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The major component of the smart grid (SG) is the advanced metering
infrastructure (AMI), which monitors and controls the existing power system
and provides interactive services for invoicing and electricity usage management
with the utility. Including a cyber-layer in the metering system allows two-way
communication but creates a new opportunity for energy theft, resulting in
significant monetary loss. This article proposes an approach to detecting
abnormal consumption patterns using energy metering data based on the
ensemble technique AdaBoost, a boosting algorithm. Different statistical and
descriptive features are retrieved frommetering data samples, which account for
extreme conditions. The model is trained for malicious and non-malicious data
for five different attack scenarios, which are analyzed on the Irish Social Science
Data Archive (ISSDA) smart meter dataset. In contrast to prior supervised
techniques, it works well even with unbalanced data. The efficacy of the
proposed theft detection method has been evaluated by comparing the
accuracy, precision, recall, and F1 score with the other well-known
approaches in the literature.
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1 Introduction

The notable characteristics of the smart grid (SG) that increase the effectiveness of
the current power system are indeed the two-way power and information exchange.
Energy theft has been a severe challenge in the traditional power grid worldwide.
Almost all utilities worldwide suffer significant financial losses due to energy theft,
primarily in developing countries (Keping et al., 2015). Based on the most recent
published research by Northeast Group, LLC, stealing energy costs the world
$89.3 billion/year, among which the world’s top 50 emerging-market countries lose
$58.7 billion/year (Xia et al., 2019). In contrast to the old grid, which manually collects
customer billing information monthly, the new SG measures consumer energy
consumption minute by minute for each device installed at user premises
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(Gupta and Bhatia, 2020). This aids the utility in managing loads,
providing user billing information, and managing energy
utilization (Yu et al., 2021). By providing monitoring
capabilities through numerous sensors and accurate readings,
the SG claims to lower the risk of energy theft by giving the power
utility billing data and price information at a higher frequency,
i.e., on an hour-to-hour basis (Zhang et al., 2017).

However, since the SG relies more extensively on information
and communication technologies, there are more potential
cyber-attack threats, which reduce the SG’s reliability and
result in significant operational and monetary losses (Attia
et al., 2018; Jiang and Li, 2022). There are two entities of
electricity losses: technical losses (TLs) and non-technical
losses (NTLs) in the SG system. TLs are power losses incurred
during electricity generation and transmission. The NTL
category includes energy theft, and it states that the most
common causes of NTLs include conventional methods such
as meter reading bypassing, communication network failures,
meter spoofing, and tampering with meter readings using a
magnet (Kong et al., 2023). However, due to the introduction
of an intelligent digital metering system and the inclusion of an
internet layer in the metering system, there are several new
entrance points for energy theft in addition to the
conventional methods (Sun et al., 2018; Zhang et al., 2021).
As a result, it draws the attention of researchers to the SG’s
cyber security (Jain et al., 2022). Mechanical meters in the old
grid can only be adjusted physically. In contrast, advanced
metering infrastructure (AMI) metering data open the door
for both physical and remote adjustments (Song et al., 2022).
Energy theft attacks against the SG could be initiated by
malicious users who manipulate their smart meters to claim
lower consumption readings to cut their energy bills illegally
(Lin et al., 2022). Thus, the need to locate that malicious user and
secure the system is of utmost importance (Mrabet et al., 2018;
Pengwah et al., 2023).

Historically, to discover irregular energy usage, technicians
must examine consumer monthly consumption data collected
over an extended period, and after that, they must physically visit

each resident community to confirm the condition and
connection of each meter (Cheng et al., 2017; Zhang et al.,
2023a). Due to research into machine learning (ML)
techniques, power utilities now have a new opportunity to
identify unusual electricity usage patterns from a variety of
energy data (Zhang et al., 2023b; Tan et al., 2023). By
identifying anomalous patterns, these techniques can reduce
the workload for system operators and increase detection
accuracy (Guarda et al., 2023). As per previously available
architecture, systems for detecting energy theft are classified
into three groups: state-based or power-based, game-based,
and artificial intelligence (AI)-based approaches (Jokar et al.,
2016), as depicted in Figure 1. In a state-based approach, specific
instruments or metering devices were designed to combat energy
theft. For instance, a hardware-based method was proposed for
identifying fake users (Liu X. et al., 2023; Wang et al., 2024).
Various sorts of sensors and radio frequency identification tags
are used in this system to identify the malicious user. Additional
metrics such as power, voltage, and current are used in the
distribution network to detect electricity theft (Wang et al.,
2021; Zhang et al., 2024). Despite being costly to install and
operate, this system has a good detection rate. Extra devices entail
additional expenditures, and such device types are challenging to
deploy within the current distribution system (Xiao et al., 2013;
Henriques et al., 2014). The game theory-based approach
assumes a game between the service supplier and fraudulent
users. This strategy was based on sound assumptions. Actual user
consumption data are derived from the game equilibrium. This
has been theoretically calculated (Amin et al., 2012). However, it
must still be solved to articulate the utility function of all
stakeholders, including attackers, authorities, suppliers, and
alternative solutions (Amin, 2015; Wang et al., 2023).

The third group includes AI-based methods: AMI uses ML
algorithms to assess customers’ metering data and energy usage
patterns to identify those who may be committing electricity theft
(Gupta et al., 2022; Liu D. et al., 2023). In this, there are primarily
two sorts of schemes: classification-based and clustering-based.
Classification approaches often involve analyzing users’ past

FIGURE 1
Existing energy theft detection approaches.
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electricity consumption data with labels to identify odd trends and
detect suspected electricity theft behaviors. It needs a dataset with
labels (Jiang et al., 2021; Chen Y. et al., 2022). The metering data are
utilized for training the classifier, which then identifies dishonest
users. In contrast, clustering approaches rely on the information
without labels; i.e., by studying the relationship between users,
outliers are identified (Jokar et al., 2013; Yang et al., 2016;
Sharma et al., 2023). Consumers often follow the same pattern
under normal circumstances; hence, deviations from this pattern
may indicate the presence of fraud. The classifier is trained using
various ML techniques using a metering dataset available widely for
research purposes and further used to detect unusual patterns, such
as malicious users (Chen B. et al., 2022; Ma and Hu, 2022). The
classifier’s primary flaw was its poor detection rate and high rate of
false positives. Smart meter historical data are the foundation for the
clustering models, subject to significant dataset fluctuations that
provide a broad range of normal data and low detection rates (Guo
and Hu, 2023; Zheng et al., 2023). This makes it very likely that the
malicious data that the adversaries introduce will go undetected (Li
and Li, 2023; Mo and Yang, 2023). Therefore, there is a requirement
for a detection method that overcomes the abovementioned
restrictions.

Unbalanced or abnormal data are one of the alarming issues
with the current classifier. Real-time samples of normal data are
easily available, but fetching theft samples is difficult. On the other
hand, theft samples are rare or non-existent for a customer. In
addition, algorithms based on classification are susceptible to attacks
on the data values, and accepting faulty consumption values by
adversaries can contaminate the dataset (Yang et al., 2016). If this
factor is not considered properly, it results in a higher false-positive
rate. According to what the author has revealed, a false positive will
prove expensive because when a malicious user is recognized, a
significant amount of procedure is required from the utility. In-
person inspection is one of the steps that must be completed before
an attack can be considered valid for final verification. Therefore, it
is essential to create an adequate model of energy theft detection to
overcome these limitations.

This research article introduces a robust energy theft
detection system leveraging smart metering data using the
AdaBoost ensemble method. The proposed approach addresses
the evasion techniques observed in existing classification-based
theft detection systems. A comprehensive threat model is
presented, accounting for various false data injection (FDI)
attack scenarios. The system acknowledges non-malicious
elements influencing consumption patterns, including
occupant changes, weather variations, and appliance
modifications. By incorporating these factors, our method
achieves a superior detection rate compared to other available
schemes. Experimental assessments were conducted across
diverse FDI attack scenarios, benchmarking against state-of-
the-art methods such as SVM, LR, KNN, NB, and RFC. The
comparative analysis encompassed various performance metrics,
demonstrating the effectiveness of our proposed system in
enhancing energy theft detection accuracy and resilience
against deceptive strategies.

The remainder of this paper is structured as follows: in Section 2,
the relevant work on FDI threats is discussed. The system model of
an SG monitoring system is discussed in Section 3. The suggested

attack detection mechanism is described in Section 4. The
performance of the suggested approach is examined and
compared to other available methods in Section 5. This paper
concludes with Section 6.

2 Related work

This section discusses the studies conducted on the SG’s
security. We are using smart meter consumption data to
identify unethical users. In conventional power networks,
analyzing consumer load profiles for indications of energy
theft has drawn the interest of experts in the past (Cao et al.,
2020; Yang et al., 2023). The majority of recently published works
in the literature are devoted to the detection of fraud. AMI daily
smart meter readings were used to estimate the consumption
pattern of clients using support vector machines (SVMs). The
classifier was trained with normal data and thieved sample data
from the past. The load profiles of the smart meter malicious user
were proposed in a classification-based energy theft detection
system. The identifier was educated using historical data from
theft and normal sample populations. New samples were
categorized based on criteria and SVM outcomes. In a
multiclass study, SVM was trained to distinguish between
regular and malicious load profile samples. Creating a
synthetic dataset addresses and resolves the issue of uneven
training datasets (Jokar et al., 2016; Ahmad et al., 2018). It is
among the most recent models for detecting power theft (Lyu
et al., 2024). It creates a hyperplane to divide the various classes.
The XGBoost-supervised technique was proposed to detect the
non-malicious user (Buzau et al., 2019). The method based on
this ML approach analyzes customer behavior patterns from past
kWh consumption data and identifies anomalous activity. A back
propagation neural network was constructed and used to analyze
SG energy theft (Depuru et al., 2011). The SVM parameters were
estimated via a neural network model to reduce the training time
of the classifier. Additionally, a data encoding technique was
suggested to increase the classifier’s effectiveness and speed.
However, their system only works to identify energy theft
attempts that provide zero-use reports. The metering data are
encoded into binary values and transformed at one process phase.
As a result, various attack types cannot be detected using the
suggested categorization approach. To assess SG power theft, a
broad and deep convolutional neural network model was created
(Zheng et al., 2018). To investigate the attack path for false data
injections against AC-based state estimation in power systems,
we presented a new semidefinite programming-based
convexification framework that detects globally optimal stealth
attacks (Jin et al., 2019). In Alexopoulos et al. (2020), in the case
of zero-injection buses, FDI attacks against a PMU linear state
estimator based on Cartesian formulation were investigated with
the presumption that the attacker would probably attempt to
tamper with as few measurements as feasible. A novel hybrid
attack (Pei et al., 2020) offered a low-cost attack mechanism that
attackers could simply use to target buses with limited
connectivity based on state estimation. To achieve
observability for the entire system, this algorithm deployed
extra-phase measurement units based on a greedy approach
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after prioritizing the protection of the most susceptible buses in
the first phase. The new energy data sample is categorized using
the K-means technique based on the similarity measure. It is one
of the simplest methods available (Aziz et al., 2020).

However, many AI-based approaches need more precision for
specific reasons. Due to the difficulties in obtaining labeling datasets
of electrical thefts, i.e., proper preset thresholds and some external
knowledge, the application of classification algorithms is restricted.
It makes it harder to achieve in real-time situations, compromising
detection accuracy. Unsupervised clustering cannot detect tampered
load profiles with standard forms, resulting in low detection
precision. Neural networks, for instance, are susceptible to
overfitting since they learn the training examples exceptionally
well but fail to generalize to new samples. Consequently, an
effective system for detecting energy theft is essential to
overcome these restrictions. Intending to develop a solution with
low computing costs, better accuracy, and fewer false detections, we
use the AdaBoost method to detect a stealthy attack on smart meter
readings in this study. By creating a synthetic attack dataset and
assuming that stealing trends are foreseeable, we can solve the issue
of unbalanced data. The use of the AdaBoost algorithm is motivated
by the reasons listed below.

1. Compared to most learning algorithms, the AdaBoost
algorithm is less prone to overfitting and corrects
misclassifications generated by poor classifiers. The
classifiers based on this model have positive performance
for anomaly detection problems.

2. Finding relationships between features in large datasets is
challenging due to the various feature types. By integrating
the weak learners for statistical attributes and descriptive
attributes into a strong classifier, the links between these
two different types of attributes are managed organically,
regardless of any forced conversions between statistical and
descriptive features of the dataset.

3. The AdaBoost technique is extremely quick when using
straightforward, weak classifiers. Considering all the points
listed above, we select the ensemble technique. In the proposed
design, we put much effort into creating a reliable system that
can be installed in the control center and use the data from the
smart meter to detect suspicious energy readings and demand
data that have been tampered with.

The proposed algorithm is created for various FDI attack
scenarios to lessen the chance of the power system experiencing
financial loss. The suggested approach was created to effectively
anticipate various cyberattacks.

3 System model

This section discusses the AMI network and attack models used
in this article.

3.1 Network model

One crucial component of the SG is AMI, which is a network of
information and communication, smart meters, and meter data
management systems. The home area network (HAN),
neighborhood area network (NAN), wide area network (WAN), and
utility systemsmake up themajority of the three significant components
that make up the AMI’s communication network, as illustrated in
Figure 2. Smartmeters connected to houses via theHAN are the basis of
the AMI. These meters collect current and voltage usage data in real-
time and send it across the NAN to a data concentrator. These data are
used by the utility for forecasting, demand response (DR), and power
billing. WAN links the data concentrator and control center, and smart
meters facilitate smooth energy generation and consumption balance.
This integration allows for efficient defect detection, real-time customer

FIGURE 2
Network architecture of the advanced metering infrastructure.
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research, and improved smart grid tracking. Overall, smart meters in
AMI improve energy management, billing accuracy, and grid
responsiveness.

3.2 Attack model

The attacker’s approach to attempting an attack is proposed
here. The control center gathers information to analyze
the consumption patterns of consumers and detect faults. An
attacker uses this fine-grained consumption reading and can send
false information to utilities to reduce their bill illegally. The primary
goal of a consumer stealing electricity is to obtain the expended
energy for less money than it is worth. Illegally reporting false bills
creates a financial loss to the utility and a disturbance to energy
management. A list of the many possible energy attacks against the
AMI systems is illustrated in Table 1.

In the proposed threat model, fraudulent data have been
introduced into the system at the consumer’s location primarily
for financial advantage. The paper analyzes the two classes of FDI
attacks, as listed in Tables 2, 3, where et represents the user’s actual
energy consumption throughout the time interval t and at
represents fraudulent energy consumption data collected using
the smart meter.

3.2.1 Partial reduction-based FDI attack class
The primary goal of the user in this kind of FDI attack is to lower

the amount of energy used to benefit financially. The attacker can
inject the reduced consumption as compared to the actual value for
that purpose. The mathematical representation of partial reduction-
based FDI attacks is listed in Table 2. The target of each attack is to
decrease energy usage by the factor α. The objective of the first attack
A1 is to reduce (et) by a flat reduction ratio α, where α is a fixed
number from random (0.1, 0.9). In contrast, the objective of attack
A2 is to dynamically reduce consumption by the factor αt, where αt
varies from 0.1< α< 0.9.

3.2.2 Price control-based FDI attack class
In this, the attacker aims to cause financial loss to the utility

by changing the energy meter data so that total power
consumption will not change but attack the effect financially.
These attacks happen when the DR is used, and the price varies
throughout the day. The mathematical expressions for the price
control attacks A3, A4, and A5 are listed in Table 3. Reversing the
day’s consumption order is done in A3. In A4, the malicious
reading of energy consumption at is equal to the mean of power
readings �et−1 of the previous day multiplied by a fixed random
value α. A5 multiplies each meter reading with a random value
ranging from 0.1 to 0.9 with �et−1.

Figure 3 is the graphical representation of FDI attacks (A1–A5)
and no attack scenario for 1 day. Consumption includes all five types
of attacks and consumption by the user without attack with respect
to the time of 1 day, i.e., 24 hr.

TABLE 1 Summary of energy theft attack targeted at AMI systems.

Attack type Description

Physical attack • Tampering meter readings illegally

o By-passing meter readings using a magnet

o Fake metering

Cyber attack Eavesdropping on confidential information

Gaining privileged system access

Tampering with energy meter storage

Data attack Targeting the metering values

Purposely changing consumption to zero

Revealing the private information of the user

TABLE 2 Mathematical expression of partial reduction-based FDI attack
class.

Type Definition Attack class

Attack 1 (A1) at � αet Partial reduction of consumption

Attack 2 (A2) at � αtet , where 0.1< αt < 0.9 Partial reduction of consumption

TABLE 3 Mathematical expression of price control-based FDI attack class.

Type Definition Attack class

Attack 3 (A3) at � e24−t Price based

Attack 4 (A4) at � α�et−1, where �et−1 is the mean of previous day i values, α = random (0.1,0.9) Price based

Attack 5 (A5) at � αt�et−1, where �et−1 is the mean of previous Price based

FIGURE 3
An illustration of malicious and non-malicious user’s
consumption patterns for a day for different attack scenarios.
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Input: Energy consumption data of N days, with each day

having i energy measurement time

slots; E �
e1
1 . . . ei

1

..

.
. . . ..

.

e1
N / ei

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Output: The measurement value ec

p for that selected day p

and time slot c denoted as ai either belongs to the

faulty (false) class or non-faulty (true) class

1 for ec
p � 1toN do

2 If ec
p is missed, then

3 ec
p � erepeat

max (filled with the most

repeated value)

4 End

5 End

6 p ← p + 1

7 Generation of synthetic attack pattern Ab for

different attack scenarios

8 for b = 1 to 5 do

9 Generation of a synthetic attack pattern for each

value of b

10 Merging Ab with ec
p and generating a

combined dataset.

11 Select the combined meter measurement value ec
q of

the latest q days as a training set

12 Adaptive Boost Ensemble Method

(training dataset)

13 Given: (e1 ,a1), (e2 ,a2),.....(el,al),
where el ∈ E,al ∈ {−1,+1}

14 //Initialization X1(i) � 1
l fori � 1....l

15 for (t1 ,t2 ,t3,.....tT) classifiers do

16 Train weak learners with the Xt distribution

17 get weak hypothesis ht =R → −1(False),+1(true){ }
18 Aim: Select ht with low weight error:

19 βt � Pri ~ Xt[ht(ei) ≠ ai]
20 Choose γt � 1

2ln(1−βtβt
)

21 Update, for l = 1 to i do

22 Xt+1(l) � Xt(l)exp(−γl )aihl(ei)
Zt

, where

Zt is the normalization factor

23 end

24 End

25 for et
pϵ testing dataset to do

26 if et
pϵ faulty user, then

27 false class (malicious consumer)

28 else

29 et
p true class (non-malicious consumer)

30 end

31 End

32 End

Algorithm 1. Algorithm of the proposed theft detection system, TDS.

4 Proposed energy theft detection
model under varying attack scenarios

Our proposedmodel framework comprises fourmodules: proposed
ensemble modeling technique, data preprocessing, training phase, and
testing phase. The first subsection of this section presents a description

of the proposed methodology, an ensemble modeling-based AdaBoost
technique. Then, the subsequent parts cover the remaining three
modules of the theft detection approach, which we use to foil
attempts on the integrity of our energy meter data. The steps of our
proposed approach’s framework for detecting electricity theft are
presented in Algorithm 1.

4.1 Proposed ensemble modeling technique

AdaBoost is a supervised ML-based boosting algorithm to help
classification models perform better. AdaBoost sequentially creates
several learning models. The first model is created by conventionally
fitting the classifier to the given dataset. The second model is then
created by training a second instance of the classifier using the same set
of data, with an emphasis on the samples that the previous model
incorrectly identified. The third model then uses the weak classifiers
from the priormodel to train the classifier. By integratingmisfit samples
of the classifier into a robust classifier or merging weak learners’
decision trees from learning models, very accurate predictions may
be made to improve the final predictive performance of the system.

Let t1, t2, t3, .....tT represent the collection of generated weak
learners of classifiers. Here, the training dataset is represented as etp,
where p represents days taken in the training set, with each day
having i measurement time slots. (e1, a1), (e2, a2), .....(el, al), where
el ∈ E, al ∈ −1,+1{ } is the training set containing l samples, where all
e inputs are an element of total set E and outputs are an element of a
set comprising only two values, −1 (false class, i.e., malicious user)
and +1 (true class, i.e., non-malicious user). X is the weight of the
samples, and i is the ith training sample. X1(i) � 1

l for i � 1....l;
initialize all the weights of your samples to 1 divided by the number
of training samples l. In βt � Pri~Xt[ht(ei) ≠ ai], Pri is the
probability, βt is the minimum misclassification error for the
model, and γt is the weight of the classifier. Assume that
X1, X2, .....Xl are the weights assigned to dataset samples to show
the importance of the data points, where l is the lth training sample.
Some of the key points of the AdaBoost-based algorithm for attack
detection are summarized below.

• Set weights X1(i) � 1/l for i � 1....l, satisfying Eq. (1).

∑c

i�1Xi 1( ) � 1. (1)

• Consider Eq. (1) condition for (t1, t2....., tT) classifiers.
• Update the weights according to Eq. (2) for i � 1, 2, ....l.

Xt+1 i( ) � Xt i( ) exp −γt( )aiht ei( )
Zt

, (2)

where Zt is a normalization factor and γt is the weight of
the classifier.

•Choose the generated weak classifier that minimizes the sum of
weighted classification errors.
• The classifier’s weight is adjusted after each iteration to make it
focus on sample points that are challenging to categorize
correctly. After an iteration, this is accomplished by updating
misclassified sample points with higher weights. In the following
iteration, our learning system would pay more attention to these
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sample points by assigning them increased weights. In contrast,
classifiers would assign less weight to the well-categorized
sample points and give less attention in the next iteration.
The final prediction is then calculated by summing the
weighted predictions from all classifiers.
• It has been demonstrated that using the AdaBoost method, if
the misclassification rates of the weak classifiers are less than
50%, then the weighted classification error rate of the strong
classifier will converge to zero as the number of iterations
increases, i.e., when

T → ∞,∑n

i�1[zwj]Xi I H ei( ) ≠ ai[ ] → 0. (3)

• The basis of Eq. (3) is that misclassification rates for the weak
classifiers are less than 50%.
• By merging the decision trees for the descriptive and statistical
aspects of the smart meter into a robust classifier, the linkages
between these features are naturally handled. This is the primary
reason why our AdaBoost-based algorithm achieves good attack
detection results.

The decision trees reduce the total of the incorrect classification
outputs for true (faulty) and false (non-faulty) samples. The
misclassification rates for the selected weak learners are guaranteed
to be lower than fifty percent, assuring the algorithm’s convergence.

4.2 Data pre-processing

The first step toward training the detection model is data pre-
processing, which includes cleaning the raw data, filling in the
missing values, and removing extreme values. Our power theft
detection model uses energy consumption measurements from a
real smart meter dataset of 5,000 customers for training and
evaluation purposes (ISSDA, 2020). This dataset comprises
energy consumption readings from residential and business
users from 2009 to 2010, spanning 533 days. To enhance the
financial analysis for a statewide deployment, the main purpose
of this study is to assess the impact of user power to find energy
theft. Six data sample files containing records of 533 days in each
file made up the raw dataset. Each file has three columns: the
smart meter identifier, the encoded date and time, and the
amount of energy used in kWh. Every document includes
533 days’ worth of metering information for every client,
captured every half hour, i.e., each user’s daily consumption
data presented by 48 vector components. All of the
consumers’ consumption is included in the raw data
collection. To prepare the data for our experiment, we divided
the raw files by meter ID into many consumption datasets.

Assume e � [e1, e2, e3......., e48] as the customer’s energy
consumption in a day, which is recorded in kWh to the data
concentrator unit of AMI for each 30 min. The whole dataset is

represented as E �
e11 . . . ei1
..
.

. . . ..
.

e1N / eiN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, where N is the total

consumption days, with each day having i measuring slots. We
use the attack scenarios in Tables 2 and 3 to create attack samples.

Missing values are those in which the smart meter cannot record
the meter readings for reasons such as an error in transmission, a
component break, and a bad connection. When missing values are
incorrectly handled, a biased ML model is created, producing
unreliable results. The most repeated value imputation method is
used to fill in the missing value in the proposed method. The
mathematical representation is as follows:

C ei( ) � mode ei( ) eiϵNaN
ei otherwise

{ , (4)

where mode (ei) is the most repeating value of ei and the value of
the data on power usage in one cycle is ei, indicating NaN as if ei is
not a number value.

4.2.1 Feature extraction
In the second phase of the cleaning process crucial for time-

series classification, extreme values are eliminated from the raw
dataset. This step is pivotal for accurate classification results.
Effective feature extraction is vital for enhanced accuracy and
interpretability. The dynamic nature of an individual user’s daily
consumption pattern necessitates stable features reflecting daily and
weekly load patterns. To achieve this, descriptive and statistical
features, detailed in Table 4, are extracted monthly for each time slot
reading across the entire period. Extreme values, indicative of
unusual activities such as vacations or changes in appliances or
residences, are removed to ensure data integrity. This refined dataset
forms the basis for robust time-series classification.

4.3 Training phase

The nextmodule is used to train amodel with the energymeter data
readings for the detection of energy theft. For that purpose, we need
both benign data and malicious data; otherwise, the classifier will face

TABLE 4 List of features extracted.

Descriptive feature Statistical feature

Maximum of weekend Mean of weekend

Minimum of weekend Mean of week

Total of week Auto-correlation

Maximum of week Median of week

Total of weekday Range

Maximum of weekdays Entropy

Total of weekend Quartile 25

Minimum of week Standard deviation

Minimum of weekdays Quartile deviation

Minimum of weekend Coefficient of quartile deviation

Quartile 75

Variance of week

Interquartile range

Mean of weekday
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the problem of data balancing and make the efficiency of the theft
detection system low. As the malicious data are not available and it is
difficult to gather faulty readings, we propose synthetically generating
the malicious dataset for different types of five FDI attack scenarios to
address this issue. The attacks in Table 2 are based upon the partial
reduction of A1 and A2 attacks, and in Table 3, price-based attacks A3,
A4, and A5. Energy theft aims to record less usage than the user uses or
shift high usage to low-tariff times. Therefore, it is easy to produce
malicious samples using benign samples. The suggested ensemble
approach is used to detect intruders using meter reading data once
the data have been properly formatted.We randomly choose 50% of the
data for each user to create five synthetic attack patterns. After
generating attack patterns (Ab, where b � 1: 5), the non-malicious
values are mixed, and the combined dataset is generated. For training
the model, we select the historical data (i.e., measurement values) from
the most recent m days from the combined dataset. As a result, we have
70% of the data for model training and 30% for model testing. The flow
diagram of the proposed algorithm is shown in Figure 4. The model is
also trained for existing AI approaches as per the survey, including
support vector machine, logistics regression (LR), K- nearest neighbor
(KNN), naïve Bayes (NB), and random forest classifier (RFC) to
demonstrate the efficacy of the suggested strategy.

4.4 Testing phase

Following the training set, pre-processing and format conversion
are performed on each new smart meter reading. Determining whether
data are genuine or false, i.e., if testing data belong to the non-malicious

or malicious type, enables us to make detection decisions for false data.
After introducing a synthetic attack, the AdaBoost ensemble technique
is applied to a fresh meter reading to assess whether it belongs to the
faulty or non-faulty class. The newly created sample is uploaded to the
genuine dataset, and the appropriate attack patterns are created and
added to the attack dataset. When the fresh sample presented to the
classifier identified an assault, the smartmeter’s suspicious behavior was
notified. After that,more data samples of the samemeter IDwere tested,
and suspicious behavior was reported q times, indicating energy theft
was discovered. Once energy theft is identified, the required measures,
such as an on-site examination, are taken. Repetition is essential so that,
for any change (change in an appliance, vacation, or seasonal change), a
non-malicious user is not reported, owing to the cost of the on-site
inspection. Priority inspection is assigned to a certain region based on
the number of customers determined to be defective. If the theft is
confirmed, the specific consumer values are included in the attack data
values; otherwise, they remain in the authentic dataset. To show the
effectiveness of our system, we have implemented experiments as
mentioned with other well-known ML techniques and compared
them with the proposed method for each attack type, as discussed
in detail in Section 5 of this article.

5 Results and discussions

To verify the efficacy of the proposed approach, various
supervised algorithms are applied to the data sample described in
Section 4. The performance of our scheme was assessed using the
metrics accuracy (Ac), precision (Pr), recall (Re), and F1 score (Fs)
given in Eqs (5) and (6).

Ac � Tp + Tn

Tn + Tp + Fn + Fp
and Pr � Tp

Tp + Fp
, (5)

Fs � 2pPrpRe( )
Pr + Re( ) and Re � Tp

Tp + Fn
, (6)

where Tp is the proportion of attack samples that were classified
correctly, Fp is the proportion of attack samples that were mistakenly
detected, Tn is the proportion of attack samples that were missed, and
Fn user is identified faulty user as a non-faulty user. Fs strikes a
compromise between Pr and Re, measuring the proportion of honest/
fraudulent customers that are accurately identified as such.

The model performance is better when Ac is high, whereas Fp is
low. The confusion matrix, loaded from the scikit-learn Python
package, was used to test our model. In this paper, we use a positive
class for the honest customer and a negative class for the dishonest
user. The classification method has a problem of prior labeling of the
historical dataset, which is resolved by generating synthetic attack
patterns for different attack scenarios, as discussed in Section 4. The
classifier is trained for all possible types of attack scenariosAb, where
b � 1: 5. Experimental analysis for these five types of attacks is
discussed in subsequent subsections.

5.1 Experiment no. 1

In the first experiment, different existing AI techniques are
applied to the smart meter data for A1. In our experiment, we

FIGURE 4
Framework of the proposed algorithm.
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assume the α value is 0.5. A synthetic attack dataset is generated and
combined with the non-malicious data, forming a new dataset
containing genuine and non-genuine data. In this experiment, we
have taken a ratio of 50% for actual data and 50% for synthetic data
to create the combined dataset of faulty and non-faulty users. KNN,
RFC, SVM, LR, NB, and our method are applied to data samples,
and different metrics of the models are evaluated. Performance
metrics Ac, Pr, Re, and Fs are evaluated for each method and
compared with the proposed method, as shown in Table 5. For
the proposed method, Ac is 85%, whereas for the SVM, it is 83%; for
LR, it is 83%; and KNN it is 79%; additionally, for NB, it is 72%; and
for RFC, it is 84%. Figure 5 shows the region of convergence (ROC)
curve of all the models mentioned on which the experiment is
conducted. ROC is the graph between Tp and Fp, representing the
performance measurement for the classifier.

5.2 Experiment no. 2

This experiment is conducted for A2 belonging to the partial
reduction FDI attack class, in which a synthetic attack pattern is
generated using the definition mentioned in Table 2 and merged
with the normal smart meter data. In this, the malicious value at is

generated by multiplying the real-time energy consumption value et
of the user with the α factor, whose value is in the dynamic range
from 0.1 to 0.9. In the combined dataset, we take the ratio of 70:30%
for genuine and non-genuine data. The different evaluation metrics
are listed in Table 6 for our method and other compared techniques.
For the proposed system, Acis shown as 84%, whereas for the SVM,
it is 67%; for LR, it is 70%; for the RFC algorithm, it is 80%; and for
KNN, it is 66%. The ROC curve for the differences is compared in
Figure 6. As per the result obtained, our method outperforms attack
2 compared to other methods.

5.3 Experiment no. 3

The price control-based FDI attack A3 was the focus of
experiment 3, in which the altered meter reading at is the reverse
of the day’s readings. This assault on the loading mechanism
involves changing the price of energy at various times of the day
while keeping the overall amount of electricity used constant and
reporting used to occur at low-tariff times. The experimental results
of this attack by applying our proposed method are listed in Table 7.
A comparison of different performance metrics shows that our
proposed system achieves an accuracy of 83%, outperforming other

TABLE 5 Performance parameter comparison for A1.

Technique Performance comparison

Ac Pr Re Fs

SVM 0.838 0.656 0.836 0.735

LR 0.834 0.671 0.753 0.710

KNN 0.793 0.598 0.712 0.650

NB 0.727 0.496 0.932 0.648

RFC 0.841 0.692 0.740 0.715

Our method 0.852 0.694 0.808 0.747

FIGURE 5
Comparison of the ROC curve of the proposed method with
existing methods for A1.

TABLE 6 Performance parameter comparison for A2.

Technique Performance comparison

Ac Pr Re Fs

SVM 0.670 0.656 0.836 0.735

LR 0.700 0.682 0.169 0.270

KNN 0.663 0.484 0.337 0.397

NB 0.585 0.439 0.921 0.594

RFC 0.800 0.697 0.697 0.697

Our method 0.848 0.740 0.831 0.783

FIGURE 6
Comparison of the ROC curve of the proposed method with
existing methods for A2.
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methods such as SVM (71%), LR (69%), RFC algorithm (67%), and
KNN (63%). The ROC curve for the different methods is compared
in Figure 7.

5.4 Experiment no. 4

Experiment 4 is conducted for A4 of the price control FDI class,
similar to A3, where fraudulent customers attempt with the same
motive. A faulty meter malicious reading is generated by multiplying
the mean of the whole day consumption by the random number α,
taken as 0.5. Experimental results are listed in Table 8 by applying
our theft detection method, and compared with other methods
described above, the comparison graph is depicted in Figure 8. The
detection accuracy of our system is 90%, which is higher than other
techniques.

5.5 Experiment no. 5

A synthetic attack pattern was generated for A5 in this test.
Malicious reading is obtained by multiplying the real meter reading

value with a random value α varying from 0.1 to 0.9. Experiment
results in comparison are listed in Table 9 by applying our ensemble
boosting technique and compared with other existing methods. The
detection accuracy comparison graph of our technique with others is
shown in Figure 9. Ac of our system is 92% higher than that of other
existing techniques. To validate the effectiveness of the proposed
approach on unbalanced data, the area under the ROC curve (AUC)
has been accessed, showing a comparison of different attack
scenarios (A1–A5) in Figure 10. The AUC is determined by
plotting the receiver characteristics curve, which depicts the
relationship between the false-positive and true-positive rates. It
serves as a comprehensive measure of classification performance. By
leveraging these established metrics, we ensure a thorough
demonstration of the proposed scheme’s robustness and
suitability for handling unbalanced datasets in
classification scenarios.

6 Conclusion

In this study, we provide an ensemble AdaBoost approach for
depicting the relationship between false-positive and true-

TABLE 7 Performance parameter comparison for A3.

Technique Performance comparison

Ac Pr Re Fs

SVM 0.717 0.656 0.836 0.735

LR 0.694 0.682 0.169 0.270

KNN 0.637 0.437 0.972 0.603

NB 0.334 0.294 0.966 0.451

RFC 0.670 0.697 0.697 0.697

Our method 0.839 0.736 0.675 0.704

FIGURE 7
Comparison of the ROC curve of the proposed method with
existing methods for A3.

TABLE 8 Performance parameter comparison for A4.

Technique Performance comparison

Ac Pr Re Fs

SVM 0.817 0.672 0.773 0.719

LR 0.799 0.718 0.550 0.623

KNN 0.740 0.538 0.740 0.694

NB 0.507 0.378 0.976 0.545

RFC 0.692 0.697 0.697 0.697

Our method 0.905 0.799 0.917 0.854

FIGURE 8
Comparison of the ROC curve of the proposed method with
existing methods for A4.
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positive rates. It serves as a comprehensive measure of
classification performance. By leveraging these established
metrics, we ensure a thorough demonstration of the proposed
scheme’s robustness and suitability for handling unbalanced
datasets in classification scenarios or identifying fraudulent

users of the SG framework. Numerous models are combined
sequentially using the ensemble approach to enhance the
ultimate prediction performance. The approach involves
providing high weightage to the misclassified user’s data
samples and iterating again to give better predictions while
reducing the false positive rate (Fp). The whole algorithm
used in this article does not require a predetermined threshold
or any external knowledge. Different statistical and descriptive
features are extracted to consider the extreme conditions in data
samples, as incorrect identification leads to expensive on-site
inspections. The experiment’s results demonstrate that the
algorithm can more effectively identify faulty data in the AMI
through a mix of theoretical analysis and performance
simulation, achieving higher detection accuracy than current
methods. Similar tests on well-known data analysis algorithms
such as SVM, LR, KNN, NB, and RFC were undertaken for
performance evaluation. Moreover, the proposed method
exhibits a higher detection accuracy of 85.2%–92.3% for
attacks 1–5 than that of other state-of-the-art methods,
surpassing well-known data analysis algorithms like SVM, LR,
KNN, NB, and RFC. The recommended solution uses extensive
experimentation on a real-world dataset of 5,000 customers and
provides good performance even with a low sample rate,
protecting users’ privacy.
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TABLE 9 Performance parameter comparison for A5.

Technique Performance comparison

Ac Pr Re Fs

SVM 0.710 0.656 0.836 0.735

LR 0.681 0.682 0.169 0.270

KNN 0.665 0.463 0.978 0.629

NB 0.404 0.324 0.977 0.487

RFC 0.70 0.697 0.697 0.697

Our method 0.923 0.817 0.945 0.877

FIGURE 9
Comparison of the ROC curve of the proposed method with
existing methods for A5.

FIGURE 10
Comparison of the AUC score of different attack scenarios
(A1–A5) for the proposed method with other state-of-the-
art methods.
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