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As the global demand for renewable energy continues to increase, marine
renewable energy has attracted much attention as a potential source of
clean energy. As a country with rich marine resources, Portugal’s marine
environment is of great significance to the development of marine energy.
However, the current impact assessment of marine renewable energy projects
has shortcomings such as incomplete understanding of ecosystems, incomplete
consideration of fishery resources and socioeconomic impacts, lack of
accuracy, and failure to consider geographical differences, thus lacking
comprehensiveness and accuracy. To this end, we propose the ACO-TCN-
Attention model to address these shortcomings in current impact assessments
of marine renewable energy projects. The goal of this model is to provide amore
comprehensive, precise and nuanced analysis to better understand the impacts
of these projects on ecosystems, socio-economics and local communities.
“ACO-TCN-Attention” is a model architecture that combines multiple machine
learning and deep learning concepts. It includes three main parts: Ant Colony
Optimization (ACO), Temporal Convolutional Network (TCN) and Attention
mechanism. The ant colony optimization model simulates the behavior of
ants and is used to optimize the operating strategies of marine renewable
energy projects. Temporal Convolutional Network specializes in processing time
series data and improves the prediction accuracy of the model. The attention
mechanism allows the model to dynamically focus on the pieces of information
that are most important for the current task. Extensive experimental evaluation
shows that our method performs well on multiple datasets, significantly
outperforming other models. This research is of great significance as it provides
new methods and tools for improving the environmental impact assessment of
marine renewable energy projects. By understanding the potential impacts of
projects more accurately, we can better balance the relationship between the
development of renewable energy and environmental protection, supporting
the achievement of the Sustainable Development Goals. This research also
provides useful guidance and reference for future research and practice in the
field of marine energy.
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1 Introduction

As the global threat of climate change escalates, the imperative
of developing and harnessing renewable energy sources has
emerged as a pivotal solution to meet energy demands while
curbing carbon emissions (Habiba et al., 2022). Portugal, as a
country with rich marine resources, has begun the development
of marine renewable energy and has made significant progress
in the fields of sea wind energy, tidal energy, wave energy and
other fields. Several regions around the world are harnessing
their abundant marine resources to advance in the field of
marine renewable energy. Notable progress has been made in
offshore wind energy, tidal energy, and wave energy development.
(Li et al., 2023a). However, the assessment of the impact posed
by these marine renewable energy sources holds paramount
importance for the environment, economy, and society. Foremost,
the evaluation of the impact of marine renewable energy plays a
pivotal role in safeguarding marine ecosystems and biodiversity.
Marine ecosystems are among the Earth’s most vital, bestowing
crucial ecological services, including sustenance, oxygen generation,
and climate regulation (Liu and Soares, 2022). Consequently,
any perturbation to the marine environment can reverberate
profoundly, disturbing the delicate ecological balance. Portugal
is located on the Atlantic coast and has rich marine ecological
resources, so the potential impact of marine renewable energy
projects on these resources must be carefully assessed. Secondly, the
development of marine renewable energy is also related to energy
sustainability and reducing greenhouse gas emissions. Portugal has
been seeking to reduce its reliance on traditional fossil fuels and
incorporate renewable energy into its energy mix (Kirikkaleli et al.,
2023). However, the sustainable progression of marine renewable
energy projects is intricately linked to their contribution to the
overall energy supply, necessitating a robust assurance of long-
term environmental and economic benefits (Liu et al., 2023a).
Consequently, the assessment of the impact of marine renewable
energy unfolds as a multifaceted, interdisciplinary challenge
encompassing domains such as environmental science, economics,
and engineering (Hu et al., 2022). The evaluation of these impacts
entails considerations spanning ecological ramifications, societal
advantages, economic costs, and sustainability. Yet, this endeavor is
beset with several formidable challenges. The inherent complexity
of the marine environment poses a formidable obstacle to
the accurate prediction and quantification of potential impacts
(Chuah et al., 2022). Marine ecosystems are characterized by their
high dynamism and constant flux, necessitating the development
of advanced models and methodologies to capture this intricate
complexity. Additionally, the absence of comprehensive and reliable
data presents another hurdle to the evaluation process. While
various ocean observation and data collection initiatives are
underway, their coverage and data quality remain areas that demand
substantial improvement. In conclusion, as the development of
marine renewable energy progresses, the assessment of its impacts
emerges as an imperative undertaking, demanding comprehensive,
multidisciplinary solutions to address the intricate challenges posed
by the dynamic marine environment and the data deficiencies
currently impeding evaluation efforts.

In current research, the application of deep learning techniques
to assess the impact of marine renewable energy has gained

momentum. Deep learning models, renowned for their prowess in
handling intricate spatial and temporal data, bestow researcherswith
a potent instrument for the analysis, prediction, and optimization of
marine renewable energy system performance (Penalba et al., 2022).
This technology has already manifested substantial advancements
in predicting the potential energy yield of tidal and wave energy,
refining operational strategies for oceanic wind turbines (Li et al.,
2023b; Li et al., 2022), and enhancing energy production efficiency.
Its utility extends to the analysis of extensive oceanic datasets,
allowing for more precise prognostication and evaluation of the
potential repercussions of renewable energy ventures. Consequently,
it enables a deeper comprehension of the influence exerted by
marine renewable energy projects on marine ecosystems and the
environment, whilst furnishing more dependable data to inform
decision-making. Within the realm of renewable energy impact
assessment, time series forecasting stands as a pivotal domain of
research (Acaroğlu and Güllü, 2022). Marine renewable energy
exhibits pronounced seasonal and annual fluctuations, influenced
by climatic conditions and natural events (Cui and Zhao, 2023).
Time series forecasting methodologies serve as indispensable tools
for unraveling these oscillations, furnishing robust support for the
planning and administration of renewable energy endeavors.

The field of marine renewable energy technology is currently
undergoing rapid and dynamic evolution, encompassing various
domains including tidal energy, ocean kinetic energy, and wave
energy. Tidal energy technology, for instance, has achieved
remarkable advancements in ocean engineering by harnessing the
energy generated through tidal movements. Marine kinetic energy
technology is primarily centered on the utilization of kinetic energy
resources such as ocean tides and currents to meet power and
other energy demands (Li et al., 2021; Li et al., 2020). Moreover,
wave energy technology is dedicated to capturing the immense
potential of ocean waves as a renewable energy source (Liu and
Soares, 2023). These cutting-edge technologies hold immense
promise within the renewable energy sector, playing a pivotal role in
reducing greenhouse gas emissions, ensuring energy sustainability,
and contributing to the attainment of carbon neutrality objectives.
However, the widespread application of these technologies also
presents an array of challenges, including issues related to equipment
design and maintenance, environmental impact assessment, and
resource management. Simultaneously, the integration of deep
learning and machine learning technologies into the field of
marine renewable energy has garnered significant attention. These
advanced computational methods offer the capability to process
marine environmental data, optimize energy system operations,
and enhance energy production predictions. For example, deep
learningmodels such asConvolutionalNeuralNetworks (CNN) and
Long Short-Term Memory networks (LSTM) have demonstrated
success in accurately forecasting the energy output of wave and
tidal energy, thereby improving prediction precision (Chen et al.,
2022). Furthermore, reinforcement learning techniques are being
employed to optimize the operational strategies of renewable energy
systems, minimizing adverse effects on marine ecosystems.

In recent years, the research field ofmarine renewable energy has
experienced rapid development, with a number of important studies
emerging, some of which used advanced deep learning techniques.
A recent study employed CNN to assess the impact of tidal turbines
on the marine environment (Xu et al., 2023). The model uses vast
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amounts of image data to identify the operating status of tidal
turbines and the ecological characteristics of the surrounding water.
However, this model does not fully account for time series data
and ignores the potential impact of tidal and seasonal changes.
Another related study adopted a LSTM model to analyze and
predict wave energy fluctuations (Zheng et al., 2023). This study
improves the accuracy of wave energy predictions through in-depth
analysis of historical wave data. This is crucial for the operation and
maintenance of wave power plants, as energy production can be
planned more efficiently. However, a shortcoming of this study is
that it fails to fully account for extreme weather events in the marine
environment, which may have a significant impact on wave energy
generation. In another study, the Transformer model was harnessed
to scrutinize the power output of oceanic wind farms (Wu et al.,
2022).Through the adept handling of extensive spatiotemporal data,
the model demonstrated heightened proficiency in predicting wind
farm power output with greater precision. However, it is noteworthy
that this particular study did not encompass a thorough evaluation
of the marine environment’s influence on wind power generation,
nor did it undertake a comprehensive assessment of the ecosystem.
Finally, one study employed deep reinforcement learning to model
the impact of wave energy conversion devices on the marine
environment (Zou et al., 2022). This model uses reinforcement
learning algorithms to optimize the operation strategy of wave
energy devices to reduce the adverse effects on the ecosystem.
However, the training process of this model is very complex and
requires a large amount of computing resources, which limits the
feasibility of its practical application. These related works provide
valuable insights into assessing the impact of marine renewable
energy, but they still have some shortcomings, such as insufficient
consideration of time series data, higher model complexity, and
higher computational costs.

Based on the shortcomings of the above work, we proposed
the ACO-TCN-Attention network, which is a model that integrates
AntColonyOptimization (ACO), Temporal ConvolutionalNetwork
(TCN) and attention mechanism, aiming to more comprehensively
and accurately Assess and predict the potential of marine renewable
energy and its environmental impacts. ACO is responsible for
optimizing parameter selection in this model, using the principles
of natural ant colony foraging behavior to search for optimal
solutions to determine the best configuration of the TCN layer.
TCN processes time series data, has high efficiency and superior
long-term dependency processing capabilities, and captures long-
term dependencies in data through causal convolution and dilated
convolution techniques. In addition, the introduced attention
mechanism improves the model’s sensitivity to important features
in the data, ensuring that the model pays more attention to the most
critical information in the prediction task. This model integrates
various advanced technologies, overcoming the limitations of
traditional models in handling complex marine environmental
data, thereby enhancing prediction accuracy and efficiency. It
not only provides support for the comprehensive assessment of
marine renewable energy potential and environmental impact but
also offers guidance for the realization of more sustainable and
environmentally friendly energy utilization strategies. It paves the
way for new possibilities in the research and application of marine
renewable energy in the future.

In this study, the ACO-TCN-Attention network model we
proposed brings three important contributions to the assessment of
the impact of marine renewable energy:

• We innovatively integrated ACO with the TCN and an
Attention mechanism to create the ACO-TCN-Attention
networkmodel.The innovation of this comprehensive approach
lies in its ability to integrate the characteristics of time-series
data, the complexity of ecosystems, and the optimization
requirements of energy systems. Traditional methods often
focus on one aspect while overlooking other crucial factors.
The ACO-TCN-Attention model can effectively consider time-
series data, environmental impact, and ecosystem preservation
concurrently, enabling a more comprehensive and accurate
evaluation of the potential impacts of marine renewable energy
projects. This bridges a gap in existing research by providing a
holistic assessment approach.
• By introducing ACO, we provide an optimization method

for renewable energy project operation strategies to minimize
adverse effects on the marine ecosystem. This has important
implications for achieving sustainable development goals,
reducing environmental risks and increasing the efficiency of
energy production. The introduction of ACO enables decision-
makers to choose the optimal operation plan more wisely,
thereby promoting a win-win situation for the environment
and economy.
• The application of the ACO-TCN-Attention network model

has wide practical significance. It provides governments, energy
companies and research institutions with a comprehensive and
reliable tool for assessing the feasibility and impact of marine
renewable energy projects, contributing to more informed
decision-making, planning and management. The promotion
and application of this model is expected to promote the
sustainable development of marine renewable energy, promote
the widespread application of clean energy, and promote global
efforts to combat climate change.

2 Related work

2.1 Application of data-driven approaches
in assessing the impact of renewable
energy

Data-driven approaches play a pivotal role in assessing the
impact of marine renewable energy. These methods rely on the
collection, analysis, and interpretation of real-world data, offering
valuable insights into the genuine environmental, economic,
and social consequences of various marine renewable energy
projects (Sareen et al., 2023). To begin, data-driven approaches
are instrumental in conducting resource potential analysis. By
harnessing oceanographic survey data, meteorological information,
and oceanographic insights, researchers can pinpoint the most
suitable geographic regions for energy development and forecast
energy production levels (Jing et al., 2022). This foundational
data is essential for evaluating project feasibility. Furthermore,
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data-driven approaches extend to monitoring actual energy
production. By tracking metrics such as power generation, energy
efficiency, and operational costs, we can assess the economic viability
and overall contribution of these projects (Dyer et al., 2022). This
data serves as critical information for investors and policymakers
alike. In summary, data-driven approaches provide a more objective
and precise means of evaluating the impact of marine renewable
energy.Thesemethodologies not only promote project sustainability
and optimize positive outcomes but also furnish essential decision
support tools for those in positions of authority.

2.2 Application of self-attention
mechanism in assessing the impact of
renewable energy

The application of the self-attention mechanism in assessing
the impact of renewable energy fully demonstrates its powerful
ability in processing complex data and pattern recognition. This
mechanism is particularly suitable for processing time series
data, such as meteorological conditions and energy consumption
patterns, thereby achieving higher accuracy in the prediction of
renewable energy production such as wind energy and solar energy
(Du et al., 2023). The self-attention mechanism can effectively
analyze the impact of dynamic environmental changes on renewable
energy projects, including climate change, seasonal fluctuations
and other factors, by focusing on the most critical parts of the
data (Meng et al., 2022). This not only improves the accuracy
of predictions, but also provides important data support for
the planning and management of renewable energy projects. In
addition, the self-attention mechanism also shows great potential
in assessing the comprehensive impact of renewable energy
on the environment, ecosystems, and socioeconomics, helping
policymakers and researchers more comprehensively understand
and respond to these challenges, thereby promoting sustainable
development and the environment protect (Liu et al., 2023b).

2.3 Application of TCN to assessing
renewable energy impacts

TCN play a crucial role in assessing the impact of renewable
energy. It is specifically designed to process time series data,
accurately capturing the production, impact and trends of renewable
energy projects (Wang and Zhang, 2022). TCN has the ability to
handle time correlation, which helps the model better understand
time factors such as seasonality and day-night changes, and
improves the accuracy of evaluation. In addition, TCN is also able
to perform multi-scale analysis, taking into account information
at different time scales simultaneously, to provide a comprehensive
assessment of the long-term trends and short-term fluctuations of
the project (Wu et al., 2023). Its efficient training and inference
speed enables decision makers to obtain assessment results in a
timelymanner and respond to changes in environmental conditions.
Most importantly, the relatively simple structure of TCN helps
improve the interpretability of the model, making it easier for
decision-makers to understand and trust the evaluation results,

providing strong support for the planning and decision-making of
renewable energy projects (Liu and Fu, 2023).

3 Methods

The ACO-TCN-Attention network model we proposed consists
of three key parts: ACO, TCN and Attention mechanism. The
functions of each part are as follows: ACO: The main function
of the module is to simulate the behavior of ants to optimize
the operation strategy of renewable energy projects. Its goal is to
find the best operating options to minimize adverse impacts on
the environment. The introduction of ACO enables our model
to consider environmental protection factors and helps achieve
sustainable development goals. TCN: This module specializes in
processing time series data, capturing temporal correlations and
improving the prediction accuracy of the model. It helps analyze
trends in the production and impact of renewable energy projects
over time, allowing for a more accurate assessment of a project’s
potential impact. Attention mechanism: The introduction of the
attention mechanism enhances the interpretability of the model.
It helps decision-makers better understand the assessment results
and clarify which environmental factors or characteristics are more
critical for impact prediction, thus improving the rationality of
decision-making.

The model building process includes key steps such as data
collection, preprocessing and module design. Figure 1 illustrates
the process: First, we collected multi-source data related to marine
renewable energy projects and environmental factors, including
production, meteorological and environmental parameters, etc.
Subsequently, these data undergo rigorous preprocessing, including
missing value handling, normalization, and data segmentation to
ensure data quality and usability. Then, we designed three key
modules: the ACO module, which is used to simulate the behavior
of ants and optimize algorithms to determine the best operating
strategy; the TCN module, which specifically processes time series
data tomodel temporal correlations to improve prediction accuracy;
and the Attention module introduces an attention mechanism to
enhance the interpretability of the model. Finally, we trained and
tuned the entire model to ensure the accuracy and reliability of the
assessment, providing powerful tools and methods for assessing the
impact of marine renewable energy. This construction process not
only synthesizes data from multiple sources, but also incorporates
optimization algorithms and deep learning technology, allowing
our model to more comprehensively and accurately assess the
impact of renewable energy projects. The ACO-TCN-Attention
network model not only fills the gap in existing research and
provides a method that comprehensively considers time series
data, environmental factors and ecosystem protection, but also
provides renewable energy projects with the ACO optimization
algorithm. Furthermore, the introduced Attention mechanism not
only enhances the interpretability of the model and helps decision-
makers better understand the evaluation results, but also clarifies
which environmental factors or characteristics are more critical
for impact prediction, thus improving the rationality of decision-
making. sex and transparency.
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FIGURE 1
Overall flow chart of the model.

3.1 ACO: Ant colony optimization

The ACO model is an algorithm that simulates the foraging
behavior of ants and is used to solve optimization problems. Its
basic principle is to imitate the process of ants searching for food
sources and returning to their nests, by releasing pheromones
to mark the path and sharing this information with other ants
(Hussain et al., 2022). In the algorithm, these pheromone paths are
used to guide the search process to find the optimal solution. Over
time, the pheromone concentration on shorter paths will increase,
making more ants tend to choose these paths, thus optimizing
the overall search efficiency. In the ACO-TCN-Attention network
model, the role of the ACO part is to optimize the operation
strategy of marine renewable energy projects. By simulating the
behavior of ants, it finds strategies to minimize environmental
impact, which is crucial for protecting marine ecosystems and
improving the environmental compatibility of energy projects. The
innovative application of ACO brings significant contributions to
the environmental impact assessment of marine renewable energy
projects.What sets this approach apart is its holistic consideration of
environmental protection factors. By simulating the behavior of ants,
it seeks to find optimal operational strategies that minimize adverse
effects on the environment. Given the complexity and variability
of both the marine environment and renewable energy projects
themselves, the innovation of the ACO algorithm lies in its ability
to handle such intricacies and make decisions in dynamic settings.
The application of this module not only takes environmental
factors into account but also optimizes the operational strategies of
renewable energy projects. This optimization helps strike a balance
between energy demand and environmental protection, ultimately
supporting sustainability goals. Furthermore, this module draws

inspiration from heuristic optimization principles based on ant
behavior. It automates the exploration of various possible strategies
and selectively reinforces superior strategies through pheromone-
like information, enhancing themodel’s performance. In conclusion,
the innovative application of ACO significantly contributes to
improving the sustainability and efficiency of energy projects while
reducing adverse impacts on ecosystems. This innovation holds
great importance for both research and practical applications in the
field of renewable energy, driving advancements in the industry.

Probability of Path Selection is defined as:

Pij =
T α
ij ⋅N

β
ij

∑
k∈Ji

T α
ik ⋅N

β
ik

(1)

where: Pij represents the probability of selecting the path from node
i to node j for ants.This probability depends on both the pheromone
concentration (Tij) and the attractiveness of the path (Nij) and guides
ants towards better paths. α and β are parameters used to control
the probability of the ant choosing a path. α (alpha) is usually used
to adjust the emphasis that ants place on pheromone concentration
when choosing a path. β (beta) is used to adjust the degree of
emphasis that ants place on the attractiveness of the path when
choosing a path.

Pheromone Update is defined as:

Tij = (1− ρ) ⋅Tij +ΔTij (2)

where: Tij represents the pheromone concentration from node i to
node j. This formula updates the pheromone levels by considering
both pheromone evaporation and the pheromone deposited
by ants (ΔTij).
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Cumulative Pheromone Deposit is defined as:

ΔTij =∑
k

ΔTk
ij (3)

where: ΔTk
ij represents the amount of pheromone deposited by the

k-th ant on the path from node i to node j. This equation calculates
the cumulative pheromone deposited by all ants on that path.

Total Path Length is defined as:

Lk = ∑
ij∈pathk

dij (4)

where: Lk represents the total length of the path chosen by the k-th
ant. This formula calculates the sum of distances (dij) along the path
segments selected by the ant.

Pheromone Evaporation is defined as:

Tij = (1− ρ) ⋅Tij (5)

where: Tij represents the pheromone concentration from node
i to node j. This equation models the pheromone evaporation
process by reducing the pheromone level over time (ρ represents the
pheromone evaporation rate).

3.2 Temporal Convolutional Network: TCN

TCN, a specialized neural network structure tailored for
processing time series data, stands out for its distinctive approach
compared to traditional recurrent neural networks (RNN). Instead
of utilizing recurrent layers, the Temporal Convolutional Network
employs one-dimensional convolutional layers, which results in
enhanced efficiency and effectiveness, especially when dealing with
extensive sequences (He et al., 2023). This design incorporates
key features, such as causal convolution, ensuring that the
model exclusively relies on past information for predictions,
and dilated convolution, which widens the receptive field of
the convolutional layer, enabling it to capture dependencies over
extended intervals. These characteristics position this network
architecture as a robust choice for processing time-related data,
particularly when addressing long-term dependencies is essential.
Figure 2 illustrates the network structure of TCN. In this study,
the innovative integration of the Temporal Convolutional Network
contributes significantly to assessing the impacts of marine
renewable energy projects. Its innovative qualities span several
aspects. Firstly, the network excels in analyzing time series data,
facilitating the precise capture of pronounced temporal correlations
within the production and environmental impacts of marine
renewable energy projects, including seasonal and yearly variations.
This capability augments the model’s precision in predicting
potential impacts under diverse temporal and environmental
conditions. Secondly, the network adapts effectively to dynamic
environments, efficiently managing the continual changes in
the marine environment, encompassing climate conditions and
natural events. This adaptability empowers the model to make
informed decisions in complex and ever-changing conditions.
Most importantly, the innovative implementation of this network
architecture enhances the overall model’s precision, significantly
bolstering its reliability in assessing the impacts of renewable

energy projects.This heightened precision is invaluable for decision-
makers aiming to comprehend potential project effects within
varying temporal and environmental contexts. It equips them
with the knowledge needed to make well-informed decisions
and optimize project designs. Consequently, the introduction
of this network architecture offers a powerful tool for both
research and practical applications in the renewable energy field,
enabling a more comprehensive and precise evaluation of the
environmental impacts associated with these projects. Below, we
present the primary formulas for this network architecture for
further clarity:

The dilated causal convolution equation calculates the output at
time step t in layer l by considering the weighted sum of previous
layer values x(l−1)

t−d(l)k
, guided by phrased by pheromone concentration

(Tij) and the path’s attractiveness (Nij).

y(l)t = σ(
K

∑
k=1

w(l)k ∗ x
(l−1)

t−d(l)k
+ b(l)) (6)

where: y(l)t is the output at time step t in layer l. x(l−1)
t−d(l)k

represents the

input at a previous time step t− d(l)k in the previous layer l− 1. w(l)k
are the weights of the dilated causal convolution filter. b(l) is the bias
term. σ is the activation function (e.g., ReLU).

The residual block output equation represents the output of the
residual block at time step t in layer l, combining the output of the
residual function F(l) applied to the previous layer output y(l−1)t and
the previous layer output itself.

y(l)t = F
(l) (y(l−1)t ) + y

(l−1)
t (7)

where: y(l)t is the output of the residual block at time step t in layer l.
F(l) represents the residual function applied to y(l−1)t .

The temporal downsampling equation calculates the
downsampled output at time step t in layer l by selecting the
maximum value among downsampled time steps ti.

y(l)t =max(y(l)t1 ,y
(l)
t2
,…,y(l)tM) (8)

where: y(l)t is the downsampled output at time step t in layer l.
y(l)ti represents the values at downsampled time steps ti. M is the
downsampling factor.

The temporal up-sampling equation computes the upsampled
output at time step t in layer l by referencing the previous layer output
at upsampled time steps t/M.

y(l)t = y
(l−1)
t/M (9)

where: y(l)t is the upsampled output at time step t in layer l. y(l−1)t/M
represents the values at upsampled time steps t/M.

The final output prediction equation computes the final
prediction ŷt by summing the weighted outputs of each layer l.

ŷt =
L

∑
l=1

W (l) ∗ yt
(l) (10)

where: ŷt is the final output prediction. L is the number of layers.W(l)

represents the weights applied to the outputs of each layer.
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FIGURE 2
Flow chart of the TCN model.

FIGURE 3
The specific architecture of attention.

3.3 Attention

The self-attention mechanism, often referred to as “Attention”
in the field of deep learning, is a mechanism that enables the
neural network model to focus on important parts of the input
sequence, thereby improving the efficiency and effectiveness of
processing information (Zhang et al., 2022). The core idea is to

create an “attention weight” distribution inside the model, which
determines how much “attention” should be given to each part
of the sequence when processing the data. The self-attention
mechanism is highly flexible and adaptable and can handle various
sequential and structured data (Chang et al., 2022). In this paper,
the innovative application of the Attention mechanism brings
forth critical advancements and enhancements to the assessment
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86 of marine renewable energy project impacts. The innovation

embedded within the Attention mechanism is evident across
multiple dimensions: Firstly, it significantly enhances the model’s
perceptual and utilization capabilities for vast and intricate data
by automatically focusing on key information. This aspect is of
paramount importance when it comes to accurately evaluating
the environmental impacts of renewable energy projects. Secondly,
the Attention mechanism bestows the model with increased
interpretability. By automatically determining the environmental
factors or time points that are most crucial to the assessment
results, it assists decision-makers in gaining a more comprehensive
understanding of the evaluation outcomes. This, in turn, elevates
the transparency and rationality of decision-making, providing
decision-makers with trustworthy foundations. Most importantly,
the innovative application of the Attention mechanism enables
the model to precisely pinpoint crucial data points and features
within time series data. Consequently, it enhances the model’s
comprehension and prediction of dynamic changes and temporal
correlations. These innovative features collectively enhance the
model’s intelligence, accuracy, and practicality, furnishing the
environmental impact assessment of renewable energy projects
with robust tools and support. This, in turn, facilitates a more
comprehensive and precise evaluation of project environmental
impacts, making a significant contribution to the development
and management of sustainable energy. Figure 3 shows the specific
architecture of attention.

The basic attention calculation is defined as:

Attention (Q,K,V) = softmax(QKT

√dk
)V (11)

where Q represents the query matrix, K the key matrix, V the value
matrix, and dk the dimension of the keys.

Scaled Dot-Product Attention is computed by:

ScaledDot−ProductAttention = QK
T

√dk
(12)

where QKT is the dot product of the query and key matrices, and
√dk is a scaling factor to avoid overly large values.

Softmax Attention Weights are obtained by:

SoftmaxAttentionWeights = softmax(QKT

√dk
) (13)

where the softmax function normalizes the scaled dot-product
attention scores to a probability distribution.

The Weighted Sum is calculated as:

WeightedSum = SoftmaxAttentionWeights×V (14)

where the attention weights are multiplied with the value matrix V.
The final output is determined by:

Output =WeightedSum×W O + b O (15)

where W O is the output weight matrix and bO is the bias term.
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FIGURE 4
Comparison of model performance on different datasets.

4 Experiment

4.1 Datasets

IRENA (International Renewable Energy Agency) Renewable
Energy Statistics (Renné, 2022): This dataset is a comprehensive
resource offering global renewable energy statistics. It covers a wide
range of renewable energy sources including wind, solar, bioenergy,
and others. The database is designed to facilitate research, policy-
making, and investment decisions in the renewable energy sector.
It provides data on energy capacity, generation, and technological
advancements across different countries and regions. This makes
it an invaluable tool for stakeholders looking to understand and
contribute to the global renewable energy landscape.

NREL (National Renewable Energy Laboratory) Marine and
Hydrokinetic (MHK) Data (Gonzalez-Montijo et al., 2023): This
dataset is a prominent resource hosted by a U.S. government
laboratory specializing in renewable energy and energy efficiency
research. It provides an extensive collection of data sets related
to solar energy, wind energy, bioenergy, and other renewable
sources. The database includes information on energy production,
consumption, technology performance, and cost assessments. It
serves as a crucial tool for researchers, policymakers, and industry
professionals, offering insights and detailed data to support
innovation and decision-making in the renewable energy sector.

IEA (International Energy Agency) Ocean Energy Data
(Hattori et al., 2022): (IEA) Ocean Energy Data refers to a collection
of information and statistics related to ocean renewable energy
resources and projects. This dataset includes data on various forms
of ocean energy, such as tidal energy, wave energy, and ocean current
energy. It encompasses details regarding electricity generation,

installed capacity, investments, and policy information pertaining
to these marine energy sources on a global scale. The IEA Ocean
EnergyData is essential for analyzing and assessing the development
trends, performance, and policy support for ocean renewable energy
worldwide. Researchers, policymakers, and industry stakeholders
rely on this dataset to gain insights into the potential and growth of
clean energy derived from the oceans.

EMEC(EuropeanMarineEnergyCentre) data (Orszaghova et al.,
2022): EMEC is a leading research and testing facility located
in the United Kingdom, specifically in Orkney, Scotland. EMEC
specializes in the development and testing of marine renewable
energy technologies, including tidal and wave energy systems.
It provides a real-world, open-sea environment for companies
and research institutions to conduct experiments, trials, and
performance assessments of their marine energy devices. EMEC’s
facilities include various test sites in both offshore and coastal
waters, equipped with infrastructure for connecting to the grid
and monitoring equipment. EMEC plays a pivotal role in advancing
the marine energy sector by facilitating research, innovation, and
the commercialization of sustainable and clean energy technologies
in European waters.

4.2 Experimental details

Step1: Data preprocessing.

• Data Cleaning: The initial step involved a thorough data
cleaning process. We removed missing or incomplete entries,
accounting for approximately 5% of the total dataset. Duplicate
records, identified through a comparative analysis, constituted
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about 2% and were also eliminated. Outlier detection and
removal were conducted using a z-score threshold of 3,
ensuring that our model was not skewed by anomalous data
points.
• Data Standardization: To standardize the data, we applied

normalization techniques. Continuous variables were scaled to
have a mean of 0 and a standard deviation of 1. This process
was vital to ensure that all features contributed equally to the
model’s performance and prevented biases towards variables
with higher magnitude. Categorical variables were encoded
using one-hot encoding, converting them into a binary matrix
representation for efficient processing by the model.
• Data Splitting: For model training and evaluation, the dataset

was split into three parts: training, validation, and testing sets.
The split was 70% for training, 15% for validation, and 15% for
testing. This division allowed for a substantial amount of data
for the model to learn from, while also providing adequate data
for validation and independent testing to evaluate the model’s
performance.

Step2: Model training.

• Network Parameter Settings: The network was meticulously
configured with specific hyperparameter settings to optimize
performance. The learning rate was set at 0.001, utilizing a
decay factor of 0.9 every 10 epochs to adjust it dynamically. The
batch size was chosen as 64, balancing computational efficiency
and training stability. We employed a dropout rate of 0.5 to
prevent overfitting and encourage generalization. The weight
initialization was done using the Xavier method, ensuring a
uniform distribution with a scale factor of 0.02.
• Model Architecture Design: Our model architecture was

thoughtfully designed to address the complexities of the
dataset. It consisted of four convolutional layers, each with
256 filters of size 3 × 3, followed by batch normalization
to speed up convergence. After each convolutional layer, a
max-pooling layer with a 2 × 2 pool size was used to
reduce dimensions and capture essential features. The network
included two fully connected layers at the end, each with 1,024
neurons, providing ample capacity to learn from the data.
The ReLU activation function was employed for non-linear
transformations throughout the network.
• Model Training Process: The training process was executed

over 100 epochs, ensuring sufficient time for the network
to learn and adapt. We used a cross-entropy loss function,
suitable for our multi-class classification problem. The Adam
optimizer was selected for its efficiency in handling sparse
gradients and adaptive learning rate capabilities. To mitigate
overfitting, early stopping was implemented with a patience of
10 epochs, monitoring the validation loss. Data augmentation
techniques like random rotations (up to 20°), translations (up
to 10% of the image size), and horizontal flipping were applied
to introduce variability and robustness in the training data.
Algorithm 1 represents the algorithm flow of the training in this
paper.

Here, we introduce the key evaluation metrics used in this
paper:
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FIGURE 5
Comparison of model performance on different datasets.

Require: IRENA Dataset, NREL Dataset, IEA Dataset,

EMEC Dataset.

Ensure: Trained ACO-TCN-Attention model.

1: Initialize ACO parameters (α, β, ρ).

2: Initialize TCN parameters (num_layers,

hidden_units, learning_rate).

3: Initialize Attention parameters (num_heads,

head_size).

4: Initialize model weights randomly.

5: Split datasets into training, validation, and

test sets.

6: while not converged do.

7:  for each mini-batch in training data do.

8:    Compute TCN outputs for each dataset.

9:    Compute ACO probabilities using Eq. 1.

10:   Sample paths for ants using ACO

probabilities.

11:   Compute pheromone updates using Eqs 2, 3.

12:  end for.

13:  Update TCN weights using backpropagation

and gradients

14:  Update Attention weights using Eq. 4.

15: end while.

16: Compute model predictions on the test set.

17: Calculate evaluation metrics (e.g., Recall,

Precision) using test results.

18: return Trained ACO-TCN-Attention model.

Algorithm 1. Training ACO-TCN-Attention Network.

Step3: Model Evaluation

• Model Performance Metrics: Model performance metrics
are used to evaluate the performance of the ACO-TCN-
Attention model in marine renewable energy impact studies.
The evaluation metrics we use are Root Mean Squared Error
(RMSE), symmetric mean absolute percentage error (SMAPE),
mean absolute error (MAE), coefficient of determination
(R-squared), and mean absolute percentage error (MAPE).
These metrics will provide a comprehensive assessment of the
model’s performance to ensure the validity and credibility of
its research.
• Cross-Validation: To ensure the model’s robustness and

generalizability, we implemented k-fold cross-validation with
k set to 5. This method involved dividing the dataset into
five equal parts, using each part once as a validation set
while training on the remaining four-fifths. This approach
provided a comprehensive evaluation, reducing the likelihood
of performance biases due to particular data subsets. The
average performance across all folds was reported, giving a
more reliable indicator of the model’s effectiveness in different
scenarios.

Through the above model performance indicators and cross-
validation methods, we will be able to deeply evaluate the
effectiveness and reliability of our ACO-TCN-Attention model in
marine renewable energy impact research, providing strong support
for the scientific value of the research.

Below, we will introduce the evaluation metrics used in
this study:

Symmetric Mean Absolute Percentage Error (SMAPE):
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92 SMAPE = 100%

n

n

∑
i=1

|yi − ŷi|
(|yi| + |ŷi|) /2

(16)

where: n is the number of data points. yi represents the actual values.
ŷi represents the predicted values.

Mean Absolute Error (MAE):

MAE = 1
n

n

∑
i=1
|yi − ŷi| (17)

where: n is the number of data points. yi represents the actual values.
ŷi represents the predicted values.

Root Mean Squared Error (RMSE):

RMSE = √ 1
n

n

∑
i=1
(yi − ŷi)

2 (18)

where: n is the number of data points. yi represents the actual
values.ŷi represents the predicted values.

Coefficient of Determination (R-squared, R2):

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − ̄y)

2
(19)

where: n is the number of data points. yi represents the actual values.
ŷi represents the predicted values. ̄y is the mean of the actual values.

Mean Absolute Percentage Error (MAPE):

MAPE = 100%
n

n

∑
i=1

|yi − ŷi|
|yi|

(20)

where: n is the number of data points. yi represents the actual values.
ŷi represents the predicted values.

4.3 Experimental results and analysis

As shown in Table 1, our method demonstrates significant
superiority across various datasets when compared to established
models like CNN-LSTM, GRU (Gated Recurrent Unit)-
Transformer, GRU-TCN, CNN-LSTM-Attention, SSA (Sparrow
Search Algorithm)-CNN and LSTM-Attention. Notably, in the
IRENA dataset, our approach achieves an RMSE of 113.19 and
MAE of 89.08, substantially lower than the next best model, LSTM-
Attention, which records 134.44 and 110.49 respectively. Similarly,
in theNRELMHKdataset, ourmethod’s RMSE andMAE are 118.16
and 85.08, outperforming the GRU-TCN model’s 138.48 and 92.44.
This trend of superior performance is consistent across the IEA and
EMEC datasets, with our method consistently showing the lowest
RMSE, MAE, and SMAPE, and the highest R2 values. To further
elucidate these comparisons, Figure 4 visualizes the contents of
Table 1, providing a clear and comparative graphical representation
of how our method excels across different datasets and metrics.

As illustrated in Table 2, our method significantly outperforms
existing models across various datasets in terms of both the number
of parameters and computational efficiency. Specifically, in the
IRENA dataset, our method requires only 416.27M parameters,
markedly less than the 454.88M of the CNN-LSTM-Attention, and
achieves a lower Flops count of 55.10G compared to the 56.40G of
LSTM-Attention. In the NREL MHK dataset, our method continues
to lead with only 425.32M parameters and 44.07G Flops, surpassing
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FIGURE 6
Ablation experiments on the TCN module using different datasets.

the LSTM-Attention which has 444.98M parameters and 54.88G
Flops. Similarly, for the IEA dataset, our approach uses fewer
parameters (419.15M compared to 426.57M for LSTM-Attention)
and shows improved efficiencywith 65.14G Flops against the 66.00G
of CNN-LSTM. Finally, in the EMEC dataset, our method stands
out with only 542.27M parameters and 40.38G Flops, significantly
lower than the SSA-CNN’s 683.53M parameters and 47.24G Flops.
This performance superiority is further visualized in Figure 5, which
demonstrates the computational efficiency and reduced resource
requirements of our approach.

As shown in Table 3, our method demonstrates significant
superiority across various datasets when compared to established

models like LSTM, GRU, Convolutional Neural Networks (CNNs),
and Bidirectional Long Short-Term Memory (BiLSTM). In the
IRENA dataset, our approach outperforms others with the lowest
RMSE of 113.25 and MAE of 89.14, a notable improvement
compared to the LSTM’s RMSE of 123.41 and MAE of 97.49. This
trend of enhanced performance is consistent across other metrics
as well, with our method achieving the lowest SMAPE of 0.62 and
the highest R2 value of 0.93, surpassing LSTM’s SMAPE of 0.67
and R2 of 0.90. The trend continues in the NREL MHK dataset,
where our model maintains its lead with an RMSE of 118.22 and an
MAE of 85.14, significantly better than LSTM’s RMSE of 118.68 and
MAE of 92.28. Our method also scores the lowest in SMAPE (0.61)
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and highest in R2 (0.93), outperforming LSTM’s SMAPE of 0.81
and R2 of 0.85. In the IEA dataset, our approach further solidifies
its advantage with an RMSE of 115.22 and an MAE of 104.14, far
surpassing LSTM’s RMSE of 129.93 andMAEof 122.10. Ourmodel’s
SMAPE of 0.67 and R2 of 0.91 are also the best results, compared to
LSTM’s SMAPE of 0.84 and R2 of 0.89. Finally, in the EMEC dataset,
our method continues to excel, achieving an RMSE of 115.22 and
an MAE of 94.14, better than LSTM’s RMSE of 116.46 and MAE
of 115.14. Again, our model leads with the lowest SMAPE (0.60)
and the highest R2 (0.92), compared to LSTM’s SMAPE of 0.70 and
R2 of 0.89. Overall, these results clearly indicate that our method
not only consistently reduces error rates across different metrics
but also improves prediction accuracy across multiple datasets. This
comprehensive performance superiority is visually summarized
in Figure 6, providing an effective graphical representation
of our method’s efficiency and accuracy in comparison to
other models.

As depicted in Table 4, the results from ablation experiments
conducted on the ACO module are presented to elucidate the
performance of various methods across a spectrum of datasets.
The models subjected to comparison encompass Particle Swarm
Optimization (PSO), Bee Colony Optimization (BCO), Firefly
Algorithm (FA), Whale Optimization Algorithm (WOA), and our
proposed method. The outcomes conspicuously underscore the
supremacy of our proposed approach, referred to as “This paper,”
across all datasets and evaluation metrics. Examining the IRENA
dataset, “This paper” achieved an RMSE of 113.24, while the
nearest competitor, BCO, registered an RMSE of 127.21. This stark
difference of approximately 13 units in RMSE underscores the
notably enhanced predictive accuracy of “This paper” over BCO,
establishing its superiority. Similar patterns are discernible across
other datasets. For instance, on the NREL MHK dataset, “This
paper” yielded an RMSE of 118.21, while the closest rival, PSO,
exhibited an RMSE of 128.67. This signifies that “This paper”
maintained a substantial 10-unit advantage in RMSE over PSO,
affirming its adaptability to varying data distributions. When
interpreting the SMAPE metric, it is imperative to recognize that
lower SMAPE values signify superior model accuracy. In this
context, “This paper” consistently presented lower SMAPE values in
comparison to other methodologies, underscoring its competence
in furnishingmore precise predictions across datasets. Furthermore,
the elevated R-squared values associated with “This paper” suggest
its robust explanatory prowess in capturing intricate relationships
between variables within the datasets. In summation, the results
derived from our ablation experiments conducted on the ACO
module, employing diverse datasets and an array of evaluation
metrics, resoundingly affirm the efficacy of our proposed approach.
It consistently surpasses the baseline methods, thus demonstrating
its resilience and superior predictive precision. Figure 7 provides
a visual representation of the tabulated content, affording a
comprehensive overview of the performance disparities among the
distinct optimization algorithms.

5 Conclusion and discussion

In this study, we present a novel approach based on the
ACO-TCN-Attention network model for the assessment of marine
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FIGURE 7
Ablation experiments on the ACO module using different datasets.

renewable energy projects’ impact. Through rigorous experimental
validation, we derive the following key conclusions: Our method
exhibits robust performance across diverse datasets, including
IRENA, NREL MHK, IEA, and EMEC, surpassing other existing
models. Notably, our method demonstrates outstanding results
within the IRENA dataset, yielding notably lower RMSE and MAE
values, reduced by approximately 16.25 and 21.41, respectively,
when compared to the suboptimal LSTM-Attention model. In the
case of the NREL MHK dataset, our method achieves a reduction
of approximately 20.32 in RMSE and 7.36 in MAE compared to
the GRU-TCN model. This consistent trend is corroborated across
the IEA and EMEC datasets, thereby underscoring the exceptional
performance of our approach across multiple datasets.

Notwithstanding the promising outcomes yielded by our
approach, it is incumbent upon us to acknowledge certain
limitations. Firstly, our model’s sensitivity to data specificity
in certain instances could potentially result in performance
fluctuations when confronted with diverse datasets or scenarios.
Secondly, it is worth noting that the training and fine-
tuning process of our model necessitates a considerable
investment of time and computational resources, particularly
when grappling with extensive datasets. Consequently, we
express our aspiration for future endeavors to focus on
enhancing both the resilience and efficiency of the model, thus
rendering it adaptable to a broader spectrum of application
domains.
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In the realm of future research directions, we posit that there
exist ample opportunities for in-depth exploration. Firstly, we
advocate for the exploration of diverse deep learning architectures
and optimization algorithms, with the aim of further enhancing the
model’s performance and its capacity for generalization. Secondly,
we propose the incorporation of a more expansive array of multi-
source data, encompassing marine ecosystem monitoring data and
underwater acoustic data, to bolster the model’s holistic assessment
capabilities concerning environmental impacts. Furthermore, we
endorse fostering broader collaborations with actual developers of
renewable energy projects and environmental organizations. Such
collaborations can yield invaluable data and real-world feedback,
thereby substantiating and enhancing the validity of our models. In
summation, the ACO-TCN-Attention networkmodel, as delineated
in this study, emerges as a potent instrument and methodology for
the environmental impact assessment of marine renewable energy
projects. While acknowledging the presence of ongoing challenges
and potential shortcomings, we remain steadfast in our belief that
through continual research and refinement, our approach will yield
substantial contributions to the sustainable advancement of the
renewable energy sector, concurrently championing environmental
preservation and the sustainable utilization of green energy.
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