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Wind power generation has become an indispensable part of the power supply side
of the power grid. Due to the intermittent and uncertain characteristics of wind
energy, short-term wind power prediction plays an important role in the stable
operation of power system. By constructing the digital twin model, real-time and
high-precision prediction of wind energy is realized. First, the genetic algorithm-
support vector machine (GA-SVM) algorithm is used to build the model.
Multidimensional sensors and meteorological stations of the virtual wind power
generation system collected the meteorological data of the environment and
updated the meteorological history database at the same time. Second, based on
the collected meteorological data, the preliminary prediction results are obtained,
and by searching in the historical database, the predicted value and the actual output
value of wind turbines or wind farms under similar conditions are obtained. Finally,
the prediction results of the GA-SVM are modified to obtain the predicted value of
the digital twin model. The prediction method can greatly improve the accuracy of
the short-term forecast of wind energy.
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Introduction

Wind power generation is themain form of wind energy utilization. However, because wind
energy is affected by the natural environment, it shows the characteristics of intermittency,
randomness, and fluctuation of wind power, which have a great impact on the power grid.
Prediction of wind power in wind farms can not only reduce the uncertainty of wind power
generation and provide a basis for power grid operation and dispatching but also formulate
maintenance plans for wind farms so as to reduce unnecessary risks and reduce the cost of wind
power generation, while improving the utilization rate of wind energy. There are three types of
forecasting methods (Peng, X et al., 2019; Yan, J.2014; Ding, T et al., 2017; Tian, Z et al., 2015;
Tascikaraoglu, A et al., 2014).

He, Y., et al. (2017) combined the wavelet neural network, support vector machine, and
time-series algorithm to predict the wind power in ultra-short term; the experimental results
show that the combined predictionmodel can greatly improve the prediction accuracy of output
power. Yin, H., et al. (2021) used the LSTM neural network with short-term and long-term
memory ability of time-series data, which is effective when combined with the random search
method to optimize the hyperparameters of the prediction model. Luo, F., et al. (2021) carried
out the pretreatment of nonlinear time-series data based on the LSTM network using singular
spectrum analysis (SAA). Yao, T. (2019) used the sparse autoencoder (SAE) network with a
simple structure, less training difficulty, and stronger feature extraction ability to extract and
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predict the features of wind power. Liang et al. proposed a prediction
method for intelligent identification and fluctuation rule mining of the
fluctuation process of the total output of multiple wind farms, so as to
obtain the trend of wind power 4h in the future.

At present, the difficulty of wind power forecasting lies in the
forecasting accuracy and forecasting timeliness. The traditional
forecasting method takes the average meteorological data as the
input, so the forecast result is also the average power output.

However, with the improvement in the dispatching accuracy, the
average power output cannot meet the requirements. The real-time
change in meteorological data will also cause the collected
meteorological data to be updated in time, which will reduce the
prediction accuracy.

The real operation data of Inner Mongolia and local wind tower
data are used as research samples. First, the digital twin model is
established by use of the improved neural network genetic
algorithm-support vector machine (GA-SVM) model algorithm,
and the initial power prediction is carried out. According to the
approximate meteorological statistical parameters, the actual power
value of the whole wind farm under the approximate historical
conditions is obtained. Finally, the historical data in the wind farm
database are used to revise the preliminary forecast results and get
the final forecast results, namely, the digital twin-predicted value.

Digital twin technology and its
application

In 2010, NASA proposed the concept of digital twins for the first
time in the space technology roadmap. Integrated multiscale,

FIGURE 1
Digital twin architecture.

FIGURE 2
Digital twin structure system of the wind power prediction system.

Frontiers in Energy Research frontiersin.org02

Liu 10.3389/fenrg.2024.1365237

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1365237


probabilistic whole process simulation, with real-time
synchronization, always mapping characteristics, can realize the
interaction between the physical world and the digital scene, by
integration of technical means. With the continuous progress of Big
Data and scientific and technological means, digital twin technology
can accurately integrate physical entities with information models.
According to the high-speed transmission of sensor data, the real-
time state can be changed so that the physical entity can be
effectively simulated, monitored, predicted, and controlled (Chen,
S et al., 2020; Liu, Y et al., 2021; Liu, S et al., 2022).

Digital twinning mainly includes three main parts: the physical
object of real space, the twinning model of virtual space, and the
information of closed-loop interaction between them, as shown in
Figure 1. Real-time closed-loop information exchange is the key and
difficult point in digital twin application.

The concept of digital twin has promoted the rapid development
of smart wind farms and has been increasingly applied in the wind
energy industry. With the support of Big Data, design, construction,
and operations personnel will be able to use the digital twin to
compare the idealized, engineered conditions of the equipment with
the actual conditions of the actual project. In this way, we can
constantly adjust and optimize the way we design, build, and
operate. Digital twin technology will control the whole process of
wind farm management cooperation.

Digital twin model of the wind power
prediction system

Digital twin structure

The digital twin structure for wind power prediction is shown in
Figure 2, which mainly includes four parts: entity layer, data layer,
virtual layer, and decision-making layer.

Entity layer
The physical layer is the basis of the digital twin prediction

system. It includes the wind turbine and wind farm transformer

FIGURE 3
Flow chart of the digital twin wind power prediction system.

FIGURE 4
Flow chart of the wind power compensation algorithm.
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and distribution equipment and is the source of information and
energy of the prediction system and also the real carrier of digital
twin data. By collecting real-time data from sensors, the mapping
relationship between physical devices and digital twins is
constructed, and data for effective running and working
environment are provided for the data layer (Wang, Y
et al., 2021).

Data layer
The data layer should not only realize full coverage but also

have certain self-management and analysis abilities to preprocess
the data to ensure the rationality of the data so as to form a real-
time and accurate perception system for ensuring the normal
operation of the digital twin system (Morello, R et al., 2017). The
data layer is a two-way transmission channel, which has the
characteristics of high efficiency, security, flexibility, and
reliability.

Virtual layer
The virtual layer is the core of digital twin prediction and the key

to predict the power output. The virtual layer takes the collected data
as the input of the algorithm model and trains it to improve the
prediction accuracy of digital twins. In addition, through the search
of the historical database, the actual output value and predicted
value of the instantaneous wind turbine or wind farm under similar
conditions are obtained, and then the results are corrected to obtain
the final results.

Decision-making layer
The decision-making layer can make the grid connection safer

and more stable. According to the obtained wind power prediction
data, it generates the wind power grid connection scheme and guides
the dispatching of the power grid (Fang, F et al., 2020). At the same
time, it can also issue corresponding maintenance instructions in
combination with the actual operation of the wind turbine so that
the wind power system can work normally (Sun, R et al., 2021).

Working principle

The SVM algorithm is used to predict wind power and to
train and model the historical data of active power and its
corresponding variable data and the test data are used to test
the prediction model. First, the sensor is used to collect the real-
time meteorological data of the wind turbine environment. After
normalization, it is tested as the input of the power prediction
model, and the preliminary results are obtained. The SVM
algorithm has good generalization ability and can well-solve
the types of problems in non-linear pattern recognition. On
this basis, the characteristics of the GA algorithm are used to
optimize the parameter finding problem of the SVM.

On this basis, the digital twin is used as the skeleton of the power
prediction model to connect wind farm, twin data, and the
prediction model as a whole; the prediction model and twin data
are interconnected in real time to enhance the timeliness and
reliability of wind power prediction of the wind farm.
Meanwhile, the sensor compensation mechanism is introduced to
compensate the prediction deviation of the wind farm caused by
real-time change of meteorological data so as to further improve the
wind power accuracy. The flow of the digital twin wind power
prediction system is shown in Figure 3.

With the continuous updating of twin data, the compensation of
the meteorological database for prediction power will be more
accurate, and the prediction accuracy will be continuously
improved within a certain range.

FIGURE 5
Forecast results of the single-fan output power of a wind farm.

TABLE 1 Error comparison of single-fan prediction results.

Prediction model Error index

ERMSE EMAE

GA-SVM algorithm model 250.2005 191.3649

Digital twin prediction model 228.0294 182.3214
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Wind power prediction based on the
SVM algorithm

Data preprocessing

Whether the data are selected correctly directly affects the
experimental results. Due to factors such as system failure, wind
power curtailment policy, and environmental impact of
collection, the data of wind farms will be missing and
abnormal. Wind farm output will be affected by
environmental factors such as wind speed, temperature, and
wind direction, but if all influencing factors are taken into
account, it will interfere with the model. Therefore, it is
necessary to select several key variables to predict wind power.

The wind power is calculated as follows:

p � 1
2
ApV3pCppDpφ, (1)

where p is wind power, A is the sweeping area, V is the wind speed,
Cp is the conversion rate of wind energy,D is the air density, and φ is
the power factor.

According to Eq. 1, the sweeping area is related to the fan blade
radius and wind direction angle, and the wind energy conversion
rate varies with the technology of the fan manufacturer; therefore, in
the wind speed prediction for a single fan, the most direct
influencing factors are wind speed and wind direction.

To ensure data continuity, the missing data need to be filled by
linear interpolation. Linear interpolation is often used in the fields of
statistics and computer science.

The linear interpolation formula is shown in Eq. 2:

Pi+m � Pi +m
Pi+n − Pi| |

n
, 0<m< n, (2)

where Pi, Pi+m, and Pi+n represent the values at times i, i +m, and i +
n of the same time series, respectively.

FIGURE 6
Prediction results of output power when wind speed changes greatly.

FIGURE 7
Prediction results of output power when wind speed changes are moderate.
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The collected wind speed, power, and other data will have noise
due to the impact of the environment, which affects the reliability of
the data, in order tomake it complex with the real field environment.
Therefore, the data noise reduction process is carried out. The wind
speed and power data have good continuity and smoothness, so the
wavelet soft threshold denoising method is used for denoising. If the
absolute value of the wavelet coefficient is less than the given
threshold, it is set to 0; when it is greater than the threshold, the
threshold is subtracted from the wavelet coefficient, and the formula
is shown in Eq. 3:

ωλ � sgn ω( ) ω| | − λ( )[ ω| |≥ λ
0 ω| |< λ

{ . (3)

The determination of a reasonable threshold can separate the
signal and noise, so it can denoise effectively.

Data normalization

The next step is data normalization. It is to enlarge or narrow the
relevant data to a relative interval according to a certain proportion
so that the indicators are in the same order of magnitude. Data
normalization is done to process the data, and the formula is shown
in Eq. 4:

y � x − 1
2 xmax + xmin( )

1
2 xmax + xmin( ) , (4)

where xmin is the minimum value of the original data, xmax is the
maximum value of the original data, x is the original data, and y is
the normalized target value.

Establishment of the SVM model optimized
by the genetic algorithm

SVR transforms the non-linear problem into a high-
dimensional linear solvable problem through the mapping of

kernel function. The task of the homing machine is to find the
parameter (ω, b) so that the error between the objective function
f(xi) � ω · xi + b and the actual value is within an acceptable
range (Chen, Y et al., 2021).

Suppose there is a training sample
(xi, yi), i � 1, 2 . . . , I; xi ∈ Rn;yi ∈ R. A nonlinear mapping φ(·)
is used to map the sample space to the feature space φ(xi) and
construct linear regression function in high-dimensional feature
space: y(x) � ωφ(x) + b, where ω is the weight vector,
ω ∈ Rk, b ∈ R. At this time, the problem of nonlinear regression
in the original sample space is transformed into the problem of
linear regression in the high-dimensional feature space. It can be
expressed as an optimization function:

min J ω, ξ( ) � 1
2

ωTω( ) + C∑l
i�1

ζ i + ζ *i( )⎡⎣ ⎤⎦
s.t.

yi − y xi( )≤ ε + ζ i

y xi( ) − yi ≤ ε + ζ *i

⎧⎨⎩ , (5)

where ε is a constant, C is a penalty factor, and ζ i and ζ *i are
relaxation factors.

FIGURE 8
Prediction results of output power when wind speed changes are small.

TABLE 2 Error comparison of wind farm prediction results.

Wind speed change Prediction model Error index

ERMSE EMAE

Large GA-SVM algorithm model 1.9955 1.5097

Digital twin prediction
model

1.8801 1.3114

Medium GA-SVM algorithm model 2.1805 1.8940

Digital twin prediction
model

2.3619 2.0905

Small GA-SVM algorithm model 0.2626 0.2329

Digital twin prediction
model

0.2328 0.1860
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For Eq. 5, Lagrange multipliers ai and a*i are introduced to
transform it into a dual problem, and the optimization function is
given, see Eq. 6:

min I a, a*( ) � 1
2
∑l
i,j�1

a*i − ai( ) a*j − aj( )K xi − xj( )
−ε∑l

i�1
a*i + ai( )

−∑l
i�1

a*i − ai( )yj s.t.
∑J
i�1

a*i − ai( ) � 0

0≤ ai, a*j( )≤C/l, i � 1,/, I

⎧⎪⎪⎨⎪⎪⎩ ,

(6)
where K(xi, xj) � φ(xi)φ(xj) is a kernel function.

Finally, the regression function is Eq. 7:

f x( ) � ∑l
i�1
aiK x, xi( ) + b. (7)

By training the sample data and adjusting the C value and
gamma value most suitable for the model, the prediction model
can be obtained. With the passage of time, the sample database
will be increasingly larger, the twin data will be increasingly
perfect, and the prediction accuracy will be continuously
improved. Digital twinning is based on a large amount of data
and has high requirements for data. It should not only have
timeliness but also have reliability. Therefore, the focus of digital
twinning should be on the process of data and modeling and
simulation. When using MATLAB software for modeling and
simulation, it is necessary to test the model many times and
compare the uncertain quantities in the model again and again
until the expected results are obtained.

Predicted value compensation correction

Because of the meteorological data changes in real time, the
prediction error is increased; the prediction results of the SVM
model optimized using the genetic algorithm should be
compensated and corrected. The paper sets up the wind power
error compensation link. The new data are constructed as the
objective function, and the actual output power and predicted
power of similar meteorological days searched in the historical
database are used to correct the initial prediction results. The
compensation process is shown in Figure 4.

Numerical example and result analysis

The meteorological data and measured data of a wind farm in
Chagan, Inner Mongolia Autonomous Region, are selected for
simulation analysis. The accuracy of the digital twin prediction
model is verified, and it is proved that this prediction method has
reference significance.

The sensors collected data on wind speed, wind direction, and
temperature every 5 min, 24 h a day from April 2020 to May
2020 and uploaded the collected data to the database every hour.
All the data in the database, except for the test day, are used as the

prediction model, and a day in the later stage of the study is
selected as the test day for verification. First, the data of the
detection day are input into the prediction model of the GA-SVM
neural network to obtain the preliminary prediction results.
Then, the corresponding meteorological data are collected into
the previous database for analysis and comparison; the actual
power under similar conditions collected by similar meteorology
is used to correct the preliminary prediction results and obtain
the digital twin-predicted value.

This simulation includes two processes, one is to predict the
power of a single fan in a wind farm in Chagan, Inner Mongolia;
Next, the power of a wind farm in Chagan, Inner Mongolia is
predicted. This study intercepts actual power from April 1 to April
2 in the training database. In the first process, the output power of a
single fan of a wind farm in Chagan, Inner Mongolia, is predicted,
and the results are shown in Figure 5.

According to Figure 5, the digital twin-predicted power curve
and GA-SVM-predicted power curve are roughly consistent with
the expected output curve, but there are still deviations. The
prediction effect of digital twins in some time periods is not as
good as that of the SVM model optimized using the genetic
algorithm, which may be due to the drastic change in weather in
the corresponding time period. It may be that the established
historical database is not updated in time, resulting in the
difference of the compensation effect, or it may be that similar
meteorological data are not searched. In most of the time, the
change in weather is relatively stable and has a good
compensation effect. For a single wind turbine, the predicted
value of the digital twin is closer to the expected output and has
higher prediction accuracy.

Some common error evaluation indexes mainly include EMAE,
ERMSE, average percentage error, accuracy, and qualification rate
(Wang, S et al., 2017). The short-term power errors required by the
national energy administration to be reported to the dispatching
department are root mean square errors. ERMSE and EMAE were
chosen as the evaluation indexes of the prediction model (Huang,
L.2011). The specific formulas are as follows:

ERMSE �

�����������∑n
i�1

pa − pb( )2
n

√√
× 100%, (8)

EMAE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣pa − pb

∣∣∣∣∣∣∣∣∣, (9)

where pa is the actual value, pb is the predicted value, and n is the
number of predicted samples.

The ERMSE and EMAE of the two prediction models are
calculated; it is shown in the following table.

The error comparison of prediction results in Table 1 shows that
for a single typhoon generator set, the ERMSE and EMAE of the
predicted value of the digital twin are higher than the predicted value
of the GA-SVM algorithm. It is concluded that in the prediction of
single-fan output power, the prediction accuracy of the digital twin is
higher as a whole.

In the second process, the power prediction results of a wind
farm in Chagan, Inner Mongolia, are shown in Figures 6–8.

It can be seen from Figures 6–8 that the digital twin-predicted
power curve and GA-SVM-predicted power curve are roughly
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consistent with the expected output curve, and the numerical twin-
predicted power curve is closer to the expected output curve.

The errors can be compared according to Eqs 8, 9, and it is
shown in the following table.

The prediction results in Table 2 show that for the power
prediction of the whole wind farm, the predicted value of the
digital twin under different wind speeds is closer to the expected
output, and the accuracy is higher than that of the SVM model
optimized using the genetic algorithm.

Concluding remarks

The number of samples required for wind power prediction is
small, and the fluctuation of data is large, which requires the
model to be able to handle nonlinear data. The support vector
machine has great advantages in solving multidimensional
nonlinear problems; because the wind power prediction
algorithm of the wind farm is subject to many external
interference factors and the prediction results are often
inaccurate, this study proposes to use the GA algorithm to
optimize the core parameters and penalty factors of the
support meter; the prediction efficiency is improved to a great
extent. At the same time, the digital twin can reliably predict the
wind power in real-time and effectively. By comparing the
prediction results with the results of the traditional wind
power prediction algorithm, the overall accuracy is found to
be high, and then the correctness and reliability of this method
are verified.

Applying digital twin technology to wind power prediction of
a wind farm can not only realize the information exchange,
storage, and processing of the prediction system but also
provide the basis for power grid operation and dispatching so
as to reduce unnecessary risks. It not only provides a reference for
its application in the field of wind power generation but also
promotes rapid development of digital twin and system in a more
standardized way and provides assistance for the construction of
intelligent wind power.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

SL: conceptualization, data curation, formal analysis, funding
acquisition, investigation, methodology, project administration,
resources, software, supervision, validation, visualization,
writing–original draft, and writing–review and editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this article.
This study was funded by Liaoning Provincial Department of
Education Project (NO: LJ242411632054).

Conflict of interest

The all authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Chen, S., Jia, M., and Chen, Y. (2020). Digital twin of the energy Internet and its
application. J. Glob. Energy Interconnect. 3 (01), 1–13. doi:10.19705/j.cnki.issn2096-
5125.2020.01.001

Chen, Y., Zhou, C., and Hou, Q. (2021). Application of SVM algorithm in wind
turbine power prediction. Electron. World, 100–102. doi:10.19353/j.cnki.dzsj.2021.
04.049

Ding, T., Feng, D., Lin, X., Chen, J., and Chen, L. (2017). Ultra-short-term wind speed
forecasting based on improved ARIMA-GARCH model. Power Syst. Technol,
1808–1814. doi:10.13335/j.1000-3673.pst.2016.2357

Fang, F., Zhang, X., and Liang, (2020). Digital twin technology for smart power
generation and its application modes. Power Gener. Technol, 462–470.

He, Y. (2017). “Research on the combination method of forecasting the ultra-short-
term power of wind farm,”. Dissertation (Chengdu, China: University of Electronic
Science and technology).

Huang, L. (2011). “Research on wind farm output forecasting using dynamic neural
networks and application,”. Dissertation (Heilongjiang, China: Harbin Institute of
Technology).

Liang, Z., Wang, Z., and Feng, S. (2020). Ultra-short-term forecasting method of wind
power based on fluctuation lawmining. Power Syst. Technol, 4096–4104. doi:10.13335/j.
1000-3673.pst.2019.2472

Liu, S., You, H., Liu, Y., Feng, W., and Fu, S. (2022). Research on optimal control
strategy of wind–solar hybrid system based on power prediction. ISA Trans. 123,
179–187. doi:10.1016/j.isatra.2021.05.010

Liu, Y., Liu, S., Zhang, L., Cao, F., and Wang, L. (2021). Optimization of the yaw
control error of wind turbine. Front. Energy Res. 9. 626681, doi:10.3389/fenrg.2021.
626681

Luo, F., Zhang, X., and Yang, X. (2021). Load analysis and prediction of
integrated energy distribution system based on deep learnin. High. Volt.
Technol, 23–32. doi:10.13336/j.1003-6520.hve.20201477

Morello, R., De Capua, C., Fulco, G., andMukhopadhyay, S. C. (2017). A smart power
meter to monitor energy flow in smart grids: the role of advanced sensing and IoT in the
electric grid of the future. IEEE Sensors J. 17 (23), 7828–7837. doi:10.1109/jsen.2017.
2760014

Peng, X., Chen, Y., Cheng, K., Zhao, Y., Wang, B., Che, J., et al. (2019). “Wind power
prediction for wind farm clusters based on the multi-feature similarity matching
method,” in 2019 IEEE Industry Applications Society Annual Meeting, Baltimore,
MD, USA, September 2019.

Sun, R., Wang, L., Wang, Y., Ding, R., Xu, H. X., Wang, J., et al. (2021). Ultra-short-
term prediction of photovoltaic power generation based on digital twins. Power Syst.
Technol, 1258–1264. doi:10.13335/j.1000-3673.pst.2020.0711

Frontiers in Energy Research frontiersin.org08

Liu 10.3389/fenrg.2024.1365237

https://doi.org/10.19705/j.cnki.issn2096-5125.2020.01.001
https://doi.org/10.19705/j.cnki.issn2096-5125.2020.01.001
https://doi.org/10.19353/j.cnki.dzsj.2021.04.049
https://doi.org/10.19353/j.cnki.dzsj.2021.04.049
https://doi.org/10.13335/j.1000-3673.pst.2016.2357
https://doi.org/10.13335/j.1000-3673.pst.2019.2472
https://doi.org/10.13335/j.1000-3673.pst.2019.2472
https://doi.org/10.1016/j.isatra.2021.05.010
https://doi.org/10.3389/fenrg.2021.626681
https://doi.org/10.3389/fenrg.2021.626681
https://doi.org/10.13336/j.1003-6520.hve.20201477
https://doi.org/10.1109/jsen.2017.2760014
https://doi.org/10.1109/jsen.2017.2760014
https://doi.org/10.13335/j.1000-3673.pst.2020.0711
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1365237


Tascikaraoglu, A., and Uzunoglu, M. (2014). A review of combined approaches for
prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 34,
243–254. doi:10.1016/j.rser.2014.03.033

Tian, Z., Li, S., Wang, Y., and Gao, X. (2015). Short-term wind speed combined
prediction for wind farms based on wavelet transform. Trans. China Electrotech. Soc.
(9), 112–120. doi:10.19595/j.cnki.1000-6753.tces.2015.09.015

Wang, S. (2017). “Research on short-term power combination prediction method and
evaluation of wind farm,”. Dissertation (Beijing, China: North China Electric Power University).

Wang, Y., and Xu,M. (2021).Wind power fluctuation smooth strategy based on digital twin
hybrid energy storage.Power Syst. Technol, 2503–2514. doi:10.13335/j.1000-3673.pst.2021.0188

Yan, J. (2014). “Uncertainty of wind power forecasting and power system
economic dispatch,”. Dissertation (Beijing, China: North China Electric Power
University).

Yao, T. (2019). “Research on short-term wind power orediction based on auto-
encoder and recurrent neural network,”. Dissertation (Fujian, China: Overseas Chinese
University).

Yin, H., Huang, S. Q., Meng, A. B., and Liu, Z. (2021). Short-term wind power
probability density prediction based on long short-term memory network
quantile regression. J. Sol. Energy, 150–156. doi:10.19912/j.0254-0096.tynxb.
2018-0922

Frontiers in Energy Research frontiersin.org09

Liu 10.3389/fenrg.2024.1365237

https://doi.org/10.1016/j.rser.2014.03.033
https://doi.org/10.19595/j.cnki.1000-6753.tces.2015.09.015
https://doi.org/10.13335/j.1000-3673.pst.2021.0188
https://doi.org/10.19912/j.0254-0096.tynxb.2018-0922
https://doi.org/10.19912/j.0254-0096.tynxb.2018-0922
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1365237

	Wind power short-term prediction based on digital twin technology
	Introduction
	Digital twin technology and its application
	Digital twin model of the wind power prediction system
	Digital twin structure
	Entity layer
	Data layer
	Virtual layer
	Decision-making layer

	Working principle

	Wind power prediction based on the SVM algorithm
	Data preprocessing
	Data normalization
	Establishment of the SVM model optimized by the genetic algorithm
	Predicted value compensation correction
	Numerical example and result analysis

	Concluding remarks
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


