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In the era of big data, data centers with high energy consumption,
interconnectivity, and load flexibility have developed rapidly. However, due
to data privacy issues, the traditional power-system operational reliability
assessment (ORA) struggles to precisely consider the load flexibility of data
centers, leading to inaccurate evaluation. To this end, this article proposes
an ORA method considering the load flexibility of data centers via the
energy consumption elastic space. By transforming the inner operation
constraints of data centers into an equivalent elastic space, the ORA does not
require any private data to complete the evaluation. Specifically, the energy
consumption model of data centers is established to accurately describe the
load flexibility. Then, based on multi-parametric programming techniques, the
energy consumption elastic space of data centers is characterized by data
centers’ power demand constraints, which do not involve privacy data, and no
privacy concerns exist. Finally, the ORAmodel and the evaluation method based
on the energy consumption elastic space can be constructed. With a lot of data
center operation constraints being replaced by power demand constraints, the
proposed method can complete an evaluation faster without accuracy loss. Its
effectiveness is validated through simulations using the IEEE RTS 24-bus system
and a provincial 661-bus system.

KEYWORDS

data center, multi-parametric programming, power system, operational reliability
assessment, data privacy

1 Introduction

With the rapid advancement of technologies such as 5G, the Internet of Things,
cloud computing, and artificial intelligence, infrastructure construction in the
information industry has escalated year by year, leading to a continuous expansion
in the scale of data centers. Until 2021, China’s data center capacity accounted for
15% of the global total (Technavio, 2021), ranking second to the United States.
As a high-energy-consuming industry (Dayarathna et al., 2015), the total data
center energy consumption in China in 2021 was 225.6 billion kWh, accounting
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for approximately 2.99% of the total electricity consumption
in society. In 2025, the total electricity consumption of data
centers in China will escalate to 395.2 billion kWh, accounting
for approximately 4.10% of the society’s total electricity
consumption.

In data centers, the characteristics of centralized distribution and
easy control are inherent (Alaperä et al., 2018) and exhibit notable
energy consumption elasticity (Vesa et al., 2020). By leveraging
cloud interconnection and data center networks (DCNs), data
centers can facilitate an interconnection between each other and
transfer the computational loads remotely (Bari et al., 2012). This
alters the distribution of computational loads within the power
grid, resulting in the formation of a collaborative “data energy”
network. It not only regulates the energy consumption of the data
centers but also introduces a higher degree of flexibility to the
power system’s operation (Wu et al., 2023b). By transferring the
computational load of the data center, thereby changing the power
loads and alleviating the congestion of related transmission lines
during peak hours, it becomes an effective method for improving
the overall reliability of the power system (Huang et al., 2023),
especially in the context where conventional power sources are being
replaced by large-scale renewable energy sources, whichwould bring
about a significant increase in uncertainty in power generation.
Making reasonable use of data centers’ flexible load characteristics
is an effective approach to leverage demand-side management and
address supply–demand conflicts (Vasques et al., 2019). Therefore,
considering the load flexibility of data centers is a factor that
cannot be overlooked in the impact of power system operational
reliability.

However, due to data privacy concerns, the current operational
reliability assessment still does not consider the load flexibility of
data centers. Existing literature has adequately studied conventional
methods for assessing the operational reliability of power systems
(Xu et al., 2014; Parvini et al., 2017). They can be divided into two
categories: the simulation method that uses a massive number of
states and analytical methods based on mathematical derivations
(Li, 2014). Among these, typical simulation methods like the Monte
Carlo method and analytical methods like the state-space method
all depend on high-precision physical models of components or
networks to achieve precise assessments of the operational reliability
of power systems (Juanwei et al., 2019; Lv et al., 2019). However, the
equipment parameters and operational states of data centers that
exhibit strong energy consumption flexibility are usually internal
data for enterprises. When performing power-system operational
reliability assessments, obtaining high-precision models of data
centers is challenging. As a result, the existing operational reliability
assessments inadequately consider the load flexibility of data centers.
It is urgent to break down the information barriers caused by data
privacy in data centers and develop a new power system operational
reliability assessment method that considers the load flexibility of
data centers.

To address the issue of information barriers, existing research
mainly includes sensitivity equivalent methods (Dai et al., 2018)
andmulti-parameter programmingmethods (Lin et al., 2020).Their
essence is to construct an equivalent model or projected equivalent
space that reflects the characteristics of systems containing private
data. Thus, the private data can be effectively protected. Some
studies employ those methods in cross-regional economic dispatch,

integrated energy systems, and other fields (Tan et al., 2019;
Wu et al., 2023a; Yang et al., 2023). Currently, a substantial amount
of literature focuses on data center load flexibility and conducts
research on data center micro-grid planning, scheduling, operation,
market participation, etc. (Bajracharyay et al., 2016; Yang et al.,
2018; Ye and Gao, 2022). However, no literature research has
investigated the information barriers resulting from data center
privacy issues and their impact on the operational reliability
assessment of power systems.

Therefore, to address the information barriers arising from
data centers’ privacy concerns, this paper presents an operational
reliability assessment method based on the data center energy
consumption elastic space. By transforming the inner operation of
data centers into the elastic space characterized with data centers’
power demand constraints, the operational reliability assessment
considering load flexibility does not require any privacy data of
data centers. Hence, it can effectively break the information barrier
and deal with the data privacy issue. The contribution of this paper
can be summarized as follows: 1) an energy consumption space
calculation method based on multi-parametric programming is
proposed. It transforms the energy consumption model indicating
the load flexibility of data centers into the equivalent constraints of
power demands, named as the energy consumption elastic space.
Therefore, when implementing operational reliability assessments
using the energy consumption elastic space, it can not only consider
the load flexibility of data centers but also protect the privacy data
of data centers; 2) an operational reliability assessment model and
the related evaluation method for power systems based on the
energy consumption elastic space are established. It can not only
address the privacy issues related to data exchange between data
centers and the power grid but can also improve the computational
efficiency by reducing the scale of constraints. Eventually, through
simulations using the IEEE RTS 24-bus system and a practical
661-bus power system, the effectiveness of the proposed methods
is validated.

2 Framework of the proposed method

The data center can achieve power load transfer in the power
grid by exchanging the computation loads along different data
centers, which shows non-negligible load flexibility. In order
to accurately evaluate the operational reliability of the power
system, it is very important to consider the flexible resources in
the power grid. However, describing the load flexibility of data
centers requires private data such as data center IT equipment
parameters and air conditioning system parameters. Due to data
privacy concerns, the information exchange between the power
grid and the data center enterprise is hard to accomplish, and the
information barrier exists. Therefore, it is impossible to obtain the
privacy data of data centers and further consider the flexibility
of the data center in the operational reliability assessment of the
power system.

To this end, this paper constructs the energy consumption
equivalent space to replace the optimization of data center operation.
So the private data of a data center are not required when
implementing operational reliability assessment in the power
system. This equivalent space is composed of some power-demand
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FIGURE 1
Schematic diagram of the proposed method.

constraints in different data centers. As long as the power demands
of different data centers are located in the equivalent space,
there is an operation strategy of data centers that requires the
given power loads. Therefore, after sampling loads of different
data centers, the operational reliability assessment can optimize
the data center load distribution based on the constraints of
equivalent space and, thereby, consider the load flexibility of the
data center without any private data. Moreover, due to the different
formulations and variables in the energy consumption elastic space
and the original energy consumption model, no privacy data of
data center enterprises can be parsed. The schematic diagram is
shown in Figure 1.

The remainder of this paper is organized as follows: first,
the energy consumption model of data centers is introduced
in Section 3. Then, based on the energy consumption model,
the energy consumption elastic space can be calculated,
and the related introduction is provided in Section 4. In
Section 5, the corresponding operational reliability assessment
method based on the data center energy consumption elastic
space is described. Finally, some simulations are introduced
in Section 6.

3 Data center energy consumption
model considering load flexibility

The data center energy consumption model is used to minimize
the operation cost of all data centers under practical constraints,
including data center operation constraints and load transferring
constraints in the regional power grid. Hence, the objective function
and the constraints of the data center energy consumptionmodel are
introduced as follows:

1) Objection function:

minz =∑NDC

i=1
Ci =∑

NDC

i=1
PDC,i ⋅ FΔt, (1)

where Ci represents the total operational cost of the ith data center;
PDC,i denotes the total energy consumption of the ith data center; F

is the electricity price; Δt is the time interval; andNDC represents the
total number of data centers.

2) Power-demand constraint of a single IT equipment:

PIT,i (t) =
{{
{{
{

0 Ii (t) = 0
[(Pmax,i − Pidle,i)ui (t) + Pidle,i](b1 − b2TIT,i (t)) Ii (t) = 1
Psleep Ii (t) = 2,

,

(2)

where PIT,i(t) indicates the power demand of the IT equipment i
in time period t; Pmax,i, Pidle,i, and Psleep are the maximum power
load, static power load, and standby power load of IT equipment i,
respectively; ui(t) is the computing capacity occupancy rate of the ith
IT device in the tth period; bi and b2 are the leakage constants;TIT,i(t)
is the chip temperature for IT equipment i; Ii is a state variable for
the IT equipment i, where Ii can take values 0, 1, or 2, representing
the “off”, “on”, and “standby” states, respectively.

3) Power-demand constraint of air conditioning systems in
data centers:

Paircon,k (t) =
QIT,k + kT,kSdc,k

kCOP,k
, (3)

where kCOP,k is the performance coefficient of the air conditioning
system in data center k; QIT,k represents the heat dissipation of IT
equipment in data center k (it is 97% of the IT equipment’s power
consumption in general); and Sdc,k is the room area of data center k.

4) Total power consumption and computing load of a data center:

PDC,k (t) = ∑
NIT,k

i=1
PIT,i (t) + Paircon,k (t) , (4)

uDC,k (t) = ∑
NIT,k

i=1
ui (t) , (5)

where PDC,k(t) and uDC,k(t) are the total power consumption and
computing load of data center k in the tth period, respectively; NIT,k
is the IT equipment number of data center k.

5) Computing capacity limitation constraints:

uDC,k,min ≤ uDC,k (t) ≤ uDC,k,max, (6)

where uDC,k, max and uDC,k, min are the upper and lower limits of
the total computing power of all IT equipment in data center k,
respectively.

6) Total computing capacity demand-balance constraints:

∑NDC

k=1
uDC,k (t) = ∑

NDC

k=1
DIT,k (t) , (7)

where DIT,k(t) represents the computing capacity demand of data
center k during time interval t.

7) Individual computing capacity demand-balance constraints:

{
{
{

uDC,k (k) = DIT,k (t) −∑
NDC

l=1
ukl (t)

ukl (t) = −ulk (t) ,k ≠ l,
(8)

where ukl(t) represents the computing capacity demand transferred
from data center k to data center l during time interval t.
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8) Computing capacity transfer limitation constraints:

−ukl,max ≤ ukl (t) ≤ ukl,max, (9)

where ukl, max represents the upper limit on the computing capacity
demand transfer between data centers k and l.

9) Temperature constraints of air conditioning systems:

Tout,min ≤ Tout,k (t) ≤ Tout,min, (10)

where Tout,k(t) is the air supply temperature of the air conditioning
system in data center k; Tout,max and Tout,min are the upper and lower
limits of the air supply temperature, respectively.

10) Chip temperature constraints of IT equipment:

TIT,i (t) ≤ TIT,max, (11)

where TIT,max(t) is the chip temperature upper limitation.

11) Airflow temperature constraints of IT equipment:

Tin,min ≤ Tin,i (t) ≤ Tin,max, (12)

where Tin,i(t) is the inlet airflow temperature of IT equipment i;
Tin,max and Tin,min are the upper and lower limitations of the inlet
airflow temperature for IT equipment, respectively.

12) Heat transfer constraint:

The operation of the data center must satisfy the law of
energy conservation. When the IT equipment reaches a thermal
equilibrium state, the sum of the heat emitted by IT equipment
and the heat of the inlet cold air should be equal to the
heat of the outlet hot air, which is described by (13). Eq. 14
represents the constraint of thermal equilibrium in the air
conditioning system.

TIT,i (t) = 97%PIT,i (t)Rin +Tin,i (t) , (13)

Tin,i (t) = Tout (t) +DPIT,i (t) , (14)

where Rin represents the convective heat transfer equivalent thermal
resistance at the inlet of the IT equipment (K/W); D is the heat
transfer coefficient; Tout(t) is the supply air temperature of the
air conditioning system; 97%PIT,i(t) is the heat generated by IT
equipment i.

13) Ramping constraints of IT equipment:

−RIT ≤ PIT,i|Ii=1 (t) − PIT,i|Ii=1 (t− 1) ≤ RIT, (15)

where PIT,i|Ii=1(t) represents the power of IT equipment i during
time interval t when it is in the “on” state; RIT is the power ramping
limitation.

14) Minimum startup time constraints:

TIT−off,i (t) ≥ TIT−off,imin, (16)

where TIT-off,i(t) represents the downtime of IT equipment i;
TIT-off,i, min is the minimum downtime of IT equipment i, typically
ranging from 1 to 2 min.

Eventually, the complete energy consumption model of data
centers in a regional power grid is introduced as (1)–(16). It
is a mixed-integer linear programming problem. To simplify the
energy consumption model of data centers, we assume that all
the IT equipment is in the “on” state. Then, the mixed-integer
linear programming problem can be transformed into a linear
programming problem. It can also include the computing capacity
load transfer along different data centers and the practical operation
constraints.

4 Data center energy consumption
elastic space

In the energy consumption model of data centers, there are
many optimization variables in (1)–(16), denoted as y, such as
Tout,k(t), TIT,i(t), Tin,i(t), Ii, ukl(t), utotal,k(t), Tout(t), PIT,i(t), Tin,i(t),
and TIT-off,i(t). While adding this model to the operational reliability
assessment, the model scale and complexity could increase.
Additionally, it also involves some private data of data centers.
Under the concerns of privacy issues, it is impossible to implement
operational reliability assessments considering the flexibility of data
centers. However, the operational reliability assessmentmainly takes
advantage of the power loads in different data centers to analyze the
adequacy of power systems. To consider the power load flexibility
that the power loads in different data centers could transfer to
each other in a regional power grid, the main task is how to
convert the constraints of the energy consumption model to an
elastic space of power loads. Therefore, this paper builds an energy
consumption elastic space via the multi-parametric programming
technique to replace the initial energy consumption model of
data centers.

For the sake of simplification, the linear energy consumption
model (1)–(16), is reformulated to (17), and (18), where the power
loads of different data centers [PDC,1,PDC,2,…] and[PDC,NDC

]T are
regarded as the programming parameters w. Next, we calculate the
constraints of programming parameters w when (17) and (18) can
be solved to find out an optimal operation plan of data centers:

min
y

z = ETy, (17)

Ay ≤ Bw+D, (18)

where y is the optimization variable in the energy consumption
model of data centers; A and B are coefficient matrices; E andD are
coefficient vectors.

Multi-parametric programming is a mathematical optimization
method used to find the optimal solution among multiple
parameters or variables. It can determine the optimal solution
function based on the programming parameters and the related
region of programming parameters.Thus, in this paper, we calculate
the energy consumption elastic space of data centers using multi-
parametric programming techniques.Theoretically, the elastic space
is solved based on the concepts of “Optimal Partition” and
“Critical Region.”
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4.1 Optimal partition

Wedefine the optimal solution of the linear programmingmodel
((17) and (18)) as y∗ , and then, the active constraints and inactive
constraints in the formula can be represented as follows:

AJy∗ = BJw+DJ, (19)

AJy∗ < BJw+DJ, (20)

where subscripts J and K represent the indices for active constraints
and inactive constraints, respectively.

So the constraints in (18) belong to either the set of active
constraints or the set of inactive constraints, which means A =
[AT

J AT
K ]

T,B = [BT
J BT

K ]
T, andD = [DT

J DT
K ]

T. An optimal
partition (ξ(w),ξc(w)) of the parameter w in the elastic spaceW can
be defined as follows:

ξ (w) ≜ {AJy∗ = BJw+DJ} , (21)

ξc (w) ≜ {AKy∗ < BKw+DK} . (22)

4.2 Critical region

Given parameter wi ∈W, defining (ξi,ξ
c
i )Δ = (ξ(wi),ξ

c(wi)), the
critical region CRξi about wi is defined as follows:

CRξi ≜ {w ∈W |ξ
c (w) = ξci } . (23)

It can be observed that the critical region in (23) is still
determined by private data, but the critical region could be solved via
(21) and (22). First, for any wi ∈W with different active constraints,
the optimization variable y∗ (wi) can be solved based on the
Karush–Kuhn–Tucker (KKT) conditions. According to the basic
sensitivity theorem (Vajda, 2009), the function of y∗ (wi) can be
calculated for anywi with the identical optimal partition aswi.Then,
substituting y∗ (wi) into (22), the critical region CRξi can be derived
as follows in (24):

CRξi = {w ∈W |Cξiw+ Fξi < 0 } , (24)

whereCξi and Fξi are the coefficientmatrices for an optimal partition
(ξi,ξ

c
i ).
Actually, the critical region CRξi is a part of the energy

consumption elastic space.There are many critical regions related to
different optimal partitions. As for the linear programming problem,
every critical region is convex andmutually exclusive, and there is no
void hole between the adjacent critical regions (Pistikopoulos et al.,
2020). Therefore, the energy consumption elastic space W is the
union set of critical regionsCRξi((i = 1,2,…,m)), that is,W = CRξ0 ∪
CRξ1 ∪⋯∪CRξm .

For a better understanding, the schematic diagram of the
energy consumption elastic space of data centers based on multi-
parametric programming is depicted in Figure 2. The figure takes
two data centers as an example to calculate the data center energy
consumption elastic space. The axes PDC,1 and PDC,2 represent the

FIGURE 2
Schematic diagram of the data center energy consumption
elastic space.

required energy consumption for data centers 1 and 2, respectively.
Since those critical regions are convex and mutually exclusive,
we could directly combine them and build the complete energy
consumption elastic space. In mathematics, we merely need to
concatenate the linear constraints of all critical regions and then
remove the boundary constraint where two critical regions are
adjacent. For example, if CRξi and CRξj are two adjacent critical
regions and a line or hyperplane denoting C′w+ F′ = 0 is their
boundary, there must be two contradictory constraints C′w+ F′ > 0
and C′w+ F′ < 0. Therefore, by removing all such constraints,
the final energy consumption elastic space can be obtained,
denoted in (25):

W = {w |Cw+ F < 0 } , (25)

where C and F are the coefficient matrices of the energy
consumption elastic space.

To summarize, this section introduces the methodology to
construct the energy consumption elastic space of data centers.
It is composed of many linear constraints of power demands in
different data centers, which do not include any private data and can
be directly used for operational reliability assessment. The specific
steps to calculate the constraints of the elastic space are given
as follows:

1) Build the energy consumption model (1)–(16) based on the
privacy data of different data centers.

2) Reformulate the energy consumption model from (1)–(16)
into a general formation (17) and (18).

3) Set the programming parameters and optimization variables.
The total energy consumption of each data center PDC,k is
regarded as the programming parameter w, and Tout,k(t),
TIT,i(t), Tin,i(t), Ii, ukl(t), utotal,k(t), Tout(t), PIT,i(t), Tin,i(t), and
TIT-off,i(t) are set to be the optimization variables y.

4) Explore all the optimal partitions and calculate the related
critical regions (24).

5) Concatenate the constraints of all critical regions and remove
the boundary constraint where two critical regions are
adjacent. Eventually, the energy consumption elastic space of
data centers in a regional power grid (25) is constructed.
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5 Operational reliability assessment
method based on the data center
energy consumption elastic space

Operational reliability assessment is essential to quantify
the reliability levels when considering the uncertainties of the
contingency and flexibility of resources. With the development of
data centers, their energy consumption gradually increases and has
a great impact on power system reliability. Hence, in this section,
we build the load-shedding model considering the load flexibility
of the data center, which is the key model for operational reliability
assessment. Then, the complete operational reliability assessment
method is introduced.

5.1 Load-shedding model based on the
data center energy consumption elastic
space

To consider the load flexibility of the data center, the energy
consumption elastic space of data centers is used. Specifically,
the constraints indicating the energy consumption elastic space
are added into the conventional load-shedding model of power
systems. The details of the proposed load-shedding model are
as follows:

1) Objective function

The objective function of load shedding is to minimize the total
cost of the power system, including load reduction cost, wind, and
the photovoltaic abandonment cost.

min
Nb

∑
j=1
[aΔPW,j (t) + bΔPS,j (t) + cCE,j]Δt, (26)

whereNb represents the total number of buses; ΔPW,j(t), ΔPS,j(t), and
CE,j represent the wind abandonment, photovoltaic abandonment,
and load-shedding amount of bus j during t period, respectively; a,
b, and c are the cost coefficients of wind abandonment, photovoltaic
abandonment, and load shedding, respectively.

2) Data center energy consumption elastic space constraints

Data center operations need to satisfy data center operational
constraints and data center load flexibility constraints. In Section 4,
the equivalent elastic space of power demands in data centers (25) is
built. For any power demand of data centers located in the elastic
space, there exists an operation plan for data centers satisfying
the operational constraints and load flexibility constraints. Hence,
the power demand of data centers should satisfy the elastic space
constraints (25):

CPDC + F ≤ 0, (27)

where PDC is a vector indicating the power demands of data centers;
C and F are the coefficient matrices from (25).

3) Power grid operational constraints

There are many kinds of operational constraints in the power
grid, including active and reactive balance constraints, load-
shedding limitations, renewable energy curtailment limitations,

branch power flow, and voltage magnitude constraints. The active
and reactive balance constraints are shown as follows:

Vi (t)
Nb

∑
j=1

Vj (t)(Gij cosθij (t) +Bij sinθij (t))

= PG,i (t) − PD,i (t) − PDC,i (t) +CE,j, i = 1,…,Nb, (28)

Vi (t)
Nb

∑
j=1

Vj (t)(Gij sinθij (t) −Bij cosθij (t))

= QG,i (t) −QD,i (t) +QD,i (t)
CE,j

PD,i (t)
, i = 1,2,…,Nb, (29)

where PG,i(t) and QG,i(t) are the active and reactive generation in
the bus i at period t, respectively; PD,i(t) and QD,i(t) are the active
and reactive loads in bus i at period t, respectively; PDC,i(t) is the
power load of the data center in bus i at t period; Vi(t) is the voltage
magnitude of bus i at period t; θij(t) is the phase angle difference
between bus i and j at period t;Gij and Bij are the real and imaginary
parts of the ith row and the jth column elements of the admittance
matrix, respectively.

Moreover, the load-shedding amount CE,j(t), wind
curtailment quantity ΔPW,m(t), and photovoltaic curtailment
quantity ΔPS,n(t) should satisfy their upper and lower
limitations:

0 ≤ CE,j (t) ≤ PD,j (t) , j = 1,2,…,Nb, (30)

0 ≤ ΔPW,m (t) ≤ PW,m (t) , m = 1,2,…,Nw, (31)

0 ≤ ΔPS,n (t) ≤ PS,n (t) , n = 1,2,…,Ns, (32)

where PW,m(t) and PS,n(t) represent the active power generation
of wind farm m and photovoltaic station n, respectively; Nw and
Ns are the numbers of wind farms and photovoltaic stations,
respectively.

The voltage magnitude Vj(t), active generation PG,i(t), reactive
generation QG,i(t), and branch active power Pl,i(t) should satisfy
their upper and lower limitations:

Vj,min ≤ Vj (t) ≤ Vj,max, j = 1,2,…,Nb, (33)

PG,i,min ≤ PG,i (t) ≤ PG,i,max, i = 1,2,…,Ng, (34)

QG,i,min ≤ QG,i (t) ≤ QG,i,max, i = 1,2,…,Ng, (35)

Pl,i,min ≤ Pl,i (t) ≤ Pl,i,max, i = 1,2,…,Nl, (36)

where subscripts max and min represent the upper and
lower limits, respectively; Nl represents the total number of
transmission lines.

In summary, the operational reliability assessment model of
power systems is constructed as (26)–(36). By replacing the data
center operational constraints and data center load flexibility
constraints with energy consumption elastic space constraints,
the above load-shedding model not only safeguards the internal
operational data of data centers but also accomplishes the evaluation
ofpower systemoperational reliability considering the loadflexibility
of data centers.
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5.2 Evaluation method based on the data
center energy consumption elastic space

After building the load-shedding model using the energy
consumption elastic space, the complete operational reliability
assessment method can be established. Compared with the
conventional operational reliability assessment based on the Monte
Carlo simulation method, it first calculates the energy consumption
elastic space and then begins the assessment of power system
operational reliability. The detailed flowchart of the assessment
process is depicted in Figure 3.The detailed descriptions of themain
steps are introduced as follows:

1) Calculate the energy consumption elastic space of data centers
referring to Section 4.

2) State sampling and analysis: After building the energy
consumption elastic space of data centers, it needs to sample
the state of the power system and data center. We use the
Monte Carlo method to sample random variables such as the
states of system components (generators, transmission lines,
transformers, etc.), load PD,i(t), active power generation of
wind farms PW,m(t), active power generation of photovoltaic
stations PS,n(t), and the energy consumption of data centers
PDC,k(t) to determine the operating states of the power system.
Then, we solve power flow equations to determine whether
there are any violations of constraints. If any violation exists,
start c), otherwise start d).

3) Minimum load-shedding calculation. When any violation
occurs, it needs to dispatch the generation of generators
or shed some loads to ensure the safety of power system
operation. Therefore, we directly solve the load-shedding
model (26)–(36). If the load-shedding amount is 0 for all
buses, it means that the dispatch could reduce the violations of
constraints. Otherwise, it needs to shed some loads tomaintain
the safety of the power system. Record the load-shedding
amount CE,j(t), wind curtailment quantity ΔPW(t), and solar
curtailment quantity ΔPS(t) and go to d).

4) Updating operational reliability indicators: Based on the
minimum load-shedding results, the power systemoperational
reliability indicators considering the load flexibility of data
centers are calculated. In this paper, the indicators used include
the data center energy efficiency indicator (APUE), power
system operational reliability indicators (EDNS, PLC, EWPA,
and ESPA), and their improvements (CDED, CDPL, CDEW,
and CDES), as shown below( 37)–(45):

EDNS =∑
x∈GE

P (x)CE (x) , (37)

PLC =∑
x∈GE

P (x) , (38)

EWPA =∑
x∈GW

P (x)ΔPW (x) , (39)

ESPA =∑
x∈GS

P (x)ΔPS (x) , (40)

APUE (t) =
∑NDC

k=1
PDC,k (t)

∑NDC

k=1
PIT,k (t)
, (41)

CDED = (EDNS0 −EDNS1)/EDNS0, (42)

CDPL = (PLC0 − PLC1)/PLC0, (43)

CDEW = (EWPA0 −EWPA1)/EWPA0, (44)

CDES = (ESPA0 −ESPA1)/ESPA0, (45)

where P(x) is the probability of the system state x; GE, GW, and GS
are the sets of states in which load-shedding, wind abandonment,
and solar abandonment occur; CE(x), ΔPW(x), and ΔPS(x) represent
the load-shedding amount, wind curtailment quantity, and solar
curtailment quantity for the system state x; subscripts 0 and
1 represent “not considering” and “considering” data centers’
flexibility, respectively.

5) Convergence determination: using the maximum variation
coefficient of operational reliability indicators (EDNS, PLC,
EWPA, and ESPA) and the maximum sample number Kmax
as convergence criteria, if the convergence condition is met,
terminate the calculation. Otherwise, proceed to the next
sampling and return to b).

6 Case study

To verify the effectiveness of the proposed methods, we refer to
the actual operating data of a domestic internet company (see the
Supplementary Material). All the simulations are implemented in
MATLAB software.

6.1 Case description

Under the premise that the energy consumption of the data
center accounts for the same proportion of the total energy
consumption in the power system, a simulation analysis was
conducted using the IEEE RTS 24-bus system and the actual
provincial power grid with the 661-bus system. All simulations are
tested in the hardware environment of Intel® CoreTM i7-9750H
CPU @ 2.60 GHz, 24 GB RAM. As for the random variables, we
assume that the stochastic characteristics of the load and data center
loads within the power system all follow a normal distribution
with a standard deviation of 5% of their expectations. The
wind farm and photovoltaic station generation follow the Weibull
distribution and beta distribution, respectively. The convergence
criterion for sampling is either when the maximum variation
coefficient of the reliability indicator is less than or equal to 0.05
or when the number of samples K reaches 100,000. We mainly
compare S0, S1, and S2 (the computation time of S2 includes the
time to calculate the energy consumption elastic space of data
centers):

S0: Operational reliability assessment does not consider data
center load flexibility.

S1: Operational reliability assessment considers data center load
flexibility by directly adding the operation and flexibility constraints
of data centers.
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FIGURE 3
Operational reliability evaluation flowchart based on the data center energy consumption elastic space.

S2: The method proposed in this paper.

6.2 Simulation analysis

6.2.1 Simulation in the IEEE RTS 24-bus system
In the IEEE RTS 24-bus system, buses 19 and 6 are connected

to data center A, and bus 8 is connected to data center B.
The parameters of data centers A and B can be found in the
Supplementary Material. By assessing the operation reliability of the
power system using different methods, the results of all indicators
are listed in Table 1.

Based on the data in Table 1, it can be observed that the
performance of various indicators is the same in S1 and S2. It
indicates that the use of the energy consumption elastic space does
not bring errors into the operational reliability result. Without
any private data utilization, the proposed evaluation method can
effectively deal with the data privacy issue. When comparing the
S2 with the S0 scenario, the EDNS, PLC, EWPA, ESPA, and APUE
indicators have all been significantly reduced, with reductions of
75.3%, 92.8%, 68.8%, 67.4%, and 20.3%, respectively. The primary
reason for this outcome is attributed to the load flexibility of data
centers to alter the load distribution within the power system.
This strategy effectively mitigates the issues of transmission line
congestion, thereby enhancing the overall operational reliability
of the system. Therefore, by considering the load flexibility

TABLE 1 Simulation results in the IEEE RTS 24-bus system.

Scene S0 S1 S2

EDNS (MW) 4.62 1.13 1.13

PLC 0.14% 0.01% 0.01%

EWPA (MW) 4.32 1.35 1.35

ESPA (MW) 3.44 1.12 1.12

APUE 1.53 1.23 1.22

CDED - 75.5% 75.3%

CDPL - 92.8% 92.8%

CDEW - 68.7% 68.8%

CDES - 67.4% 67.4%

of data centers via the energy consumption elastic space, the
operational reliability assessment does not need any private data
and accomplishes an accurate evaluation of the reliability level
in power systems, which demonstrates the effectiveness of the
proposed method.
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TABLE 2 Sampling information and calculation time of different methods
in the IEEE RTS 24-bus system.

Scene S0 S1 S2

Calculation time (s) 331 388 84

Sampling number K 5521 6430 1920

Average time (s) 0.06 0.06 0.04

FIGURE 4
Energy consumption elastic space of the three data centers.

Furthermore, in comparing the calculation time of S1 and S2,
as shown in Table 2, the calculation time of S2 is only 84 s, which is
78.3% lower than the calculation time of 388 s of S1.This reduction is
attributed to the utilization of the energy consumption elastic space
calculated using the multi-parametric programming technique,
which replaces the data center operation and load flexibility
constraints in S1. For example, in this simulation, the energy
consumption elastic space is shown in Figure 4. In the figure, the axes
PDC,6, PDC,8, and PDC,19 represent the required energy consumption
of the data centers at bus 6, 8, and 19, respectively. When calculating
load-shedding as K = 462, the programming parameters PDC,6,
PDC,8, and PDC,19 are 4.76 MW, 2.54 MW, and 3.19 MW, respectively,
which are identical to those of S1. However, as for this state in
S2, it merely takes 0.04 s, while S1 requires 0.06 s. This indicates
that the energy consumption elastic space not only intuitively
describes the required energy consumption of data centers but
can also replace the data center operation and load flexibility
constraints in the power system operational reliability assessment
model, thus improving computational efficiency. Simultaneously, it
resolves the issue of data privacy between the power grid and data
centers, safeguarding the privacy of internal data such as data center
computational loads.

In summary, the utilization of the energy consumption elastic
space can effectively address the data privacy issues between

TABLE 3 Simulation results in the actual 661-bus power system.

Scene S0 S1 S2

EDNS (MW) 37.21 4.76 4.75

PLC 1.52% 0.03% 0.03%

EWPA (MW) 11.87 2.77 2.76

ESPA (MW) 8.53 1.85 1.85

APUE 2.37 1.48 1.47

CDED - 87.2% 87.2%

CDPL - 98.0% 98.0%

CDEW - 76.6% 76.7%

CDES - 78.3% 78.3%

TABLE 4 Sampling information and calculation time of different methods
in the practical 661-bus power system.

Scene S0 S1 S2

Calculation time (s) 1503 2027 308

Sampling number K 27,521 28,965 7,074

Average time (s) 0.05 0.07 0.04

data centers and power grids and improve the operational
reliability of the power system. Moreover, with many operations
and load flexibility constraints replaced by energy consumption
elastic space constraints, the computational efficiency can also
be improved.

6.2.2 Simulations in the actual provincial power
grid with the 661-bus system

To further investigate the utilization of the energy
consumption elastic space in large-scale power grid
operational reliability assessments, this simulation references
a practical power system with the 661-bus system in a
certain province. The data center parameters can be found
in the Supplementary Material. The indicator results and
calculation time of different methods are shown in Table 3 and
Table 4, respectively.

From Table 3, it can be observed that the various indicators
are quite consistent under both S1 and S2 scenarios. The EDNS,
PLC, EWPA, ESPA, and APUE indicators are significantly reduced
compared to the S0 scenario, with reductions of 87.2%, 98.0%,
76.6%, 78.3%, and 37.9%, respectively. Further comparing the
calculation time of S1 and S2, as shown in Table 4, it can be
seen that the calculation time of S2 is only 308 s, which is
84.8% lower than that of S1, indicating that in the large-scale
power system, the use of the energy consumption elastic space
can also improve the computational efficiency without accuracy
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loss and break theinformation barrier between the data centers
and power grid, which demonstrates the effectiveness of the
proposed method.

It is worth noting that, compared to the IEEERTS 24-bus system,
the reduction in computation time for S2 in the practical 661-bus
system is even more substantial than that for S1. It indicates that in
larger andmore complex power systems, the utilization of the energy
consumption elastic space based onmulti-parametric programming
can further simplify the variables and constraints in the reliability
assessmentmodel, leading to evenmore significant improvements in
computational efficiency.Therefore, the proposedmethod has a high
practical value for improving power system operational reliability
assessment, and it is worth further promotion and application.

7 Conclusion

The increasing penetration of renewable energy sources has
added complexity and randomness to power system operational
reliability assessment. It is necessary to consider flexible resources
to overcome the increasing randomness, such as the load flexibility
of data centers. However, data centers and power grids belong to
the demand side and supply side, respectively, in actual situations.
When conducting the power systemoperation reliability assessment,
it is often impossible to obtain the internal operation data of the
data center due to data privacy issues. To this end, this paper
proposes an operational reliability assessment method considering
the load flexibility of data centers via the energy consumption
elastic space. Through simulations using the IEEE RTS case and
practical power grid cases, the simulation results indicate that the
proposed power system operational reliability assessment method
can deal with the data non-interoperability and data privacy issues
between the data center and the power grid and does not have any
calculation accuracy loss. It has great potential to improve the power
system operational reliability. However, as the data centers belong
to the demand side in the power grid, how motivating the data
center enterprises to participate in the power system operational
reliability assessment could be a significant problem and is worthy
of further research.
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