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In light of the growing urgency surrounding energy and environmental
concerns, this paper presents a two-layer iterative energy dispatch strategy
tailored for a multi-energy-flow virtual power plant (VPP) operating within
the distribution power grid. The proposed strategy unfolds in two key phases.
First, it establishes an energy dispatch framework designed specifically for
the multi-energy-flow VPP within the distribution power grid. Subsequently,
it introduces an improved ant colony algorithm aimed at optimizing the
output power of each VPP. In addition, the paper presents an optimization
method for substation energy dispatch. This method uses a delay-aware
consensus algorithm with the substation dispatch cost increment rate as the
consensus variable, taking into account the communication delay between
VPPs. Integrating a proportional–derivative (PD) control mechanism enhances
the convergence speed of the delay-aware consensus algorithm and enables
real-time energy dispatch of the multi-energy-flow VPP. The paper presents
its conclusions by validating the efficacy of the proposed approach through
simulation, thereby addressing the challenges and adapting to the shifting
energy and environmental landscape.

KEYWORDS

two-layer iterative energy dispatch, multi-energy-flow virtual power plant, distribution
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1 Introduction

With increased severity in energy and environmental issues, decarbonization
has emerged as an unavoidable trend in the future energy industry (Li et al., 2023).
A virtual power plant (VPP) is a system that uses information technology to
aggregate and coordinate resources such as distributed generators, energy storage,
and interruptible load to enhance the stability and security of the power grid. The
global energy system is accelerating its transition to renewable energy (Zhong et al.,
2023a; Sarantakos et al., 2023; Wang et al., 2023). As a crucial energy structure for
the future, multi-energy flow systems have the capacity to interconnect different
types of energy (electricity, heat, gas, etc.); unify the planning, operation, and
dispatch of various energy devices; and achieve efficient energy utilization (Chen et al.,
2020; Wang et al., 2020). However, with the large-scale integration of renewable
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energy, encompassing distributed power sources, energy storage,
and dispatchable loads, the volatility of multi-energy flow systems
is also on the rise (Zhou et al., 2017; Zhong et al., 2023b). A
multi-energy flow VPP, as an integrated energy network that
connects electricity–gas–thermal energy sources, can coordinate
and dispatch various internal units including renewable energy,
gas resources, and thermal resources, which can not only provide
more economic benefits but also help achieve the goal of energy-
saving and emission reduction. At present, the multi-energy flow
VPP faces difficulties such as high actual carbon emissions,
complex multi-energy flow optimization variables, and multi-
optimization objectives. It is urgent to explore how to improve
the renewable energy consumption capacity of the multi-energy-
flow VPP while reducing carbon emissions. The interconnection
of diverse energy devices within multi-energy flow virtual power
plants enables coordinated dispatch of electricity, gas, and heat,
facilitating complementary utilization of multiple energy flows
(Zhang et al., 2019; Gao et al., 2023; Wu et al., 2023). This not only
effectively mitigates the fluctuations in multi-energy flow systems,
reduces distribution grid losses, and enhances energy utilization
efficiency but also promotes supply–demand balance, bringing
about significant economic benefits.

Currently, when various types of energy are interconnected
and complementarily integrated within a VPP, the involvement
of diverse entities with different interests and complex energy
and information exchange relationships among these entities
pose a series of challenges in multi-energy flow VPP energy
dispatch (Yang et al., 2023). A multi-energy flow VPP faces
difficulties such as high actual carbon emissions, complex multi-
energy-flow optimization variables, and multi-optimization
objectives. It is urgent to explore how to improve the renewable
energy consumption capacity of multi-energy flow VPPs. Many
scholars have undertaken initial investigations into the challenges
of energy dispatch in VPPs, with ant colony algorithms and
consensus algorithms finding widespread application in the
realm of energy dispatch. Ant colony algorithms are suitable for
centralized energy dispatch. These algorithms possess global search
capabilities and simulate the process of ants searching for food,
thus helping in finding the global optimal solution for complex
energy dispatch problems. Consensus algorithms, on the other
hand, are applicable to distributed energy dispatch. They use
real-time status information from neighboring substations and
continually update their status to maintain consistency among
all substations, thus ensuring the stable operation of the overall
energy system.

However, there are still many challenges facing the energy
dispatch process in multi-energy flow VPPs:

The energy interaction among electricity, gas, and heat within
the VPP, coupled with the interdependence between the VPP,
substations, and distribution grids, makes the energy dispatch of
multi-energy flow VPPs an extremely complex problem. Complex
energy and information exchange relationships exist amongmultiple
entities (Li et al., 2022; Huang et al., 2023). Due to the conflicts of
ownership, optimization objectives, and interests among different
entities, the increase in the multi-energy flow coupling degree
will inevitably make the mutual influence among various energy
subsystems more obvious. Traditional single-layer energy dispatch
methods usually only consider the optimization of a single

energy source when solving the multi-energy flow dispatch model,
ignoring the coordination of multi-energy flow. Moreover, the local
fluctuations of the system affect the solution of the whole system,
resulting in high dispatch costs and high network losses, which
are unsuitable for the complex energy dispatch for multi-energy
flow VPPs.

In traditional ant colony algorithms, the concentration of
pheromones and the heuristic function typically remain static.
As the number of iterations increases, there is a gradual rise in
the concentration of pheromones, potentially elevating the risk
of converging toward local optima. Simultaneously, the value of
the heuristic function decreases, possibly resulting in excessive
dependence on pheromones. In the context of energy dispatch
for multi-energy-flow VPPs, the adaptability of traditional ant
colony algorithms decreases. This results in a slow convergence rate
when solving the energy dispatch problem for multi-energy flow
VPPs, making it challenging to meet the real-time requirements of
such dispatch.

Consensus algorithms achieve consistency for all substation
states through the transmission of state information among
neighboring substations. However, during the consensus iteration
process, there is a delay in the transmission of state information
among neighboring substations. This leads to traditional consensus
algorithms being unable to promptly and accurately obtain
state information from neighboring substations, affecting the
convergence speed of the consensus iteration, increasing the
fluctuation of multi-energy flow within the VPP, and resulting
in high dispatch costs and distribution grid losses in the energy
dispatch for multi-energy flow VPPs.

During the consensus iteration process, factors such as channel
conditions and geographical locations cause a delay in the
transmission of state information between neighboring substations.
Traditional consensus algorithms overlook the time delay in the
transmission of state information,making it challenging to promptly
and accurately acquire the state information of neighboring
substations. This, in turn, affects the convergence speed of the
consensus iteration, increases the fluctuations in multi-energy flow
within the VPP, and results in excessively high dispatch costs and
distribution grid losses in the energy dispatch for the multi-energy-
flow VPPs.

Presently, extensive research is being conducted on the energy
dispatch for VPPs. One approach involves conceptualizing VPPs
as coalitions of wind generators and electric vehicles, establishing
an operational model based on linear programming. This model,
as discussed in Vasirani et al. (2013), demonstrates how scheduling
the supply to the grid and storage in electric vehicle batteries can
enhance the VPP’s profitability. Another highlighted in Yang et al.
(2013), Yang et al. proposed a distributed optimal dispatch method
using the distributed primal-dual sub-gradient algorithm. This
method involves coordinating the individual decision-making of
distributed energy resources within the VPP through limited
communication, ultimately maximizing the VPP’s profit. In the
context ofmultiple distributed generatorswithin aVPP, a distributed
control strategy is introduced in Xin et al. (2013).This strategy aims
to guide theVPP to converge and operate at an optimal output power
determined by the costs of distributed generations and the required
services assigned by the distribution grid. Mohy-ud din et al.
(2020) adopts the linearization method to solve the energy
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transaction management problem of integrated energy systems
based on VPPs. The linearization-based optimization method
is well-suited for addressing linear optimization objectives of a
relatively straightforward nature. However, it encounters challenges
when attempting to tackle complex nonlinear optimization targets,
such as those related to distribution power grid loss. There is
currently much research on the use of intelligent algorithms in the
field of VPP energy dispatch. Abdolrasol et al. (2018); Hannan et al.
(2021) applied optimization research to solve the application
problems of current technologies, adding value by enhancing them
in the direction of optimal solutions. Zhang et al. (2023a) focuses
on the interaction between electricity and heat, demonstrating the
influence of multiple factors on the safe operation of electricity.
Yan et al. (2020) focuses on the efficiency and convergence accuracy
of the method in solving the electricity and gas system model.
However, the above-mentioned literature has not taken into
account the coupling of multi-energy flow within VPPs nor has
it considered energy dispatch strategies with multiple layers of
interaction.

Various studies have explored the multi-energy flow
complementation of VPPs. Cui et al. (2016) integrated electric
boilers and heat storage equipment into wind power plants,
using thermoelectric conversion for consume wind power
consumption. Yuan et al., as highlighted in Guili et al. (2017),
achieved “thermoelectric decoupling” through use of electric
heating equipment, enabling coordinated dispatch of thermoelectric
power in the system. Li et al. (2019) analyzed the operation strategy
of a multi-energy flow complementary system with the goal of
enhancing the system economy. Additionally, there have been
advancements in the application of ant colony algorithms. Niknam
et al. proposed a novel approach based on the ant colony algorithm
for the distribution management system in the context of dispersed
generation (Niknam et al., 2005). Trivedi et al. (2015) used the ant
colony optimization technique to address multiple environment
dispatch problems in microgrids, solving the generation dispatch
problem. Hou et al. introduced a versatile optimization algorithm
named the generalized ant colony optimization algorithm to tackle
discontinuous, nonconvex, nonlinear constrained optimization
problems (Hou et al., 2002). Blockchain technology has also been
incorporated into VPP systems, as presented by Wang et al. in
Jing et al. (2022), where a VPP system architecture based on
blockchain was proposed, accompanied by a blockchain partition
consensus algorithm for VPP dispatch. Furthermore, consensus-
based algorithms have been introduced. Naina and Swarup (2022)
proposed a robust, fully distributed consensus-based algorithm
utilizing a monotonic decreasing consensus gain function to
mitigate the effects of communication delays and noise, allowing
the VPP to optimize electricity output and intake based on grid
demand. For addressing trust issues in real-time VPP dispatch, Qi
et al. designed a hybrid consensus mechanism combining multiple
algorithms and proposed a mixed consensus algorithm based
on convex optimization problems in Yu et al. (2022), optimizing
computational resources and improving VPP dispatch efficiency.
Xu et al. (2019) proposed a two-layer distributed coordinated
control method for managing VPPs in an active distribution power
grid, with the first layer dispatching the total output power of
multiple VPPs and the second layer handling the output power of
each intelligent agent within the VPPs. Despite these advancements,

challenges persist: 1) one notable issue is real-time adjustment of
pheromone concentration andheuristic functions.With the increase
in the number of iterations, the adaptability of traditional ant colony
algorithms diminishes, leading to slow convergence speeds when
addressing the energy dispatch problem of multi-energy-flow VPPs.
2) There is a delay in the transmission of state information among
neighboring substations, causing traditional consensus algorithms
to be unable to promptly and accurately obtain state information
from neighboring substations. This affects the convergence speed
of the consensus iteration, increases the fluctuation of multi-
energy flow within the VPP, and leads to high dispatch costs and
distribution grid losses in the energy dispatch for multi-energy
flow VPPs.

In response to the aforementioned issues, we propose a
two-layer iterative energy dispatch strategy for a multi-energy
flow VPP in the distribution power grid. First, we establish
an energy dispatch framework for a multi-energy flow VPP
in the distribution power grid. Second, we decompose the
energy dispatch optimization problem of a multi-energy flow
VPP into an upper-layer multi-energy flow VPP energy dispatch
sub-problem and a lower-layer distributed substation energy
dispatch sub-problem. The upper-layer optimization is designed
to minimize distribution grid loss and compensatory electricity
price cost, adhering to the constraints of VPP output and power
flow balance. Moreover, the lower-layer optimization focuses on
minimizing dispatch costs within the constraints of the natural
gas pipeline network, thermal network, and inequality. Finally,
we propose a two-layer iterative energy dispatch algorithm that
incorporates an improved ant colony algorithm and a delay-aware
consensus algorithm. This approach reduces the dispatch costs and
distribution grid losses of multi-energy flow VPP energy dispatch,
enhancing the real-time performance of the energy dispatch
process.

The innovation points are given as follows:
A two-layer iterative energy dispatch strategy for a multi-

energy flow VPP: the transmission of substation dispatch power
occurs from the upper layer to the lower layer, while the lower
layer transmits load dispatch ability information to the upper
layer. This process enables the realization of a two-layer optimal
dispatch method for the multi-energy flow VPP. This strategy
achieves coordinated dispatch of electricity, gas, and heat flows,
addressing the challenges posed by complex energy and information
exchange relationships and conflicting interests among different
entities. The two-layer energy dispatch strategy for multi-energy
flow in the distribution power grid couples the electric–gas energy
sources through gas turbines at the upper layer and couples the
electric–thermal energy sources through electric boilers at the upper
layer, achieving the complementarity of multi-energy flow. At the
lower layer, the two-layer energy dispatch of multi-energy flow
only optimizes the output of electric power energy. It improves the
flexibility of the VPP, effectively alleviates the fluctuation of the
multi-energy flow system, reduces the loss of the distribution power
grid, and achieves the coordination and balance of themulti-energy-
flow VPP internally.

Multi-energy flow VPP energy dispatch based on the improved
ant colony algorithm: in light of real-time operational cost
deviations, this paper adjusts the computation of pheromone
concentration and heuristic functions dynamically to consider
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FIGURE 1
Two-layer iterative energy dispatch framework for a multi-energy flow VPP in the distribution power grid.

the evolving conditions. This adjustment enhances the algorithm’s
adaptability, improves convergence speed, and ensures the
real-time performance of multi-energy flow VPP energy
dispatch.

Distributed substation energy dispatch based on the
delay-aware consensus algorithm: considering the impact of
communication delays on consensus convergence.The introduction
of a proportional–derivative (PD) controller enables a rapid
response to changes in the state information of each substation.
Additionally, a time-dependent feedback term is incorporated
into the PD controller to adjust dispatch signal updates,
improving convergence speed, suppressing fluctuations in multi-
energy-flow within the VPP, and reducing the dispatch costs
and distribution grid losses of multi-energy flow VPP energy
dispatch.

2 System model

Figure 1 shows the energy dispatch framework for a multi-
energy flow VPP in the distribution power grid, which consists of
a cloud layer, an edge layer, and a device layer. The cloud layer
is composed of a regional multi-energy-flow dispatch center, a
grid dispatch center, and a power trading center. The edge layer
is composed of multiple VPPs, where each VPP is responsible for
communicating and interacting with various substations within
its jurisdiction. It undertakes substation dispatch, monitoring, and
other edge analytics functions.The set of VPPs is represented asK =
{1,2,…,k,…,K}. The device layer consists of multiple substations,
and the k-th VPP has Nk substations. Each substation includes a
distributed power generator, energy storage, interruptible load, a gas
turbine, and an electric heating boiler.

TheVPPs are connected to the distribution power grid, and there
is a coupling relationship between them.The set of distribution grid
nodes is denoted as I = {1,2,…, i,…, I}. In the natural gas network,
there are natural gas nodes supplied by gas sources, and gas turbines
can achieve gas-to-electricity conversion. Therefore, there is a node
coupling relationship between the distribution power grid and the
natural gas network. The set of nodes in the natural gas network
is denoted as Z = {1,2,…,z,…,Z}, and the set of gas sources is
denoted as O = {1,2,…,o,…,O}. The thermal network consists of
thermal load nodes and electric heating boilers. Electric heating
boilers are responsible for providing heat, which achieve electricity-
to-heat conversion to supply the thermal load. Therefore, a node
coupling relationship exists between the distribution power grid and
the thermal network. The set of thermal load nodes is denoted as
M = {1,2,…,m,…,M}.

We use a time-slotted model in which the overall optimization
period is segmented into T time slots, each with an equal duration of
τ. The set of time slots is denoted as T = {1,…, t,…,T}. In the cloud
layer, the integrated regional energy dispatch center collaborates
with the grid dispatch center and the power trading center. It
receives the information on real-time power grid status from the
grid dispatch center, that on real-time market price from the power
trading center, and that of load dispatch capacity from the edge layer.
Subsequently, the integrated regional energy dispatch center engages
in optimization tominimize compensatory electricity price cost and
distribution power grid loss, determining optimal power dispatch
values for each VPP. The resulting VPP energy dispatch strategies
are then disseminated to the edge layer. In the edge layer, VPPs
dispatch power to the substation groups within their jurisdiction. At
the device layer, the substations optimize the dispatch cost of their
internal resources and dispatch power to their internal resources
accordingly. The summary of the main notations in this paper is
shown in Table 1.
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TABLE 1 Nomenclature.

Variables

CDG
k,l (t) Dispatch cost of the distributed generator

CSTO
k,l (t) Dispatch cost of energy storage

CIL
k,l(t) Dispatch cost of interruptible load

Cgas
k,l (t) Dispatch cost of the gas turbine

Cheat
k,l (t) Dispatch cost of the electric heating boiler

Closs(t) Distribution power grid loss

Cep(t) Compensatory electricity price cost

Pk,l(t) Dispatch power of the substation

PDGk,l (t) Dispatch power of the distributed generator

PSTOk,l (t) Dispatch power of energy storage

PILk,l(t) Dispatch power of interruptible load

Pgask,l (t) Dispatch power of the gas turbine

Pheatk,l (t) Dispatch power of the electric heating boiler

fk,lz (t) Natural gas consumption of the gas turbine

om(t) Water flow rate passing through the thermal load node

Tin
m(t) Supply water temperature

Tout
m (t) Return water temperature

fzz′(t) Natural gas flow between nodes z and z′ in the natural
gas network

foz(t) Natural gas supply flow from gas source o connected to
node z

μk,l(t) Cost increment rate

Parameters

pay,y′ State transfer probability

ρ Pheromone concentration dilution coefficient

αDG, βDG, and γDG Quadratic, linear, and constant cost coefficients of the
distributed generator

ηSTO Coefficient of the energy storage dispatch cost

ωIL Coefficient of the interruptible load dispatch cost

πgrid Efficiency of electricity generation of the gas turbine

θgas Thermal efficiency of natural gas combustion

ωgas Coefficient of the gas turbine dispatch cost

ωheat Coefficient of the electric heating boiler dispatch cost

qR Specific heat capacity of hot water

(Continued on the following page)

TABLE 1 (Continued) Nomenclature.

Variables

Pmin
k,l Lower bound of substation dispatch power

Pmax
k,l Upper bound of substation dispatch power

2.1 Multi-energy-flow VPP model

2.1.1 Distributed generator model
The dispatch cost of the distributed generator CDG

k,l (t) is given by
Eq. 1.

CDG
k,l (t) = α

DG[PDGk,l (t)]
2 + βDGPDGk,l (t) + γ

DG, (1)

where PDGk,l (t) represents the distributed generator dispatch power of
substation l in VPP k during the t-th time slot. αDG, βDG, and γDG are
the quadratic, linear, and constant cost coefficients of the distributed
generator, respectively.

2.1.2 Energy storage model
The dispatch cost of energy storage CSTO

k,l (t) is given by Eq. 2.

CSTO
k,l (t) = η

STO[PSTOk,l (t)]
2, (2)

where PSTOk,l (t) represents the energy storage dispatch power of
substation l in VPP k during the t-th time slot. PSTOk,l (t) ≥ 0 represents
that the energy storage is in the discharging mode. PSTOk,l (t) < 0
represents that the energy storage is in the charging mode. ηSTO is
the coefficient of the energy storage dispatch cost.

The capacity of energy storage QSTO
k,l (t+ 1) is given by Eq. 3.

QSTO
k,l (t+ 1) =max{min{QSTO

k,l (t) + P
STO
k,l (t)τ,0} ,Q

STO
max} , (3)

where QSTO
max represents the maximum capacity of energy storage.

2.1.3 Interruptible load model
There is a clear distinction drawn between controllable and

uncontrollable loads in the distribution power grid. Uncontrolled
loads are loads that cannot participate in the demand response of the
distribution power grid (Liang et al., 2021). In contrast, controllable
loads refer to the loads that can participate in the demand response
of the distribution power grid. The interruptible load proposed in
this paper is one of the controllable loads. The dispatch cost of the
interruptible load CIL

k,l(t) is given by Eq. 4.

CIL
k,l (t) = ω

ILPILk,l (t) , (4)

where PILk,l(t) represents the interruptible load dispatch power of
substation l in VPP k during the t-th time slot. ωIL is the coefficient
of the interruptible load dispatch cost.

2.1.4 Gas turbine model
The dispatch power of the gas turbine Pgask,l (t) is given by Eq. 5.

Pgask,l (t) = πgrid f
k,l
z (t)θgas, (5)

where πgrid represents the efficiency of electricity generation by the
gas turbine. f k,lz (t) represents the natural gas consumption of the gas
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turbine in substation l at the connection point to natural gas node z
during the t-th time slot. θgas is the thermal efficiency of natural gas
combustion.

The dispatch cost of gas turbine Cgas
k,l (t) is given by Eq. 6.

Cgas
k,l (t) = ω

gasPgask,l (t) , (6)

whereωgas represents the coefficient of the gas turbine dispatch cost.
The gas turbine is linked to the natural gas network, and the

model for the gas network is formulated as follows. It is assumed that
natural gas flows in the pipeline at a constant temperature and stable
flow, and friction coefficients within the pipeline are neglected, i.e.,
kinetic energy changes during the flow process are ignored.

The balance relationship between natural gas flow refers to the
node air flow balance of the natural gas pipeline network, i.e., the
natural gas flow injected by the node is equal to the sum of the
flow consumed by the node and the gas flowing to the next node
(Dai et al., 2018), which is given by Eq. 7.

∑
z′∈Z

fzz′ (t) + f
k,l
z (t) = ∑

w∈W
f oz (t) , (7)

where fzz′(t) represents the natural gas flow between nodes z and z′
in the natural gas pipeline network. f oz (t) represents the natural gas
supply flow from gas source o connected to node z.

The natural gas flow fzz′(t) between natural gas nodes z and z′ is
given by Eq. 8.

fzz′ (t) = Kzz′Dzz′√Dzz′ [p
2
z (t) − p2z′ (t)], (8)

where Kzz′ is the pipeline constant. Dzz′ represents the gas flow
direction between nodes z and z′, withDzz′ = 1 when gas flows from
z to z′, and Dzz′ = −1 otherwise. pz(t) and pz′(t) represent the gas
pressure at nodes z and z′, respectively.

2.1.5 Electric heating boiler model
As a controllable thermal load, the dispatch cost of electric

heating boiler Cheat
k,l (t) is given by Eq. 9.

Cheat
k,l (t) = ω

heatPheatk,l (t) , (9)

where ωheat represents the coefficient of the electric heating boiler
dispatch cost. Pheatk,l (t) represents the dispatch power of the electric
heating boiler in substation l during the t-th time slot.

The electric heating boiler is directly connected to the thermal
load node m, and the electric heating boiler is connected to the
distribution power grid through substation l within VPP k. The
interactive power is given byPheatk,l (t) = P

heat
m (t).P

heat
m (t) represents the

dispatch power of thermal load nodem.
In a certain range of ambient temperature difference,

considering that the heating medium in the thermal network is
hot water, minor flow rate changes due to temperature differences in
the supply and return pipes are neglected (Zhang et al., 2023b). In
this study, it is assumed that the temperature of water in the return
pipes is known, and, therefore, the temperature T in

m (t) of water in
the supply pipes is given by Eq. 10.

T in
m (t) =

ζheatPheatm (t)
qRom (t)

× 103 +T out
m (t) , (10)

where ζheat represents the heat production efficiency of the electric
heating boiler. qR is the specific heat capacity of hot water. om(t) is
the water flow rate passing through thermal load nodem during the
t-th time slot. T in

m (t) and T out
m (t) are the temperature of water in the

supply and return pipes at thermal load node m, respectively. The
constraint for supply water temperature is given by Eq. 11.

Tin,min
m ≤ Tin

m (t) ≤ T
in,max
m , (11)

where Tin,min
m and Tin,max

m represent the minimum and maximum
supply water temperatures at thermal load nodem, respectively.

2.1.6 Substation model
In order to facilitate resource management, the internal

resources of the VPP are divided into multiple substations. We
assume that in VPP k, substation l contains the aforementioned five
types of resources. The dispatch power of substation Pk,l(t) is given
by Eq. 12.

Pk,l (t) = P
DG
k,l (t) + P

STO
k,l (t) + P

IL
k,l (t) + P

l,r
heat (t) + P

l,h
gas (t) . (12)

The dispatch power constraint for substation l in VPP k is given
by Eq. 13.

Pmin
k,l ⩽ Pk,l (t) ⩽ P

max
k,l , (13)

where Pmin
k,l and Pmax

k,l represent the lower and upper bounds of
substation dispatch power, respectively.

2.2 Distribution power grid loss model

The distribution power grid loss Closs(t) is given by Eq. 14.

Closs (t) =
I

∑
i=1
∑
j∈v(i)

γlossRij (t)
P2ij (t) +Q

2
ij (t)

Ai (t)
, (14)

where γloss represents the unit grid loss cost. Rij(t) is the resistance
value between the distribution power grid node i and node j during
the t-th slot. v(i) represents the set of end nodes of branches in the
power grid that have node i as the starting node. P2ij(t) and Q

2
ij(t) are

the active and reactive power flowing from the upstreamdistribution
power grid node i to node j during the t-th slot, respectively. Ai(t)
is the voltage magnitude at the distribution power grid node i. The
power flow equation of the distribution power grid is given by Eq.
15.

{
{
{

∑
i∈u(j)

Pij (t) −RijBij (t) − Pj (t) = ∑s∈v(j)
Pjs (t) ,

∑
i∈u(j)

Qij (t) −XijBij (t) −Qj (t) = ∑s∈v(j)
Qjs (t) ,

(15)

where u(j) represents the set of starting nodes in the distribution
power grid with node j as the tail node. v(j) represents the set of
end nodes of branches in the power grid with node j as the starting
node. Rij and Xij are the resistance and reactance of the line between
the distribution power grid node i and node j, respectively. Pj(t) is
the net active power at node j. Pjs(t) is the load active power flowing

from upstream node j to node s. Bij(t) =
√P2ij(t)+Q

2
ij(t)

Ai(t)
represents the

current between node i and node j in the line.Qj(t) is the net reactive
power at node j. Qjs(t) is the load reactive power flowing from the
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upstream node j to node s. The net active power and net reactive
power constraints of node j are given by Eq. 16.

{
{
{

Pmin
j (t) ≤ Pj (t) ≤ P

max
j (t) ,

Qmin
j (t) ≤ Qj (t) ≤ Q

max
j (t) ,

(16)

where Pmin
j (t) and Pmax

j (t) represent the lower and upper active
power output bounds at node j, respectively. Qmin

j (t) and Qmax
j (t)

represent the lower and upper reactive power output bounds,
respectively. The voltage relationship at node j is given by Eq. 17.

V2
j = V

2
i − 2(RijPij (t) +XijQij (t)) + (R2

ij +X
2
ij)L

2
ij (t) , (17)

where Vi and Vj represent the voltage at node i and node j,
respectively. The voltage constraint of node i is given by Eq. 18.

Vmin
i ⩽ Vi ⩽ V

max
i , (18)

where Vmin
i and Vmax

i are the lower and upper voltage bounds for
node i, respectively.

3 Problem formulation of two-layer
iterative energy dispatch

The two-layer iterative energy dispatch problem for a multi-
energy flow VPP in the distribution power grid can be decomposed
into two optimization sub-problems: the upper-layer multi-energy
flow VPP energy dispatch sub-problem and the lower-layer
distributed substation energy dispatch sub-problem.

3.1 Upper-layer multi-energy flow VPP
energy dispatch sub-problem

During the real-time operational phase, the regional multi-
energy-flow dispatch center takes on the task of global optimization
and dispatch (Liao et al., 2023). The upper layer multi-energy flow
VPP energy dispatch sub-problem is optimized to minimize the
distribution power grid loss and the compensatory electricity price
cost, and the dispatch power Pk(t) of each VPP participating in
the demand response is the optimization variable. The specific
formulation of the upper-layer multi-energy flow VPP energy
dispatch sub-problem is given by Eq. 19.

P1: min
{Pk(t)∈K}

Ctotal (t) = Cep (t) +Closs (t)

= ∑
k∈K

αk (t)Pk (t)

+
I

∑
i=1
∑
j∈v(i)

γlossRij (t)
P2ij (t) +Q

2
ij (t)

Ai (t)
,

s. t. C1: (13) ,

C2: (15) ∼ (18) , (19)

where Ctotal(t) represents the distribution power grid dispatch
cost, Cep(t) represents the compensatory electricity price cost, αk(t)
represents the compensatory electricity price, Pk(t) represents the
amount of purchased electricity of VPP k during the t-th time

slot, Closs(t) stands for the distribution power grid loss cost, C1
represents the constraints on the upper and lower bounds of
substation dispatch power, and C2 represents the constraints on
distribution power flow.

3.2 Lower-layer distributed substation
energy dispatch sub-problem

The regional multi-energy-flow dispatch center sends the
optimized dispatch power values to the substations within VPPs.
Within each substation, the dispatch power of the distributed
generator, energy storage, interruptible load, gas turbine, and electric
heating boiler is optimized and adjusted based on the dispatch
power values. The substation energy dispatch sub-problem aims
to minimize the dispatch cost of the above resources, with the
dispatch power of each resource as the optimization variable. Taking
the substation l within VPP k as an example, the specific problem
description is given by Eq. 20.

P2: min
{Pk,l(t)∈Nk}

Ck (t) = ∑
l∈Nk

Ck,l (t) = ∑
l∈Nk

CDG
k,l (t)

+CSTO
k,l (t) +C

IL
k,l (t) +C

heat
k,l (t) +C

gas
k,l (t) ,

s. t.C1: (7) ∼ (8) ,

C2: (10) ∼ (11) ,

C3:P
DG,MIN
k,l ≤ PDGk,l (t) ≤ P

DG,MAX
k,l , l ∈ Nk,

C4:P
STO,MIN
k,l ≤ PSTOk,l (t) ≤ P

STO,MAX
k,l , l ∈ Nk,

C5:P
IL,MIN
k,l ≤ P

IL
k,l (t) ≤ P

IL,MAX
k,l , l ∈ Nk,

C6:P
gas,MIN
k,l ≤ Pgask,l (t) ≤ P

gas,MAX
k,l , l ∈ Nk,

C7:P
heat,MIN
k,l ≤ Pheatk,l (t) ≤ P

heat,MAX
k,l , l ∈ Nk,

C8:Pk (t) = ∑
l∈Nk

Pk,l (t) , (20)

where Ck,l(t) represents the dispatch cost of substation l in VPP
k during the t-th time slot. C1 and C6 represent the constraints
related to the natural gas network and gas turbine dispatch power,
respectively. Pgas,MIN

k,l and Pgas,MAX
k,l are the minimum and maximum

dispatch power of the gas turbine in substation l within VPP
k, respectively. C2 and C7 represent the constraints related to
the thermal network and electric heat boiler dispatch power,
respectively.Pheat,MIN

k,l andPheat,MAX
k,l are theminimumandmaximum

dispatch power of the electric heat boiler in substation l within
VPP k, respectively. C3 represents the constraints on the dispatch
power of distributed energy source. PDG,MIN

k,l and PDG,MAX
k,l are the

minimum and maximum dispatch power of the distributed energy
source in substation l within VPP k, respectively. C4 represents
the constraints on the dispatch power of energy storage systems.
PSTO,MIN
k,l and PSTO,MAX

k,l are the minimum and maximum dispatch
power of the energy storage system in substation l within VPP k,
respectively. C5 represents the constraints on the dispatch power
of interruptible loads. PIL,MIN

k,l and PIL,MAX
k,l are the minimum and

maximum dispatch power of the interruptible load in substation
l within VPP k, respectively. C8 represents the constraint on the
total dispatch power of all substations within VPP k during the t-th
time slot.
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FIGURE 2
The proposed algorithm principle.

4 Two-layer iterative energy
dispatch for a multi-energy flow VPP
based on the improved ant colony
algorithm and the delay-aware
consensus algorithm

Theprinciple of the proposed algorithm is illustrated in Figure 2.
The two-layer iterative energy dispatch strategy incorporates an
improved ant colony algorithm in the upper layer and a delay-
aware consensus algorithm in the lower layer. First, a combined
pheromone update strategy and improved pheromone factor and
heuristic factor were adopted to improve the ant colony algorithm
for solving the sub-problem of multi-energy flow VPP energy
dispatch. This involves adjusting the dispatch power of each
VPP according to diverse service requirements. The calculated
dispatch power was distributed to each substation for lower-layer
optimization. Second, communication interaction was carried out
among the substations, with the micro-increment rate of substation
dispatch cost serving as the consensus variable for the consensus
iteration. To solve the substation energy dispatch sub-problem,
the PD controller was introduced into the traditional consensus
algorithm. Information exchange occurs between the two layers: the
upper layer issues dispatch power to the lower layer for substation
scheduling, and the lower layer uploads information on the load
dispatch capability.

4.1 Upper-layer multi-energy flow VPP
energy dispatch based on the improved ant
colony algorithm

The ant colony algorithm falls within the category of heuristic
global optimization algorithms, transforming the optimization

problem into an ant path problem. However, in traditional ant
colony algorithms, the range in variation between pheromone
concentration and heuristic function is fixed. As the number
of iterations increases, the pheromone concentration gradually
increases, and the heuristic function value gradually decreases. This
lack of adaptability with the increasing number of iterations results
in slow convergence speed when solving the upper-layer multi-
energy flow VPP energy dispatch sub-problem, leading to sub-
optimal energy dispatch strategies. To address this limitation, this
paper introduces real-time operational cost deviation considerations
in the computation of pheromone and heuristic factors. This allows
for adaptive changes in pheromone concentration and heuristic
function based on real-time cost deviations. Such an adaptation
accelerates the convergence speed, ensuring the real-time nature
of energy dispatch. The specific implementation procedures are
summarized in Algorithm 1.

During the state updating process, it is essential to ensure
that the control strategies associated with each position meet
various constraint conditions for upper-level multi-energy real-
time dispatch. Therefore, this paper initially compares the dispatch
strategies associated with each position with various constraint
conditions to construct a tabu list, thereby confirming that certain
positions cannot be reached. This ensures that the optimization
results obtained during the algorithm’s iteration process satisfy all
constraint conditions.

The state transfer probabilities are given by Eq. 21.

pay,y′ =
[Φy,y′ (t)]

Γ[ιy,y′ (t)]
ϱ

∑
y,y′∈Ya
[Φy,y′ (t)]

Γ[ιy,y′ (t)]
ϱ
, (21)

where pay,y′ is the probability of the a-th ant transferring from
position y to position y′. Ya is the tabu list of the a-th ant, which
represents the set of the next allowed positions. Φy,y′(t) is the
pheromone concentration along the path from position y to position
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1: Initialize maximum iteration hmax, pheromone

factor Γ, and heuristic factor ϱ.

2: For h = 1 to hmax do

3: Randomly initialize ant positions.

4:  For a = 1 to S do

5:   Determine the next optional transfer position

according to the tabu list and calculate the

state transfer probabilities based on (21).

6:   Choose the next position using the roulette

wheel method based on the state transfer

probabilities.

7:   If the selected transfer position does not

satisfy constraints (13) and (15)∼(18) do

8:    Marks the current position from the tabu

list as not optional.

9:    The a-th ant returns to the previous

position and selects a new transfer

position again.

10:   Else

11:    Update the local pheromone concentration

according to (25).

12:   End if

13:  End for

14:  Update the global pheromone concentration

according to (23).

15: End for

Algorithm 1. Upper-layer energy dispatch for a multi-energy flow VPP
based on the improved ant colony algorithm.

y′ during the t-th time slot. ιy,y′(t) is the heuristic function, which
is the reciprocal of the Euclidean distance between position y and
position y′. Γ and ϱ denote the pheromone factor and the heuristic
factor, respectively.

To enhance the convergence speed of the algorithm, this paper
proposes the following improvements to the pheromone factor and
heuristic factor (Eq. 22):

{
{
{

Γ = Γ+ΔCtotal (t− 1) −ΔCtotal (t) ,

ϱ = ϱ+ΔCtotal (t) −ΔCtotal (t− 1) ,
(22)

where ΔCtotal(t) represents the deviation of the real-time operational
cost between the t-th time slot and the (t− 1)-th time slot and
ΔCtotal(t− 1) represents the deviation of the real-time operational
cost between the (t− 1)-th time slot and the(t− 2)-th time slot.

To attain comprehensive performance optimization, this paper
proposes a combined strategy involving both local and global
adjustments for pheromone concentration. This strategy aims
to avoid getting stuck in local optima while increasing the
selection probability for better paths as much as possible, in
order to accurately and quickly find the global optimum. In
each iteration of the improved ant colony algorithm, every ant
selects the next position based on a state transfer probability
formula, thereby generating a complete path. With an increasing
number of iterations, the concentration of pheromones on each
path undergoes continuous changes. After all ants have completed

their journeys within a single iteration cycle, the adjustment of the
pheromone concentration Φy,y′(t) is updated.The updating strategy
for pheromone concentration in the ant colony algorithm is given by
Eq. 23.

Φy,y′ (t+ 1) = ρ×Φy,y′ (t) +
S

∑
s=1

ΔΦs
y,y′ (t) , (23)

where s represents the number of ants, and there are a total of S
ants. ρ represents the improved pheromone concentration dilution
coefficient. ΔΦs

y,y′(t) represents the pheromone concentration
adjustment coefficient.

In traditional ant colony algorithms, the pheromone
concentration dilution coefficient is typically given and relies heavily
on historical experience, without the ability to be updated based
on real-time conditions. In this paper, the formula for improved
pheromone concentration dilution coefficient is introduced by
incorporating a negative exponential function that accounts for
real-time deviations in operational costs. The improved pheromone
concentration dilution coefficient is given by Eq. 24.

ρ = eux+γΔCtotal(t),u < 0 (24)

where x represents the number of iterations and u represents
the influence coefficient of x on ρ. As the number of iterations
x increases, the pheromone concentration dilution coefficient ρ
decreases to retain a certain degree of prior experience, facilitating
global search. The parameter γ serves as the cost weight used
to standardize magnitudes. A larger real-time operational cost
deviation, indicating a greater distance from the optimal solution,
results in a reduction of the pheromone concentration on that
path, effectively increasing the pheromone concentration dilution
coefficient. In this scenario, ants are more inclined to explore.
Conversely, when the real-time operational cost deviation is smaller,
indicating proximity to the optimal solution, the pheromone
concentration on that path is strengthened by reducing the
pheromone concentration dilution coefficient. In such cases, ants are
more inclined to exploit the path.

By improving the adaptive selection function in the ant colony
algorithm, the pheromone concentration adjustment coefficient is
given by Eq. 25.

ΔΦs
y,y′ (t) =

G
Ctotal (t)

, (25)

where G represents the concentration adjustment constant and
Ctotal(t) represents the distribution power grid dispatch cost during
t-th time slot.

4.2 Lower-layer substation energy dispatch
based on the delay-aware consensus
algorithm

In the context of processing self-generated information within
a substation and receiving data from neighboring substations,
traditional consensus algorithms disregard the influence of
communication delay on consensus convergence. In scenarios
requiring time-sensitive demand–response services, the sluggish
convergence rate of traditional algorithms proves inadequate for
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1: Initialize Pk,l(t) in VPP k.

2: While (30) is not satisfied do

3:  Calculate μk,l(t) according to (26), (27).

4:  Update μk,l(t) according to (28).

5:  Calculate Pk,l(t) according to (31).

6: End while

Algorithm 2. Lower-layer power optimization for substations based on the
delay-aware consensus algorithm.

meeting service demands (Zhou et al., 2022). This paper proposes
an enhancement by integrating a proportional–derivative (PD)
controller to address the issue of sluggish convergence attributable
to communication delay. First, this improvement incorporates the
communication delay factor into the algorithm, thereby aligning
it more effectively with the requirements of delay-aware service
scenarios. Second, the introduction of the PD controller enables the
system to respond promptly to changes in substation information,
thereby improving both convergence speed and system stability.The
fundamental principle of this enhancement involves introducing
a time-dependent feedback term into the PD controller to adjust
dispatch signal updates for various resource power strategies within
each substation.This facilitates the PD controller’s swift and effective
response to changes in substation information, mitigating the
impact of communication delay on system convergence.The specific
implementation procedures are outlined in Algorithm 2.

In the algorithm, each substation only acquires the status
information of its neighbors at the triggering moment and relies
solely on its own status and the status of its neighbors at the
triggering moment to update the cost increment rate. There is
no need to use real-time status information from neighbors
nor is there a need for any global information about the
communication topology.The designed dispatch strategy effectively
avoids continuous communication. Based on the objective of
minimizing dispatch costs of each VPP, the delay-aware consensus
algorithm is used to solve the lower-layer distributed substation
energy dispatch sub-problem, which is defined in Eq. 20. The
substation’s dispatch cost increment rate is defined as the derivative
of the dispatch cost with respect to dispatch power over unit time,
which is given by Eq. 26.

μk,l (t) =
∂Ck,l (t)
∂Pk,l (t)
, (26)

where μk,l(t) represents the cost increment rate for substation l
within VPP k during the t-th time slot.

The cost increment rate for substation l is obtained from (1)–(4),
(6), and (9), which is given by Eq. 27.

{{{{
{{{{
{

μk,l (t) = 2Pk,l (t)X+Y,

X = αDG + ηSTO,

Y = βDG +ωIL +ωgas +ωheat.

(27)

To accelerate the convergence rate of the consensus algorithm
and ensure standardized convergence rates across different
substations, the design of the PD controller incorporates
considerations for the inter-substation communication delay and

the VPP consensus delay. A delay-dependent feedback term is
introduced to adapt the cost increment rate update strategy for each
substation. The consensus iteration formula post PD correction is
given by Eq. 28.

{{{{{
{{{{{
{

μd+1k,l (t) = μ
d
k,l (t) +

Nk

∑
̂l=1

ak,l ̂l [μ
d
k, ̂l
(t− τk,l ̂l)

−μdk,l (t) + ηk,l ̂lμ
d
k,l (t)] ,

ηk,l ̂l = βτk,l ̂l,

(28)

where d is the number of consensus iterations. τk,l ̂l is the
transmission time between substation l and substation ̂l within VPP
k. ak,l ̂l represents the element in the adjacency matrix Ak indicating
the connectivity between substation l and substation ̂l within VPP
k. Specifically, ak,l ̂l = 1 signifies that substation l is connected to
substation ̂l within VPP k; otherwise, they are not connected. ηk,l ̂l
is the PD feedback strength parameter.

If the optimal allocation of dispatch power is achieved among
the substations, meaning that the dispatch cost increment rates for
all substations tend to be consistent, there exists Eq. 29.

μk,1(t) =… = μk,l (t) . (29)

The termination criteria for the iteration are given by Eq. 30.

{{{{{{{{
{{{{{{{{
{

|ΔPk (t) | < σk,

ΔPk (t) = Pk (t) −∑l∈Nk
grid
Pk,l (t) ,

|Δμk,l (t) | <Ωk,

Δμk,l (t) =max{l∈Nk}μk,l (t) −min{l∈Nk}μk,l (t) ,

(30)

where ΔPk(t) and Δμk,l(t) are used as the convergence criteria during
the computation process of the delay-aware consensus algorithm,
with σk and Ωk representing convergence errors within VPP k.

In the proposed consensus algorithm, consideration is given
to the communication delay between substations, realizing
communication delay awareness. However, due to the introduction
of communication delay, the convergence speed of the consensus
algorithm is slowed down. Therefore, the algorithm introduces PD
control. The PD feedback strength parameter ηk,l ̂l can be adjusted
according to specific system requirements for β, thereby achieving
modulation of the system’s sensitivity to delay. By modifying β
to accommodate communication delays for each substation, it
addresses the challenge of inconsistent convergence speeds among
different substations due to varying communication delays, thereby
expediting consensus convergence.

4.3 Algorithm implementation process

We use the delay-aware consensus algorithm to achieve energy
dispatch of multi-energy flow VPPs. The initial values for iteration,
i.e., the cost increment rate, are calculated by Eq. 27 and the initial
power values for each resource are determined. As the algorithm
continues to converge, the power values of each resource in the
current time slot gradually approach the optimal value, achieving
optimal real-time energy dispatching. Figure 3 shows the specific
implementation process:
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FIGURE 3
The implementation process of two-layer iterative energy dispatch for a multi-energy flow VPP based on the improved ant colony algorithm and the
delay-aware consensus algorithm.

FIGURE 4
VPP topological relationships based on the modified IEEE 33-node distribution grid system.
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TABLE 2 Simulation parameters.

Parameter Value Parameter Value

τk,l ̂l U(10,20)msa αDG 0.5$/kW2

Γ 1 βDG 0.2$/kW

ϱ 7 γDG 0.1$

γ 0.01 ωIL 0.8$/kW

βPD 1 ωgas 0.6$/kW

S 50 θgas 3.5 ×104 kJ/m3

σ 0.1 kW γloss 0.8$/kW

Ω 0.002$/kW ωheat 0.4$/kW

ηSTO 0.5$/kW2 ζgrid 0.35

hmax 30

aU(10,20)ms indicates that the value of the simulation parameter τk,l ̂l obeys a uniform
distribution from 20 ms to 30 ms.

Upper-layer multi-energy-flow VPP energy dispatch based on
the improved ant colony algorithm.

Step 1: Initialize t = 1. Initialize the iteration count in the ant
colony algorithm and randomly assign ants to different dispatch
strategies, including Pk(t). Set the maximum iteration count as hmax.

Step 2: Calculate the transfer probabilities for all ants, determine
the probabilities of selecting different dispatch strategies, and choose
the next transfer using the roulette wheel method. Verify if the
next transfer satisfies all constraints. If it does, proceed to Step 3;
otherwise, mark this position in the tabu list, disallowing other
ants from transferring to this position. The ant then returns to the
previous position and selects a new next position.

Step 3: After an ant completes its current search, use Eq. 19
as the objective function to calculate Ctotal(t) and update the
local pheromone levels. Check if constraints (13) and (15∼18) are
satisfied. If it is satisfied, continue the implementation process;
otherwise, return to Step 2.

Step 4: After all ants have completed their searches for this round,
update the global pheromone levels. Check if constraints (13) and
(15∼18) are satisfied. If it is satisfied, continue the implementation
process; otherwise, return to Step 2.

Step 5: If h ⩽ hmax, set h = h+ 1 and return to Step 1; otherwise,
output the optimal result. The regional multi-energy-flow dispatch
center allocates optimal dispatch power to each VPP.

Step 6: The total dispatch power of each substation cluster is
obtained from the VPP after global optimization calculation.

Lower-layer substation energy dispatch based on the delay-
aware consensus.

Step 7 : Each VPP allocates the total dispatch power to the
substations within its coverage area.

Step 8: Initialize the cost increment rate μk,l(t) based on Eqs (26)
and (27), initialize d = 1, and set μdk,l(t) = μk,l(t).

Step 9: Update the consensus variables for each substation
according to Eq. 28, and calculate the power dispatch value for each
substation in this state based on Eq. 31, which can be given by

Pk,l (t) =

{{{{{{{{
{{{{{{{{
{

Pmin
k,l ,

μk,l (t) −Y
2X
⩽ Pmin

k,l

μk,l (t) −Y
2X
,Pmin

k,l ⩽
μk,l (t) −Y

2X
⩽ Pmax

k,l

Pmax
k,l ,

μk,l (t) −Y
2X
⩾ Pmax

k,l

, (31)

where Pmax
k,l and Pmin

k,l correspond to the upper and lower bounds
of the output power of the corresponding resources within the
substation, respectively.

Step 10: Check if Eq. 30 and the constraints of optimization
problem P2 are satisfied. If they are not satisfied, continue to execute
Step 11. If they are satisfied, output the power dispatch value for the
substation, i.e., the dispatch power value of each internal resource,
and continue to execute Step 12.

Step 11: Based on the power obtained in Step 9, recalculate the
consensus variable. Set d = d+ 1, and return to Step 9.

Step 12: If t > T, the optimization process ends; otherwise, set
t = t+ 1 and return to Step 2.

4.4 Complexity and convergence analysis

4.4.1 Complexity analysis
The computational complexity of the proposed algorithm is

analyzed as follows. It consists of two parts, namely, the improved ant
colony algorithm and the delay-aware consensus algorithm, which
together make up the computational complexity.

The computational complexity of the improved ant colony
algorithm consists of six parts.The complexity of calculating transfer
probabilities is O(1). The complexity of assessing the constraint
conditions during transfers isO(5).The complexity of transferring to
the next step is O(v), where O(v) represents the number of required
successful transfers in a single step. The complexity of updating
local pheromone concentrations isO(1).The complexity of updating
global pheromone concentrations is O(S). The complexity of the
number of iteration calculations is O(hmax). Therefore, the total
computation complexity of the improved ant colony algorithm is
O(hmaxS(v+ 7)).

The computational complexity of the delay-aware consensus
algorithm consists of four parts. The complexity of iteration
termination judgment is O(Λ), where O(Λ) represents the number
of iterations required to satisfy the constraint andO(Λ) = f(σ,Ω). f(x)
represents the fuzzy correlation function. Λ is inversely proportional
to σ, so as to Ω. The complexity of calculating the cost increment
rate is O(2). The complexity of updating the cost increment rate is
O(1). The complexity of calculating the substation power is O(1).
Therefore, the total computation complexity of the delay-aware
consensus algorithm is O(4Λ).

Totally, the computation complexity of the proposed algorithm
is O(hmaxS(v+ 7) + 4Λ).

4.4.2 Convergence analysis
In the proposed delay-aware consensus algorithm, we introduce

the PD controller to accelerate convergence.The convergence of this
algorithm is related to the delay. When the delay is τ ⩾ τconmax, the
algorithm cannot reach convergence. The detailed derivation of the
convergence analysis and the introduction of τconmax can be found in
Chen and Zhao (2018).
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TABLE 3 Constraints of dispatch power in VPP 1.

Substation number PDG
k,l (t)(kW) PSTO

k,l (t)(kW) PIL
k,l(t)(kW) Pgas

k,l (t)(kW) Pheat
k,l (t)(kW)

1 [100, 300] [50, 120] — — [30, 150]

2 [90, 270] [20, 90] — [300, 1200] [60, 210]

3 — — [40, 90] — [40, 190]

TABLE 4 Constraints of dispatch power in VPP 2.

Substation number PDG
k,l (t)(kW) PSTO

k,l (t)(kW) PIL
k,l(t)(kW) Pgas

k,l (t)(kW) Pheat
k,l (t)(kW)

4 [150, 320] [55, 110] — — —

5 [210, 350] [70, 115] [20, 85] — —

TABLE 5 Constraints of dispatch power in VPP 3.

Substation number PDG
k,l (t)(kW) PSTO

k,l (t)(kW) PIL
k,l(t)(kW) Pgas

k,l (t)(kW) Pheat
k,l (t)(kW)

6 [100, 280] [40, 100] [40, 90] — —

7 [110, 300] [20, 130] — [100, 800] —

8 [80, 290] — [40, 80] — [50, 200]

5 Simulation result

To validate the effectiveness of the proposed algorithm, we use a
simulation model based on a modified IEEE 33-node distribution
grid system. Figure 4 illustrates the specific topological relations
of each VPP. There are three VPPs in the model, each containing
multiple substations. Each substation contains different quantities
of distributed generators, energy storage, interruptible loads, gas
turbines, and electric heating boilers.

We compare the proposed algorithm with three baselines, with
baseline 1 using the DDPG algorithm in the upper layer and
the traditional consensus algorithm in the lower layer, baseline
2 using the traditional ant colony algorithm in the upper layer
and the traditional consensus algorithm in the lower layer, and
baseline 3 using the particle swarm optimization algorithm in
the upper layer and the traditional consensus algorithm in the
lower layer. Compared with similar deep learning algorithms, the
DDPGalgorithmhas higher training efficiency (Zhang et al., 2023c).
Although the desired dispatching value is almost the same as
the theoretical optimal value, the real-time requirement of power
dispatching is ignored. Table 2 shows the simulation parameters
(Pasetti et al., 2018; Gough et al., 2022; Liang and Ma, 2022). The
power constraints of various resources in each substation are shown
in Tables 3–5.We simulate a 24-hour operation, optimizing dispatch
every hour, with a consensus iteration period of 0.1 s.

In Figure 5A, the distribution power grid loss versus time is
depicted for the mentioned algorithms. The figure reveals that
the proposed algorithm consistently produces lower losses in
comparison to the other three algorithms. Taking 4:00 as an
example, compared to baseline 1, baseline 2, and baseline 3, the

proposed algorithm reduces grid loss by 11.27%, 8.03%, and 3.96%,
respectively. The proposed algorithm can adjust the convergence
speed according to the delay, thereby reducing the dispatch delay
and leading to a decrease in distribution power grid loss.

Figure 5B shows the optimized dispatch process of the
mentioned algorithms at 16:00. At the beginning of the mentioned
algorithms, the total cost is rapidly decreasing. In the end, baseline
1 fluctuates within a certain range and can only achieve dynamic
convergence. Baseline 2, baseline 3, and the proposed algorithm
reach convergence after 88, 74, and 60 iterations, and their
total dispatch costs are $12,000, $9,700, and $7,000, respectively.
Compared with baseline 1, baseline 2, and baseline 3, the proposed
algorithm reduces the total dispatch cost by 94.38%, 71.42%, and
38.57%, respectively. The proposed algorithm exhibits the fastest
convergence speed due to the introduction of changing factors
in the ant colony algorithm and PD correction in the consensus
algorithm. The change factor and PD correction in the proposed
algorithm significantly accelerate the convergence speed.

Figure 6A shows the dispatch power of each substation within
VPP I at 16:00. At the beginning of the iteration, the power of
substation 1 and substation 3 increases rapidly and the power of
substation 2 decreases rapidly, and finally the resources of each
substation converge to a stable value. After the PD correction, the
convergence of the substations is significantly accelerated. Taking
substation 2 as an example, convergence was reached through
38 iterations in 3.8 s before PD correction, and convergence was
reached through 23 iterations in 2.3 s after PD correction.

Figure 6B shows the cost increment rate versus time for each
substation within VPP 1 at 16:00. The initial value of the cost
increment rate is different for each substation, with a higher initial
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FIGURE 5
Performance of the total dispatch cost and distribution power grid loss. (A) Distribution power grid losses. (B) Total dispatch costs.

value for substation 2 and lower initial values for substations 1 and
3. At the beginning of the iteration, the cost increment rate of each
substation area changes rapidly.The traditional consensus algorithm
reaches convergence for all substations after 55 iterations in 5.5 s.
The convergence speed is accelerated after the PD correction,
reaching convergence for 45 iterations in 4.5 s with a result of 21.42.

Figure 7A shows the simulation time to reach convergence
versus β when σ = 0.1 kW and Ω = 0.02$/kW. In the beginning,

increasing βwill strengthen PD correction.The algorithm converges
with larger fluctuations during each iteration, leading to a decrease
in convergence time.Theminimum time required for the simulation
to reach convergence is 276 ms. Continuously increasing the β will
lead to over-correction of PD, making it difficult for the algorithm
to converge due to continuous fluctuations, resulting in an extension
of convergence time. β has the shortest convergence time at a value
of 1.18.

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1361593
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2024.1361593

FIGURE 6
VPP internal optimization dispatch results. (A) Power distribution of
each substation within VPP 1. (B) Cost increment rate of each
substation in VPP 1.

Figure 7B shows the simulation time to reach convergence
versus σ and Ω when β = 1. To achieve convergence, two constraints
need to be satisfied simultaneously, so a small value for either
constraint will result in an extremely long convergence time. The
convergence time will only decrease when both σ and Ω are
large. When both parameter settings are large, the simulation time
required to achieve convergence is 276 ms.

Figure 7C shows the dispatch cost of the proposed algorithm
and traditional consensus algorithm at the lower layer under
different communication delays. When the communication delay
is low, the dispatch cost difference between the two algorithms is
not significant. When the delay is large, the proposed algorithm
has lower dispatch costs compared to the traditional consensus
algorithm. This is because the proposed algorithm introduces PD
correction, which can adjust the convergence speed according to
the communication delay. In the case of high communication delay,
the convergence speed of the proposed algorithm is faster, so the
dispatch cost is lower.

FIGURE 7
Simulation time to reach convergence versus various algorithm
parameters. (A) Simulation time to reach convergence versus β when σ
= 0.1 kW and Ω = 0.02k$/kW. (B) Simulation time to reach
convergence versus σ and Ω when β = 1. (C) The dispatch cost of the
lower layer under different communication delays.

Figure 8 shows the dispatch power of each substation in
different VPPs. It can be observed that the power fluctuation
of each substation is not large in the time range of 0–24 h. In
VPP1, the power of substations 1, 2, and 3 fluctuates around 130,
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FIGURE 8
Dispatch power in each VPP under the proposed algorithm. (A) VPP 1.
(B) VPP 2. (C) VPP 3.

280, and 190, respectively. In VPP2, the power of substations 4
and 5 fluctuates around 80 and 170, respectively. In VPP3, the
power of substations 6, 7, and 8 fluctuates around 230, 170, and
230, respectively.

6 Conclusion

This paper proposes a novel two-layer iterative energy dispatch
strategy formulti-energy flowVPPs in distribution power grids.The
upper layer sub-problem of multi-energy flow VPP energy dispatch
is tackled using an improved ant colony algorithm, while the lower
layer substation energy dispatch is addressed through a delay-
aware consensus algorithm. To enhance the convergence speed of
the delay-aware consensus algorithm and enable real-time energy
dispatch of the multi-energy flow VPP, a PD control mechanism
is integrated. Simulation results demonstrate that the proposed
algorithm significantly reduces the total dispatch cost by 61.11%
and 45.45% compared to the two baseline algorithms. Moreover,
the convergence speed is increased by 18.18% compared to the
traditional consensus algorithm after incorporating the PD control
mechanism. In the future, we plan to explore energy cooperative
dispatch between electric vehicles and multi-energy flow VPPs.
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