
introduces the prediction model of the carbon emission evolution
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trend and the evaluation index of the carbon emission evolution
characteristics; Section 3 presents the multi-stage planning model;
case studies are provided in Section 4; and Section 5 concludes
this paper.

2 Evolution characteristics of road
traffic carbon emissions

The carbon emission of urban road traffic is mainly measured by
the carbon dioxide emitted by the burning fuel during the driving
process of the vehicle. Considering that the LSTM model has more
advantages in short-term trend inference, and there is error
accumulation in long-term inference results, this chapter
combines the short-term results of the LSTM model with the
long-term trend of STIRPAT inference to obtain the future
evolution trend of transportation carbon emissions and analyzes
the evolution characteristics of carbon emissions.

2.1 Carbon emission measurement methods

Due to the poor availability of data such as vehicle mileage and
combustion consumption per unit mileage, this paper adopts the
“top–down” method to calculate the carbon emissions of the
highway traffic network, which is as follows:

C � ∑Ci � ∑Ei × CVi × CCFi × COFi ×
44
12

( ), (1)

where C is the transportation carbon emission, i represents the ith
energy source, Ci represents the carbon emissions from the
consumption of energy i, Ei represents the consumption of the
ith energy, and CVi is the average low heating value, expressed in
kJ/kg or kJ/m3. CCF is the carbon content of energy, and the unit is
kg/106 kJ. COF is the carbon oxidation rate of energy. The ratio of
the molecular weight of CO2 to carbon is 44/12.

The carbon emissions generated by fuel consumption caused by
coal electricity in the charging capacity of EVs are calculated as
driving carbon emissions. The carbon emissions of EVs are
calculated as follows:

Cev � fc × PCev × Q × W

a × 1 − b( ) × 100
, (2)

where Cev is the annual carbon emissions per electric vehicle, unit kg;
fc is the carbon emission factor of coal power, unit kg·(kW·h)−1; PCev
is the 100-km power consumption of electric vehicles, unit
kW·h·(100 km)−1; Q is the ratio of the coal power station, unit %;
W is the average annual mileage of electric vehicles, unit km·year−1; a
is the charging efficiency of EVs; and b is the power transmission and
distribution loss.

2.2 Carbon emission evolution trend model

2.2.1 Factor identification and trend analysis based
on STIRPAT

The carbon emission of urban road traffic is affected by many
factors, and quantifying the influence of the factors on the carbon

emission of road traffic is the focus of studying the evolution
characteristics of carbon emission. The setting of a typical IPAT
model only contains three influencing factors. The STIRPAT model
adopted in this paper is an extended form of the IPAT model. After
improvement, a variety of new variables can be introduced to
analyze the related factors affecting carbon emissions more
comprehensively.

I � a × Pb × Ac × Td × e, (3)
where I, P, A, and T represent the environmental, population,
economic, and technical factors, respectively; a, b, c, and d are
the parameters to be estimated; and e is a random error term. The
STIRPATmodel is a concrete decomposition or improvement of the
three variables P, A, and T.

2.2.2 Evolution trend model of carbon emission
based on LSTM

The LSTM model has excellent performance in predicting the
future trend of time series, and the road traffic carbon emission and
its influencing factors have obvious time series characteristics, so this
method is adopted to show the evolution characteristics of road
traffic carbon emission. The LSTMmodel uses the input gate, forget
gate, and output gate control network to realize the function of long-
term memory. The main structure is shown in Figure 1.

As shown in the figure, the output ht-1 at the previous moment
and the current state xt at the same time serve as the input, and after
obtaining the ratio of storage deletion to output, the critical-state
information is selected to update the storage unit based on the
forgetting ratio and memory ratio. The output ht at the current time
is obtained based on the output proportion, and the model can be
obtained by reducing the error through several iterations.

2.3 Carbon emission evolution characteristic
evaluation index

Carbon emission evolution has temporal characteristics; carbon
emission time series Ct is generated, and the carbon emission change
rate FCt considering temporal timing is defined. Cosine distanceDc is
used to describe the fluctuation degree of 2 adjacent years in the
carbon emission time series, as shown in Eq. 4:

FCt � DC Ct( ) � 1
2 T − 1( ) ∑T−1t�1

1 − cos Ct( )[ ], (4)

cos Ct( ) �
�Ct+1 · �Ct

�Ct+1
���� ���� · �Ct

���� ����. (5)

Since stage planning is conducted in advance based on the
change trend of the time period, the weighted average of the whole
stage is obtained, and the closer the planning year is, the greater the
weight is.

FCt � ∑T
t�1
ψtFCt, (6)

where ψt represents the weight factor for year t.
The change in the average growth rate of carbon emissions in the

stage can be expressed as follows:
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Frise � ∑ �������������∏ Ct−1 − Ct

Ct−1
( )t

√
. (7)

On the basis of the above formula, the carbon emission
growth index composed of the carbon emission mutation rate
and growth rate at the stage is defined, as shown in the
following formula:

Find � FCt + Frise. (8)

2.4 Correlation between charging facilities
and carbon emission trends

The evolution of carbon emissions affects the promotion
policy of EVs, thus stimulating the change in the demand for
charging facilities and placing requirements on the quantity and
speed of the construction of charging facilities. Based on
Spearman’s correlation coefficient, the correlation between the
evolution characteristics of carbon emissions and charging
facilities is analyzed.

The construction speed of the charging facilities is as follows:

Vcs � 1
T
∑T
t�1

Nt −Nt−1( ). (9)

The correlation coefficient is as follows:

ρ � 1 −
6∑n
i�1
o2i

n n2 − 1( ), (10)

where N is the number of charging piles, oi is the difference between
the position values of the ith data pair, and n is the number of points
in the sequence.

3 Multi-stage planning model of an
electric vehicle charging station

3.1 Optimization objective

This paper assumes that the interests of multiple parties are
equally important, and the model considers the minimum total cost
and carbon emissions in the planning stage as the objective function,
as shown in the following equation:

minFsi � min∑
t∈T

F1,si ,t + F2,si ,t( )
minCsi � min∑

t∈T
C1,si ,t + C2,si ,t( )⎧⎪⎪⎨⎪⎪⎩ , (11)

where Fsi is the total cost in the planning stage, t represents the stage
of planning, si represents the planning scenario, F1,si,t is the
annualized cost of investors, F2,si,t is the loss cost of connecting
to the grid, C1,si,t is the carbon emissions of fuel-powered vehicles in
the planning area, and C2,si,t is the carbon emissions of EVs going to
charging stations in the planning area.

3.1.1 Annualized cost of investors
The annualized cost of investors mainly includes the

construction, operation, and maintenance cost of EV charging
stations and the cost of different charging piles in charging
stations. The calculation formula is as follows:

F1,si,t � ∑T
t�1
∑N
i�1

r0 1 + r0( )ys
1 + r0( )ys − 1

yt
i,si fi,si,t + fpi,si,t( )[ ] +∑T

t�1
∑N
i�1
yt
i,sifOMi,si,t,

(12)
where T is the planning stage of a charging station, N is the number
of charging stations for EVs, r0 is the average depreciation rate of EV
charging stations, ys is the maximum service life of the EV charging
station, and yti,si are 0–1 variables used to determine whether a

FIGURE 1
Cell structure diagram.
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charging station is built at a site. If a station is built, yti,si = 1;
otherwise, yti,si = 0. fi,si,t is the annual construction cost of the ith EV
charging station; fpi,si,t is the purchase cost of the charging pile of the
ith charging station; and fOMi,si,t is the annual operation and
maintenance cost of the ith EV charging station. The analysis
and explanation of fpi,si,t and fOMi,si,t are as follows.

The different types of charging piles in EV charging stations
make their purchase costs different.

fpi,si,t � fhpNhpi,si,t + flpNlpi,si,t, (13)

where fhp and flp are the unit prices of fast- and slow-charging
piles, respectively; Nhpi,si,t and Nlpi,si,t refer to the number of

fast-charging and slow-charging piles, respectively, in the ith EV
charging station.

The operation and maintenance cost of EV charging stations is
related to the daily operating capacity of the charging stations, which
is as follows:

fOMi,si,t � p + q( )Ccap,pi,si,t

� p + q( )Td · PhpNhpi,si,t + PlpNlpi,si,t[ ] · 365, (14)

where Ccap,pi,si,t is the 1-year operating capacity of the ith charging
station, p is the proportional coefficient of labor cost, q is the ratio
coefficient of the grid-connected cost, Td is the average running time
of the charging pile in 1 day, Php is the fast-charging pile power,

FIGURE 2
Steps of the genetic algorithm based on a non-dominant sorting elite strategy.

Frontiers in Energy Research frontiersin.org05

Jia et al. 10.3389/fenrg.2024.1359824

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1359824


Nhpi,si,t is the number of fast-charging piles in the ith charging
station, Plp is the power of the slow-charging pile, Nlpi,si,t is the
number of slow-charging piles in the ith charging station, and
365 indicates the number of days in a year.

3.1.2 Network loss

F2,si,t � ce∑365
d�1

∑24
τ�1

∑L
k�1

I2k τ( )Rk( ), (15)

where ce is the price of electricity; d indicates the number of days,
i.e., 365 days, in a year; τ is the number of hours, and there are 24 h
in a day; L is the number of branches; Ik(τ) is the magnitude of the k
branch current at τ; and Rk is the resistance corresponding
to branch k.

3.1.3 Carbon emissions from fuel vehicles

C1,si,t � xsi,t 1 − Ssi,t( )Lg,aveg,co2, (16)

where xsi,t is the number of vehicles in the area planned by t in the
scenario i stage, Ssi,t is the proportion of EVs in the planning area t in
stage i of the scenario, Lg,av is the average annual mileage of fuel-
powered vehicles, and eg,co2 is the carbon emission coefficient per
unit driving distance of the fuel-powered vehicle.

3.1.4 Carbon emissions from electric vehicles

C2,si,t � xsi,tSsi,t
Le,avEavIcoal,si,tecoal,co2

ηch
, (17)

Le,av � Lrun + Lch � Lrun +∑365
d�1

∑N
i�1
∑J
j�1
yt
iλijlij, (18)

where Le,av is the average annual mileage of EVs, Eav is the power
consumption per unit mileage of EVs, and Icoal,si,t is the proportion
of coal power in the charge amount of t in stage i of the scenario.

TABLE 1 Charging station location capacity parameters.

Parameter Value Parameter Value

r0 3% q 0.071

ys 10 years Ce 1.8 yuan/
(kW·h)

fi 100 ten thousand yuan Td 16 h

fhp 2 ten thousand yuan Plp 40 kW

flp 0.5 ten thousand yuan Php 80 kW

p 0.01 λij 1.2

Le,av 12,376 (km·year-1) Rcs 1.5 km

SOCc 0.3 SOCref 0.9

TABLE 2 Growth rate of each factor in the scenario.

Influencing factor Time Baseline
scenario (%)

Policy constraint
scenario (%)

Low-carbon
scenario (%)

Traffic GDP T1 10.00 10.00 11.00

T2 9.50 9.50 10.00

T3 7.00 7.50 8.50

Vehicle ownership T1 4.00 5.00 6.00

T2 2.50 3.50 4.50

T3 1.00 2.00 3.00

Coal electricity proportion of the charging
amount

T1 −1.42 −18.00 −23.00

T2 −2.36 −20.00 −25.00

T3 −3.58 −22.00 −28.00

Road freight turnover T1 5.50 6.00 6.50

T2 4.50 5.00 5.50

T3 3.00 3.50 4.00

Passenger traffic turnover T1 13.00 14.00 15.00

T2 3.50 4.00 4.50

T3 2.00 3.00 4.00

TABLE 3 Carbon emission evolution trend fitting results.

Year True value Test value Relative error

LSTM STIRPAT LSTM STIRPAT

2016 940.78 938.51 936.41 0.00241 0.00465

2017 953.29 950.30 947.64 0.00342 0.00489

2018 951.23 946.92 945.12 0.00453 0.00504

2019 966.06 960.81 958.97 0.00543 0.00584
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ecoal,co2 is the carbon emission factor of coal. Lrun is the annual
mileage of EVs, and Lch is the mileage of EVs to charging stations. ηch
is the charging efficiency of the charging station, J is the charging
demand set, λij is the nonlinear coefficient of an urban road, and lij is
the linear distance between demand point j and charging station i.

3.2 Constraint condition

3.2.1 Charging demand constraint
The capacity of the charging station cannot be less than the total

demand of EV users in the planned area, which is as follows:

∑N
i�1
Td · PhpNhpi,si,t + PlpNlpi,si,t( )≥Dsi,t, (19)

Dsi,t �
ξsi,tEsi,tCcap SOCref − SOCc( )

ηch
, (20)

where ξsi,t is the proportion of vehicles in the average charging
demand, Dsi,t refers to the daily total charging demand in the
planning area, Ccap is the capacity of EVs, and SOCref is
the threshold value of the state of charge of the EV. SOCc is the

average remaining capacity of EVs, and Esi,t refers to the total
number of EVs in the planning area, where Esi,t = xsi,ty3,si,t.

3.2.2 Charging station distance constraints
Considering the timeliness of EV charging and the planned areas

being within the service range of charging stations, the distance
between adjacent charging stations is required to be as follows:

Rcs ≤L Di+1, Di( )≤ 2Rcs, (21)
where Rcs is the service area of the charging station; L (Di+1,Di) is the
distance between adjacent charging stations.

3.2.3 Limiting the number of charging stations

Nmin ,si,t ≤Nsi,t ≤N max ,si,t, (22)

Nmax ,si,t � ceil
Dsi,t

dmin ,si,t
( ), (23)

dmin ,si,t � TdNlpi,si,tPlpi, (24)

Nmin ,si,t � ceil
Dsi,t

dmax ,si,t
( ), (25)

dmax ,si,t � TdNhpi,si,tPhpi, (26)

where ceil (.) is an integer upward function, dmax,si,t is the capacity
upper limit of the charging station, dmin,si,t is the lower limit of the
capacity of the charging station, and Nmin,si,t and Nmax,si,t are the
upper and lower limits of the number of charging stations,
respectively.

FIGURE 3
Evolution trend of carbon emissions under different scenarios.

TABLE 4 Regional electric vehicle ownership data.

Stage T1 T2 T3

Proportion of electric vehicles/% 16.58 24.83 32.67

Number of electric vehicles/10,000 51.70 60.04 72.42
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3.2.4 Charging pile construction speed constraints
The higher the growth rate of phase carbon emissions, the faster

the construction speed of the charging facility, and the two are
positively correlated.

0< ρ≤ 1. (27)

3.2.5 Carbon emission constraint

Cmin ,si,t ≤Csi,t ≤Cmax ,si,t, (28)
where Cmax and Cmin are the maximum and minimum values of
carbon emission, respectively.

3.2.6 Planning temporal constraint
In the multi-stage planning process, the built charging stations

always exist, and the number of charging piles inside them is not
lower than the planned number in the previous stage. Therefore, the
planning timing constraints are expressed as follows:

yt
i,si ∈

0, 1{ },∀i ∈ I, t �� 1
1{ },∀i ∈ Yt−1, t ∈ 2, 3{ }
0, 1{ },∀i ∈ CIY

t−1, t ∈ 2, 3{ }

⎧⎪⎨⎪⎩ , (29)

dt
i,si �

yt
i · dmin#dt

i#yt
i · dmax,∀i ∈ I, t � 1

yt
i · dt−1

i #dt
i#yt

i · dmax,∀i ∈ Yt−1, t ∈ 2, 3{ }
yt
i · dmin#dt

i#yt
i · dmax,∀i ∈ CIY

t−1, t ∈ 2, 3{ }

⎧⎪⎨⎪⎩ , (30)

where yti,si are the 0–1 variables for t to judge whether a station
should be built at node i. If a station is built, yti,si = 1; otherwise, yti,si =
0. dti,si is the number of charging piles built in t node i; dmin and dmax

are the minimum and maximum construction capacities of charging
stations, respectively.

3.3 Solution method

The objective of this model is to minimize the economic cost and
carbon emission, which are different in dimensions. In this paper, a
genetic algorithm based on a non-dominant sorting elite strategy is
used to solve the Pareto optimal frontier. The steps are shown in
Figure 2. First, the Pareto solution set of the model is calculated, and
the relationship of all the solutions is clarified. Then, the non-
dominant solution is determined, and the relationship of the
residual solution is determined. The above steps are repeated to
obtain the optimal non-dominant solution.

After finding the Pareto optimal frontier surface, the solution of
the optimal frontier surface is normalized as follows:

FIGURE 4
Stage 1 road charging demand distribution.
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μFsi,z �
Fsi,max − Fsi,z

Fsi,max − Fsi,min
, (31)

μCsi,z
� Csi,max − Csi,z

Csi,max − Csi,min
, (32)

where μFsiz and μCsiz are the normalized values of the z solution of
the two objective functions on the optimal front surface,
respectively, and Fsiz and Csiz represent the actual values.
Considering the economic cost priority, weights are introduced
to the two objective functions, and the membership degrees of
each solution on the optimal front surface are calculated as follows:

μsi,z �
ω1μFsi,z + ω2μCsi,z∑Z

z�1
ω1μFsi,z + ω2μCsi,z
( ), (33)

where Z is the number of solutions on the Pareto optimal front
surface; ω1 and ω2 are the weight factors of the economic cost and
carbon emission, respectively, where ω1 > ω2. The Pareto solution is
optimal when μsi,z is maximum.

4 Results and discussion

The calculation takes Yangpu District of Shanghai as an example
to optimize the planning of the address and capacity allocation of the
charging station. The planning area selected by the simulation case is
shown in Figure 4, which covers a total area of 60.61 km2 and
contains 293 main traffic sections. It is assumed that the planning
cycle of the charging station is divided into three stages, and the
duration of each stage is 5 years.

4.1 Data sources and scenarios

The relevant data used in this paper are obtained from the China
Energy Statistical Yearbook and Shanghai Statistical Yearbook, and
the reference coefficient and average low calorific value in the
Chinese national standard GB/T2589-2008 are adopted. The
relevant data on energy carbon emissions are from the China
Provincial Greenhouse Gas Inventory Compilation Guide. The
parameter settings of the charging station location and capacity
model in this paper are shown in Table 1.

In view of the analysis of the influencing factors of urban road
traffic carbon emissions, this paper analyzes road traffic GDP,
vehicle ownership, EV proportion, coal electricity proportion of
charging amount, road freight turnover, and passenger traffic
turnover as the influencing factors. Based on the historical
changes of each factor and national policies, the specific scenario
is given in Table 2. The baseline scenario changes the least, followed
by policy constraints, and the low-carbon scenario changes the most
because the three scenarios have different requirements for the time
of carbon emission peaking.

4.2 Result analysis

4.2.1 Evolution trend of transportation
carbon emissions

The STIRPAT and LSTMmodels were, respectively, trained and
tested using historical carbon emission data. After the logarithm is
taken from Formula 3, and multivariate linear fitting is performed

FIGURE 5
Pareto optimal frontier.
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according to the collected data to obtain the regression equation, the
STIRPAT prediction model can be determined as follows:

I � exp 6.149 − 0.013 lnX1 + 0.124 lnX2 + 0.003 lnX3(
+0.166 lnX4 + 0.463 lnX5 − 0.116 lnX6), (34)

where X1, X2, X3, X4, X5, and X6 represent the road traffic GDP,
vehicle ownership, EV proportion, coal electricity proportion of
charging amount, road freight turnover, and passenger traffic
turnover considered in this paper, respectively.

Based on the results of the repeated experiments, the LSTM
parameters were determined by setting the number of hidden
layers to 3 and the number of neurons contained in each layer to
100, 80, and 50. The model conducted training sets and test sets
for 90% and 10% of the historical data, respectively. The errors
between the obtained results and the actual values are shown
in Table 3.

As shown in Table 3, LSTM has a higher precision in the short-
term carbon emission evolution trend, but with time, it is affected by
the accumulation of errors, resulting in a larger error in the
subsequent trend. Therefore, this paper combines the two
methods to analyze the trend of carbon emissions, and in the
process of trend analysis, the result with higher precision is taken
as the final output. The evolution trend of carbon emission is shown
in Figure 3.

As shown in Figure 3, there are obvious differences in the
evolution trend and fluctuation range of carbon emissions in
different scenarios: carbon emissions in the baseline scenario
continue to increase during the planned year. Under the policy
constraint scenario, carbon emissions will peak from 2032 to
2033 and then start to decrease. Carbon emissions in the low-
carbon scenario will peak in 2030 and start to decrease each year.
Although the low-carbon scenario can achieve the goal of peaking
traffic carbon as soon as possible, the structure of the urban traffic
power system and people’s travel mode are too high, and the speed
of change is too fast, which does not meet the actual development
level of production and life. Therefore, this paper mainly carries out
multi-stage planning for charging stations according to the
evolution trend of carbon emissions under the policy
constraint scenario.

4.2.2 Electric vehicle charging demand distribution
This paper takes the policy constraint scenario as an example,

considering the evolution characteristics of carbon emissions for the
planning of EV charging stations in the target region. The scale of
EVs in different stages is analyzed from the evolution trend of
carbon emissions, as shown in Table 4.

Given the number of vehicles and the proportion of EVs in the
region, road flow and charging demand distribution are obtained

FIGURE 6
Charging station location planning.
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after the vehicles running in the region are distributed on each road
based on the traffic equilibrium model (Zhou et al., 2021). Figure 4
shows the distribution of road charging demand in stage 1. The
darker the color, the greater the charging demand.

4.2.3 Charging station planning results
The optimal front surface obtained by the Pareto multi-objective

optimization method is shown in Figure 5, and the obtained Pareto
solution cannot make the two planning objectives reach the
optimum at the same time. In the planning process, the weight
factors of the economic cost and carbon emission are set to be
0.6 and 0.4, respectively, based on the cost priority, and the scheme
with the maximum value of μz is taken as the optimal scheme. The
resulting scheme planning results are shown in Figure 6.

Figure 6 shows the changes in the time sequence of the
construction of charging stations. As shown in Figure 6, only

stages 1 and 2 have new charging stations, and stage 3 does not
need new charging stations. This is because stage 3 only needs to
expand each charging station on the basis of existing charging
stations to meet the requirements. Figure 7 shows the changes in
the capacity of each charging station.

As shown in Figure 7, no charging stations were established in
some sections of the road during planning stage 1, and the difference in
the number of fast-charging and slow-charging facilities in the
charging stations established during this stage was not large, but
fast-charging was the main focus, which was because the scale of
EVs and the charging demand were small. In the process of planning
stage 2, new charging stations were established in sections 6, 147, 168,
and 224, and fast-charging facilities were used as the main equipment.
At the same time, the charging stations on roadway sections 250, 117,
102, 75, and 36 were expanded. The remaining charging stations
remain unchanged, indicating that the capacity of these charging

FIGURE 7
Charging station capacity changes at each stage.

TABLE 5 Comparison of results of different planning schemes.

Scheme Global economic cost/105 yuan Network loss cost/105 yuan Carbon emissions/105 tons

1 1,003.26 166.20 1,062.5

2 915.96 211.72 1,423.4

3 1,712.43 263.45 1,121.3

4 1,012.58 136.78 1,208.6
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stations is still sufficient for the charging demand at this stage. No new
charging stations were built in planning stage 3, and only the capacity
was expanded on the basis of the existing charging stations, indicating
that the current planning layout is in line with the distribution of the
traffic flow and the charging demand of EVs, which verifies the validity
of the planning results of this paper. Figure 7 shows that the charging
stations are first expanded in the dynamic planning process, and then,
new charging stations are built if they cannot meet the charging
demand after expansion. This is because the cost of expanding the
charging stations is lower than that of building new charging stations,
and the expansion of the charging stations can meet the charging
demand of EVs in the region, which can realize the effective reduction
of cost and carbon emission. If we do not consider the carbon emission
and construction schedule and only pursue the lowest cost, the
comparison of the planning results is shown in Table 5.

As shown in the figures above, when considering the evolution
of traffic carbon emissions, charging stations are selected to be built
near roads with a large charging demand, which satisfies the road
network traffic balance, effectively reduces the mileage anxiety of
users, and, at the same time, alleviates traffic congestion and reduces
traffic carbon emissions. If carbon emission and construction timing
are not considered and only the lowest cost is pursued, the resulting
planning results are shown in Table 5.

Scheme 1 is the planning method of this paper, scheme 2 only
takes cost as the target, scheme 3 is independently planned in stages,
and scheme 4 is the traditional planning option. As shown in Table 5,
compared with scheme 2, the economic cost of scheme 1 increases by
9.6%, the operation and maintenance cost is similar, the network loss
cost is reduced by 21.5%, and the carbon emission is reduced by
3.609 million tons. This is because the capacity of charging stations in
schemes 1 and 2 is similar, but scheme 1 has more charging stations
and a wider range of charging services, which equalizes the charging
load and eases the traffic flow. A comparison of schemes 1 and
3 shows that the sum of the number of charging stations planned in
multiple phases is less than the sum of the charging stations planned
individually in each phase, reducing the economic cost by 41.4%. A
comparison with scheme 4 shows that scheme 1 can effectively reduce
carbon emissions while saving costs. The reason for the global cost
reduction is that the optimal scheme proposed in this paper prioritizes
the expansion of charging stations before considering new charging
stations, which improves the utilization rate of charging stations and
avoids overinvestment to increase the economic cost.

5 Conclusion

In order to solve the problem of the limited consideration of carbon
emission in the existing charging station planning, a low-carbon
planning method for charging stations considering the evolution
characteristics of transportation carbon emission and dynamic
demand is proposed to realize low-carbon planning for charging
stations in the context of coupling the transportation network and
electric power network. This paper comprehensively considers urban
transportation carbon emission, traffic flow, user mileage anxiety, and
other factors and constructs a multi-stage site selection and capacity
allocationmodel for charging stations. Through comparative analysis of
numerical examples, the effectiveness of this method is proved, and the
conclusions are as follows:

(1) The carbon emission evolution trend analysis model proposed
here canmore accurately analyze the evolution trend of road traffic
carbon emissions over a long period of time. Themodel combines
the characteristics and advantages of the long short-termmemory
network and the STIRPAT model for carbon emission trend
analysis under small samples, and the improved LSTM–STIRPAT
model has better prediction accuracy than the traditional model.

(2) The proposed planning model can balance economic benefits
and carbon emissions, and through rational planning of
charging stations, network losses can be effectively reduced
and load pressure relieved. The layout of charging stations
simultaneously guides user path choices in the transportation
network, thus improving traffic flow and reducing carbon
emissions from urban transportation.

(3) In the planning process of charging stations at each stage, this
paper first considers the expansion of existing charging
stations and then considers whether new charging stations
are needed to meet the regional charging demand. This can
improve the utilization rate of charging stations and alleviate
the range anxiety and queuing time of EV users. The proposed
program is superior to traditional planning methods
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