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Addressing the complex challenges in dynamic production forecasting for the
deep-ultra-deep fractured carbonate reservoirs in the Tarim Basin’s Tahe Oilfield,
characterized by numerous influencing factors, strong temporal variations, high
non-linearity, and prediction difficulties, We proposes a predictionmethod based
on Gated Recurrent Unit networks (GRU). Initially, the production data and
influencing factors are subjected to dimensionality reduction using Pearson
correlation coefficient and principal component analysis methods to obtain
multi-attribute time series data. Subsequently, deep learning modeling of time
series data is conducted using Gated Recurrent Unit networks. The model is then
optimized using the Optuna algorithm and applied to the dynamic production
forecasting of the deep-ultra-deep fractured carbonate reservoirs in the Tahe
Oilfield. The results demonstrate that the Gated Recurrent Unit network model
optimized by Optuna excels in the dynamic production forecasting of the Tahe
fractured carbonate reservoirs. Compared with the traditional method, the mean
absolute error (MAE), the root mean square error (MSE) and the mean absolute
percentage error (MAPE) are reduced by 0.04, 0.1 and 1.1, respectively. This
method proves to bemore adaptable to the production forecasting challenges of
deep fractured reservoirs, providing an effective means to enhance model
performance. It holds significant practical value and importance in guiding the
development of fractured reservoirs.
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1 Introduction

The dynamic forecasting of carbonate rock fractured-cavity reservoirs is not only a key
challenge in the field of oil exploration and development but also a crucial step in achieving
sustainable development and efficient production. This study is based on this context,
aiming to improve the accuracy and efficiency of reservoir dynamic behavior prediction
through advanced deep learning technology. Currently, although physics-driven and data-
drivenmethods have been widely applied in this field (McQuillan, 1985; Fletcher et al., 1995;
Chang et al., 2021), they still face many challenges when dealing with specific types of
reservoirs, such as carbonate rock fractured-cavity reservoirs.
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Physical-driven methods are based on in-depth geological
knowledge, reservoir engineering theories, and fluid dynamics
principles. They simulate and predict the dynamic changes of
reservoirs by constructing detailed geological and complex
mathematical models. This approach emphasizes a deep
understanding of underground geological structures, rock
physical properties, fluid flow patterns, aiming to reveal the
physical mechanisms during the oil and gas extraction process
(Guo et al., 2022). This method mainly includes numerical
simulation and analytical model approaches. Numerical
simulation methods divide the reservoir into grids, using
numerical approximation of differential equations to simulate
reservoir dynamic behavior, emphasizing the intrinsic physical
laws of the reservoir and exploring potential dynamic features
and complex interactions (Huang et al., 2011; Kang, 2013; Kang
et al., 2014). Analytical model approaches model and solve the
dynamic behavior of reservoirs through mathematical means.
However, physical-driven methods often face challenges such as
model complexity and difficulty in obtaining parameters, especially
when considering reservoir geological heterogeneity and nonlinear
fluid behavior.

To overcome these challenges, data-driven methods have
gradually emerged. Data-driven methods are based on a large
amount of measured data, utilizing statistical, data mining,
machine learning, and deep learning techniques to learn
patterns and correlations from data, establishing highly adaptive
predictive models. This approach can better cope with the
complexity of reservoir dynamics, especially in situations with a
lack of detailed geological information or the need for real-time
model adjustments. Although these data-driven methods have
achieved some success in the dynamic production forecasting of
fractured reservoirs (Rahman, 2010; Wu et al., 2011; Meng et al.,
2013; Zhang et al., 2019), there are still some challenges and
limitations, such as numerous influencing factors, strong
nonlinear relationships, and difficulties in real-time model
adjustments.

We proposes a deep learning model based on Optuna
optimization, aiming to overcome the challenges and limitations
in the dynamic production forecasting of fractured reservoirs.
Unlike the traditional physics-driven method, this model does
not rely on complex geological and mathematical models, thus
avoiding the high complexity of model construction and the
difficulty of parameter acquisition. At the same time, compared
with traditional data-driven methods, our deep learning model can
automatically learn the patterns and associations in the data by using
a large number of historical production data, so as to deal with the
complexity and nonlinear characteristics of reservoir dynamic
behavior more effectively. Specifically, we establish a deep
learning Gated Recurrent Unit (GRU) model, which is better
suited to handle time series data. Using the Pearson correlation
coefficient method, we extract the most influential feature
parameters for the predictive indicators, eliminating the
interference of redundant features. At the same time, we use the
Optuna automatic tuning algorithm to optimize the
hyperparameters of the GRU model, reducing the time and cost
of manual tuning. This model has powerful nonlinear modeling
capabilities, adapting to new data and pattern changes in dynamic
environments, achieving dynamic prediction of oilfield production

indicators. Therefore, our approach has significant value in
improving prediction accuracy and reducing errors.

2 Methods and principles

2.1 Pearson correlation coefficient

The Pearson correlation coefficient is used to characterize the
degree of correlation in the changing trend between variables, with a
range of values between [-1, 1]. When it approaches 1, it indicates a
strong positive correlation; when it approaches −1, it indicates a
strong negative correlation; and when it is close to 0, it signifies low
correlation (Cohen et al., 2009). The formula for calculation is
as follows:

p x, y( ) � cov x, y( )
σ x( ).σ y( ) �

E x − μx( ) y − μy( )[ ]
σ x( ).σ y( )

Where, x and y represent the correlated variables, μxand μy represent
the means, σ(x) and σ(y) represent the standard deviations of x
variable and y variable respectively, and cov(x,y) is the covariance
between x variables and y. The strength of the variable correlation is
shown in Table 1.

2.2 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a variation of the
Recurrent Neural Network (RNN) introduced by Cho et al. It,
like the Long Short-Term Memory (LSTM), is designed to address
the issues of gradient vanishing and exploding in traditional RNNs
(Chung et al., 2014). Compared to LSTM, the GRUmodel employs
fewer gate units, reducing model complexity while achieving
comparable performance to LSTM in certain scenarios (Sajjad
et al., 2020).

The basic structure of GRU includes an update gate and a reset
gate, which control the influence of input data and the previous time
step’s state on the current time step (Figure 1). The update gate
determines whether the previous time step’s state is retained and
participates in the current time step’s computation, while the reset
gate controls whether the previous time step’s state is ignored. The
introduction of these gate mechanisms allows GRU to effectively
prevent gradient vanishing or exploding when handling long
sequential data. Additionally, it enables GRU to learn long-term
dependencies in a few training steps, thereby improving the model’s
prediction accuracy.

The main computational steps are as follows:

(1) Calculate the reset gate:

Rt � σ Wr · xt + Ur · ht−1 + br( )

(2) Calculate the update gate:

Zt � σ Wz · xt + Uz · ht−1 + bz( )

(3) Calculate the candidate hidden state:

hidet � tanh Wh · xt + Rt ⊙ Uh · ht−1( ) + bh( )
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(4) Update the current hidden state:

Ht � 1 − Zt( ) ⊙ ht−1 + Zt ⊙ hidet

Where, xt is the input at time step t, ht−1 is the hidden state from the
previous time step, Rt is the reset gate, Zt is the update gate, hidet is
the candidate hidden state, and Ht is the updated hidden state at
time step t, σ denotes the sigmoid activation function, and tanh
represents the hyperbolic tangent activation function.Wr,Ur, br, Wz,
Uz, bz, Wh, Uh, bh are the weight matrices and bias parameters of
the model.

2.3 Model hyperparameter tuning with the
optuna framework

Hyperparameters are crucial parameters used in designing a
model, including learning rate, number of iterations, layers, and the
number of neurons in each layer in the context of deep learning
(Khalid and Javaid, 2020). These hyperparameters directly impact
the predictive accuracy of the model, and therefore, optimization is
necessary to enhance model performance. Hyperparameter
optimization involves combinatorial or mixed optimization, but
the evaluation cost is often high, as each evaluation requires
training the model with the hyperparameters to be optimized,
and training deep models can take hours to days.

To address this challenge, Optuna has emerged as an automated
hyperparameter optimization method. Optuna aims to minimize the
value of the objective function and uses Bayesian optimization

algorithms to choose the next set of hyperparameters that are likely
to improve performance based on previous trial results (Ekundayo,
2020; Agrawal, 2021). Specifically, it first defines the search space for
hyperparameters and selects hyperparameters in each trial according to
some strategy. Then, it uses trial results to update the priority of
hyperparameters so that more likely performance-improving
hyperparameters are chosen in the next trial.

This automated hyperparameter optimization method brings
several advantages. Firstly, it can significantly save time and
resources by automating the hyperparameter optimization
process, eliminating the need for manual adjustment of each
parameter. Secondly, Optuna can find the optimal combination
of hyperparameters, thereby improving the predictive accuracy and
performance of the model.

3 Workflow

Our study establishes a workflow for predicting oilfield
development indicators based on the Optuna-optimized Gated
Recurrent Unit (GRU) network model. The flowchart is illustrated
in Figure 2 and can be divided into the following main steps.

3.1 Data preprocessing

This section primarily focuses on handling missing values and
performing standardization on the data. When collecting data, it is

TABLE 1 Pearson correlation coefficient values indicate the degree of correlation of the variables.

Degree of correlation Very strong Strong Moderate Weak Irrelevance

Absolute correlation coefficient 0.8–1 0.6–0.8 0.4–0.6 0.2–0.4 0–0.2

FIGURE 1
Internal structure of GRU neural network neurons.
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common to encounter situations with a significant number of
missing values. Choosing an appropriate imputation method
becomes crucial. Directly removing columns with missing values
may result in the loss of valuable information. Therefore, we adopted
the K-nearest Neighbors (KNN) algorithm to impute missing values
in the data. The KNN algorithm identifies neighboring points
through distance measurement and estimates missing values by
using the complete values of neighboring observations, effectively
achieving data imputation (Yong et al., 2009). The specific steps are
as follows: First, select the value of K as 5, and use the Euclidean
distance as the measure of similarity. For each missing value, we find
its 5 nearest neighbors in the feature space and compute an estimate
of the missing value based on the corresponding feature values of
these neighbors.

After ensuring that the data has no missing values, the next step
is to standardize the data. The purpose of this step is to map the
original data to a distribution with a mean of 0 and a standard
deviation of 1 through linear transformation. This helps eliminate
scale differences between different features, thereby improving
model convergence speed and optimizing the performance and

efficiency of the model. The data, after standardization, is more
suitable for subsequent analysis and modeling work. The
transformation function is as follows:

x′ij �
xij − μj

σj

Where, x′ij represents the value of the jth feature for the ith sample
after standardization, μj denotes the mean of the jth feature, and σj
denotes the standard deviation of the jth feature.

3.2 Feature selection

There are numerous factors affecting production, and to reduce
computational complexity and avoid feature redundancy, we
utilized the Pearson correlation coefficient to quantitatively
measure the degree of association between each feature and the
target variable. Through this method, we can identify features
highly correlated with the target variable, thereby avoiding the
training of many irrelevant features. Additionally, principal

FIGURE 2
Flow chart of production index prediction based on GRU model.
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component analysis (PCA) can be employed for feature
dimensionality reduction. PCA transforms a set of highly
correlated features into linearly independent feature
combinations, eliminating redundant information in the data
and further improving the efficiency and performance of the
model (Maćkiewicz and Ratajczak, 1993; Cheng, 2014).
Specifically, the covariance matrix is computed to obtain
covariance information between dimensions:

c � 1
m − 1

X − �X( )T X − �X( )
Afterwards, perform an eigenvalue decomposition on the

covariance matrix to identify the principal components in the data:

Cvi � λivi

Finally, select the top k principal components to form the
transformation matrix P. Multiply the original data matrix X by
the transformation matrix P to obtain the reduced-dimensional
matrix Y:

P � v1, v2, . . . , vk[ ]
Y � XP

Where, c is the covariance matrix,X is the original data matrix, �X is
the feature mean vector, vi is the feature mean vector, λi is the matrix
containing the corresponding eigenvectors.

3.3 Dataset construction

In this study, we leverage the many-to-many prediction
capability of the Gated Recurrent Unit (GRU) network model to
forecast future indicators based on historical production data
spanning multiple months. In this approach, the value at the
current time step is correlated with the values at previous time
steps. By inputting data frommultiple historical time steps to predict
values for multiple future time steps, the model can more effectively
capture this autocorrelation, thereby enhancing prediction accuracy.
In contrast, predictions for a single time step may be influenced by
noise and fluctuations, while the many-to-many prediction method
can smooth out these fluctuations, resulting in more stable
predictions.

To implement many-to-many prediction, we need to construct
samples consisting of input time series and output time series.

Specifically, we set an initial time sliding window size m and an
output size p, meaning we use data frommmonths to predict data for
p months. Therefore, at time t, the model’s input data is denoted asXt:

xt,1 xt,2 / xt,n

xt+1,1 xt+1,2 / xt+1,n
xt+2,1 xt+2,2 / xt+2,n
/ / / /

xt+m,1 xt+m,2 / xt+m,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Where xt,n represents the nth feature of month t, features include
yield and variables relate to yield.

The corresponding label values are Yt are obtained as follows:

yt+m+1
yt+m+2
/

yt+m+p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The dataset is divided into X = {X1, X2, . . . , XT},Y =
{Y1, Y2, . . . , YT},encompassing data for a total of T months. 80%
of the data is used for training the model, and the remaining 20% is
used for testing the model.

3.4 Model training and
hyperparameter tuning

When designing the Gated Recurrent Unit (GRU) network model,
it is necessary to set some hyperparameters such as batch size, the
number of layers, learning rate, and the number of training epochs. The
training data is then input into the model, and a forward pass is
conducted to obtain the model’s predicted output. Subsequently, the
error between the predicted output and the actual values is computed.
The error function is typically represented as:

MSE � 1
N

∑N
t�1

yt − �yt( )2

Where, N represents the number of future time steps, ŷt is the
model’s predicted value at time step t, and yt is the actual production
at time step.

TABLE 2 The partial feature data description of the Ordovician oil reservoir in the river field of Tahe oilfield.

Self-Jet
wells

openings
(units)

Pumping
well

Openings
(units)

Average
dynamic
liquid

Level(m)

Monthly gas
production
(103m)3

Monthly
oil rate (%)

Monthly
water
cut (%)

Gas-
oil
ratio
(m3/t)

Production
efficiency (%)

mean 269.6 807.8 795 3433.5 81.7 44.1 78.3 0.6

std 62.9 113.7 181.8 780.6 3.9 12.3 13.3 0.1

min 162 577 603.6 1901.2 68.6 27.2 48.6 0.5

25% 208.3 739.5 653.5 2975.8 77.6 33.3 70.9 0.5

50% 278 788.5 682.5 3385.5 83.1 38.1 81.1 0.6

75% 319.3 921 959.8 3989.4 84.7 56.3 86.7 0.7

max 403 1013 1374.3 5416.6 87.4 65.6 107.3 0.9
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The choice of the error function depends on the specific task; for
instance, mean square error (MSE) is used for regression tasks,
cross-entropy loss is employed for classification tasks, etc. Our
objective is to minimize this error function to optimize the
predictive performance of the model.

We utilize the Adam gradient descent algorithm for
backpropagation and updating model parameters, thereby
training the optimized model. Subsequently, we evaluate the
model’s performance using a test dataset to assess its
generalization ability. Additionally, we employ the Optuna
method for hyperparameter optimization, which automatically
searches for the best hyperparameter combination, further
enhancing the model’s performance and efficiency. When using
the Optuna method, it is necessary to specify the search range and
strategy for hyperparameters, as well as define the evaluation
function and target metrics. Ultimately, the optimal
hyperparameter combination is obtained as the output.

3.5 Model prediction

After tuning the model hyperparameters, we obtain an
optimized model that fits the current dataset well. Subsequently,
we can utilize the established model to predict the production for the
next N months.

FIGURE 3
Thermodynamic diagram for correlation analysis of production characteristics based on Pearson correlation coefficient.

TABLE 3 Description of characteristic data after dimension reduction by
principal component analysis.

Feature 1 Feature 2 Feature 3

mean 1.90845 × 10−12 −103.4585 × 10−14 4.05545 × 10−12

std 205121 30914.8 19176

min −286613.5 −64438.8 −41080.1

25% −175140.3 −24251.5 −15493.8

50% −78176.3 6654.6 1210.7

75% 178911.4 23141.7 14198

max 473187.2 68111.5 50022
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4 Application example

In order to verify the reliability and scientific validity of themodel,
this study selects the Ordovician reservoirs in the Tarim Basin’s Tahe
Oilfield as the experimental object. The reservoir depth ranges from
5000 m to 7000m, classified as a deep-ultradeep fractured reservoir.
To date, the cumulative oil production from this field has exceeded
100 million tons. Utilizing over 10 years of production history
dynamic data from 1,556 production wells in this reservoir, the
GRU network model optimized by Optuna is employed to model
and predict the monthly oil production of the oilfield. This provides a
basis for future oilfield development deployment.

4.1 Establishment of monthly
production model

Firstly, to ensure the quality and reliability of the data, it is necessary
to address missing values and conduct standardization on the collected

historical dynamic production data. Subsequently, feature selection
should be applied to these data. Among the nearly 20 features
collected, including monthly injection-production ratio, monthly
underground loss, old well opening rate, monthly oil increase in old
wells, new well opening rate, monthly oil production in new wells,
natural decline rate, comprehensive decline rate, Self-Jet wells openings,
pumping well openings, average dynamic liquid level, monthly oil
production, monthly gas production, monthly water cut, Gas oil
ratio, wellhead oil production rate, wellhead liquid production rate,
production efficiency, andmonthly water injection volume, some feature
descriptions are shown in Table 2. We use the Pearson correlation
coefficient analysismethod to analyze the correlation between all features
and production, as shown in Figure 3. According to the analysis results,
we will exclude features with a correlation with production less than 0.2,
such as new well opening rate, gas-oil ratio, and wellhead liquid
production rate, which have weak correlations. Among the remaining
features, we can observe correlations between them. To avoid
redundancy, it is necessary to use the principal component analysis
method to reduce the dimensionality of these features, transforming

FIGURE 4
Bar chart of the importance of hyperparameters sorted by Optuna output.

FIGURE 5
The process of hyperparameter search with changes in hyperparameter values.
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highly correlated features into a set of linearly independent features
(Table 3). Through this series of processing and analysis, a final time
series dataset with 3 independent features can be obtained, providing a
comprehensive and effective data foundation for subsequent analysis
and model establishment. Finally, the input data of the model are
constructed as

xt,1 xt,2 xt,3 xt,o

xt+1,1 xt+1,2 xt+1,3 xt+1,o
xt+2,1 xt+2,2 xt+2,3 xt+2,o
/ / / /

xt+m,1 xt+m,2 xt+m,3 xt+m,o

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Where xt,1, xt,2, xt,3 represents the value of three independent
features at time t after PCA dimension reduction. xt,o represents
the oilfield production at time t.

the output data of the model are constructed as:

yt+m+1
yt+m+2
/

yt+m+p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Where yt+m+p represents the field production at time p in the future
In this study, the optimization of hyperparameters was

considered crucial for enhancing the accuracy and efficiency of

FIGURE 6
Comparison curve of actual and predicted oil production of Ordovician reservoir in the Tahe oilfield.

FIGURE 7
Comparison of four prediction methods and actual production in the Ordovician reservoir of the Tahe oilfield.
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the predictive model. Therefore, we conducted an in-depth analysis
of six key hyperparameters: time step size, batch size, the number of
layers in the GRU network, learning rate, number of training
iterations, and dropout rate. By integrating the Optuna
framework, with the objective of minimizing loss on the test set,
we performed a comprehensive optimization of these
hyperparameters. This process not only involved searching for
the optimal combination of parameters but also encompassed
every stage from data processing to model training.

In the experiment predicting production indicators of
fractured reservoirs, we set the hyperparameter search to
100 iterations. The results showed that varying these
parameters within a certain range significantly affected the
model’s predictive accuracy and efficiency. Figure 4 illustrates
the ranking of the importance of hyperparameters, where the
number of training rounds was the most significant factor.
Figure 5 details the trend of parameter value changes during
the hyperparameter search process, revealing that the model’s
predictive error was minimized when the number of training
rounds reached approximately 500. This indicates that the model
requires a sufficient number of iterations to learn and adjust its
internal weights for optimal predictive performance. The ideal
range for time step size was found to be between 20 and 30,
suggesting that this range allows the model to better capture the
characteristics of time series data. The optimal range for the size
of the hidden layer was between 200 and 300, indicating that a

larger hidden layer size is necessary for the model to capture
complex features in the data.

Through in-depth analysis and optimization of key
hyperparameters, we achieved significant improvements in model
performance. We used both the optimized and unoptimized models
to directly predict the total oil production of fractured reservoirs in the
Tahe Oilfield. By comparing the prediction results, we found that both
models had relatively low errors on the training set. However, on the
test set, the optimized model showed a higher alignment with the
actual monthly oil production compared to the unoptimized model,
with a conformity rate of up to 89% (Figure 6). This indicates that the
optimized model possesses higher predictive accuracy and stronger
generalization capabilities on the test set.

After comparing the GRU model used in this paper with
traditional production decline methods, BP network, LSTM
network, CNN network and attetion network prediction methods
(see Figure 7), the results show that the prediction method based on
GRU has significant advantages over other methods. To objectively
evaluate the performance of various prediction methods, evaluation
indicators were introduced to intuitively reflect the accuracy and
generalization ability of the models (Hodson, 2022). This paper uses
mean square error (MSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) as key indicators of the model.

MSE � 1
n
∑n
i�1

ŷi − yi( )2

MAE � 1
n
∑n
i�1

ŷi − yi( )2

MAPE � 100%
N

∑N
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Under these evaluation indexes, the prediction performance of
GRU model was 0.06, 0.195 and 0.32, respectively, which reached
the prediction standard, and the yield prediction error of GRU
model was the smallest (Table 4). Although the traditional
production decline method has certain advantages in simplicity
and ease of use, it only considers the impact of time on production
and ignores other potential factors, thus limiting the prediction

TABLE 4 MSE, MAE, MAPE values of 4 methods.

Method MSE MAE MAPE

Traditional decline curve 0.162 0.336 1.43

GRU network 0.06 0.195 0.32

BP network 0.165 0.333 1.5

LSTM network 0.117 0.25 1.05

CNN network 0.18 0.41 1.41

Attention network 0.15 0.35 1.1

FIGURE 8
Comparison of predicted production and actual production of Ordovician reservoir in the Tahe oilfield.
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accuracy. At the same time, we also compared other commonly used
deep learning sequence models, including convolutional neural
networks (CNN) and attention-based networks, which can fit the
actual production curve well in the training set. However, when
these models are applied to the test set, our GRU model shows
excellent performance. The reasons behind this performance are
manifold: Firstly, compared with the Long Short-Term Memory
(LSTM), the GRU model has faster training speed and better
memory management ability, and also overcomes the gradient
vanishing problem that BP neural network often faces when
dealing with long time series data. In addition, the GRU model
demonstrates a more powerful ability to model time series data,
effectively capturing long-term dependencies in time series.
Although CNN and attention-based models perform well in tasks
such as image recognition and natural language processing, they fail
to show the same level of performance as GRU in the task of this
study, ultra-deep fracture reservoir production prediction. This may
be because the local sensing mechanism of CNN cannot adequately
capture the long-term temporal dependence when dealing with
sequential data with complex temporal dynamics. At the same
time, although the attention model can capture long-distance
dependence, it may not play its maximum performance in
specific time series prediction tasks due to the complexity of the
model and the limitation of training resources. These unique
features make our GRU model perform exceptionally well in the
task of predicting the actual production curve, providing an efficient
and reliable solution for production scheduling and optimization in
the oil industry. Through in-depth analysis of the performance
differences between GRU and other models in this task, we further
confirm the advantages of GRU in dealing with complex time series
data, especially in capturing long-term dependencies, thus providing
important guidance for selecting appropriate models in the future.

4.2 Monthly production model
future forecast

Based on the production data of the past 10 years, we optimized
the monthly production GRU model, especially by integrating
seasonal patterns, to improve the accuracy of the forecast. As
shown in Figure 8, the adjusted model is able to more accurately
capture the annual seasonal trough, especially the lowest production
point in February, which is highly consistent with the historical
production pattern. The model forecast shows that the average
monthly production of the oilfield in 2024 is 390 thousand tons,
and the cumulative annual production is 4.69 million tons. In 2025,
the average monthly output is 387000 tons, and the annual
cumulative output is 4.62 million tons. This slow downward
trend in future production is consistent with historical
production trends. The forecast results with seasonal adjustment
will provide a more accurate reference for Tahe Oilfield to formulate
short-term production planning and deployment strategies.

5 Conclusion and recommendations

(1) After a thorough analysis of the limitations in the current
methods for predicting production dynamics in fractured

reservoirs, this study proposes a GRU time series model
based on deep learning. Compared to traditional methods,
this model demonstrates stronger capabilities in modeling
time-series data, effectively addresses the vanishing gradient
problem associated with BP neural networks in handling long
time series data, and exhibits faster training speed and
superior memory management.

(2) By employing Optuna for hyperparameter optimization,
the GRU model established in this study shows higher
accuracy and generalization ability in predicting
production oil volume in the fractured reservoirs of the
Tahe Oilfield. This allows the model to better adapt to the
complex and dynamic production environment,
significantly reducing prediction errors, and achieving a
MSE error as low as 0.06.

(3) Our deep learning model has achieved remarkable success in
dealing with short-term dynamic prediction of fractured-
vuggy reservoir production. However, when the prediction
time span is very long, the model performance may
be limited.

Future research may focus on enhancing long-term predictive
accuracy by investigating more intricate model structures,
diversifying feature engineering, and refining hyperparameter
tuning techniques to overcome current limitations.
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