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Accurate CO2 tracking in electric substation construction is vital for climate
efforts, using monocular SLAM for monitoring despite challenges like sunlight
and complex terrain. Additionally, these methods typically yield only aggregate
carbon emission data, thereby lacking the granularity necessary for precise
monitoring throughout the construction process. These limitations compromise
mapping accuracy and impede the integration of digital twins and IoT
technologies. Addressing these issues, this paper proposed a methodology
combining red, green, and blue (RGB) cameras and multi-camera collaboration
with digital design systems, enhancing SLAM capabilities. The advanced
technique integrated methods including overlap estimation, depth reasoning,
noise reduction, and surface reconstruction to create accurate 3D models,
enhancing scene reconstruction and real-timeCO2 tracking during construction
and operation. Leveraging continuous on-site cameramonitoring as a substitute
for manual inspections, it significantly contributes to the compilation of a
comprehensive carbon emission database within a digital twin framework.
Experimental results confirmed the proposed method’s superiority over
previous works in real-time CO2 estimation, enhancing decision-making,
resource management, and sustainable energy development. Overall, besides
its application in substation construction for CO2 monitoring, this methodology
can also be applied to carbon tracking in various other construction projects.

KEYWORDS

3D mapping, digital twin system, electric substation construction, multi-camera vision,
real-time CO 2 estimation, simultaneous localization and mapping (SLAM)

1 Introduction

The field of computer vision technology has witnessed remarkable advancements
that have provided sophisticated techniques for scene reconstruction and mapping,
widely adopted in robotics, autonomous vehicles, and construction (González et al.,
2015; Voronin et al., 2020). In the construction industry, synchronous positioning and
mapping technology has emerged as crucial tools for achieving a digital twin system
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capable of synchronously mapping with cartography (Tay et al.,
2017). This technology enables construction professionals to
accurately and efficiently map the physical construction site with its
digital counterpart, facilitating improved planning, monitoring, and
decision-making throughout the construction process.

The necessity for carbon monitoring in substation construction
arises from the substantial impact such projects can have on
the environment, contributing significantly to the overall carbon
footprint. Video methods, including camera-based monitoring
and computer vision techniques, are increasingly used in carbon
monitoring due to their ability to provide continuous, detailed,
and dynamic observations of construction activities. These methods
offer the potential for more precise quantification and tracking
of carbon emissions, aligning with environmental regulations and
sustainability goals.

Acknowledging the significant impact of substation
construction on the environment, the issue of climate change and its
associated impacts has garnered significant attention, with a push
towards integrating advanced technologies to mitigate greenhouse
gas emissions. The international community has responded by
establishing a legally binding multilateral environmental treaty
to mitigate greenhouse gas emissions (Hoffmann, 2011). China,
as a rapidly growing emerging economy, faces the dual challenge
of balancing economic development and environmental pollution
(Dollar et al., 2020; Zhao et al., 2022b). Being the world’s largest
CO2 emitter, China has made commitments to peak its emissions
around 2030 and reduce intensity by 60%–65% based on the 2005
level (den Elzen et al., 2016). The power generation sector, being a
significant contributor to greenhouse gas emissions, plays a crucial
role in achieving these reduction targets.

To address the challenges posed by global warming, various
countries and international organizations have taken steps to
improve environmental regulations and reduce greenhouse gas
emissions. China, in particular, has announced voluntary reduction
goals through its Intended Nationally Determined Contributions
(INDC), aiming to decrease domestic greenhouse gases by 37%
(Fang et al., 2019). While previous studies have focused on CO2
emissions from vehicle fuels and road transportation, accurate
quantification of CO2 emissions resulting from energy and raw
materials used in transportation infrastructure construction has
only recently gained attention (Li et al., 2020).

Figure 1 illustrates the factors influencing CO2 emissions
in electric substation construction, including building materials,
electrical infrastructures, and miscellaneous elements, highlighting
their roles in determining emission levels throughout construction
activities.

1.1 Aim and objectives

The objective of this work is to facilitate green and low-carbon
management of electric substations throughout their life cycle
by developing a comprehensive carbon emission measurement
system that accurately reflects construction progress and operations.
Leveraging advancements in machine learning, computer vision,
digital twin, and Internet of Things (IoT), this research seeks
to optimize construction efficiency, environmental monitoring,
and energy-saving equipment adoption. It emphasizes sustainable

practices and materials to reduce energy consumption and
emissions, thereby enhancing power engineering sustainability
and aiding the development of a low-carbon power system.
With a focus on life cycle carbon emission analysis and effective
reduction strategies, this study contributes to setting improved
construction standards and aligns with global “Peak Carbon”
and “Carbon Neutrality” objectives. By incorporating digital twin
and computer vision advancements, the study addresses China’s
commitment to emission reduction, specifically in the construction
sector, to optimize practices and achieve sustainable development
goals through precise CO2 emissions quantification and
management.

1.2 Related works

Several studies have contributed to our understanding of
CO2 emissions in various domains, including construction, power
generation, and indoor reconstruction. Estimating and analyzing
CO2 emissions in the construction sector has been a key focus
of research. A study conducted in Xi’an, China, investigated the
CO2 emission characteristics of urban road corridor construction,
highlighting the significant contributions from road sub-projects
including lime-fly ash, cement, and lime (Li et al., 2020). The
examination of CO2 emissions associated with apartment housing
during the construction process revealed that construction work
involving reinforced concrete accounted for a substantial portion of
the CO2 emissions (Lee et al., 2018).

In the power generation sector, CO2 emission determinants have
been identified and analyzed through regression analysis, and a
transition from coal, natural gas, and oil to renewable resources and
nuclear energy has been advocated as an effective emission reduction
strategy (Zhou et al., 2021).

Advancements in indoor reconstruction techniques have
focused on developing robust techniques to address occlusions and
clutter, involving planar surface extraction, openings detection, and
occluded regions reconstruction, thereby facilitating semantically
rich 3D indoor building models (Mura et al., 2013). Concurrently,
optimization research in surveillance camera placement within
buildings has considered coverage, cost, and machinery movement
efficiency (Albahri and Hammad, 2017).

Other research has analyzed the impact of energy mix transition
on CO2 emissions in the power generation sector (Wei et al.,
2021), while investigations into temporal factors for CO2 emissions
in buildings emphasize the significance of accommodating
fluctuating energy demands across various times (EVANS
and SIDAT, 2017).

In the realm of camera-based research, LIFT-SLAM introduces
an innovative monocular SLAM technique that integrates deep
learning-based feature descriptors with conventional geometry-
based methodologies. This integration enhances the system’s
robustness to sensor noise and environmental adversities (Bruno
and Colombini, 2021).The adoption of event-based cameras offers a
solution to the visual odometry (VO) data overload challenge, with
a hybrid approach that improves odometry performance through
high time resolution and accuracy, demonstrating the potential
for advanced, efficient data processing in dynamic environments
(Mohamed et al., 2020).
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FIGURE 1
Multiple factors influencing carbon emissions during substation construction.

1.3 Problem statement

The substation construction industry relies on synchronous
positioning and mapping technology for precise and reliable
mapping in complex environments. However, the existing
monocular camera-based simultaneous localization and mapping
(SLAM) methods face challenges including direct sunlight
interference, foreground occlusions, rough terrains, sensor
failures, and scarcity of stable textures, leading to incomplete and
inaccurate reconstructions. Additionally, traditional monocular
camera-based SLAM for carbon accounting is limited to
providing total CO2 emissions, while CO2 estimation from
substation construction, which spans over years, is a complex
task requiring detailed and continuous monitoring. Monocular
SLAM methods lack the depth and detail needed for such
extensive CO2 emission estimation, making them insufficient
for comprehensive carbon tracking over the construction and
operational phases. This not only impedes precise mapping
and affects construction efficiency, accuracy, and safety
but also limits the effective implementation of advanced
technologies like digital twins and IoT. These technologies,
crucial for real-time monitoring, carbon emission evaluation,
and efficient substation management, necessitate accurate and
comprehensive scene reconstruction, which is compromised
by traditional monocular camera-based SLAM method
limitations.

1.4 Proposed solution

To overcome the limitations of existing methods, this
research proposes a novel multi-camera vision-based synchronous
positioning andmapping approach for green construction of electric
substations, employing RGB cameras for their cost-effectiveness
and comprehensive color imaging capabilities. It advances 3D
modeling by integrating digital twins and advanced information
technology to create precise digital twin models of real-time
project progress, employing machine learning and computer vision
to facilitate carbon emission control and support sustainable
power engineering strategies. By addressing challenges like
sunlight interference, occlusion, and sensor failures, the approach
enhances scene reconstruction, monitoring, and management,
contributing to efficient and sustainable substation construction
in line with carbon peaking, carbon neutrality, and industry 4.0
objectives. The convergence of multi-camera systems with digital
twin technology and advanced algorithms ensures enhanced
accuracy, efficiency, and sustainability, marking a significant leap
in addressing the intricate demands of complex construction
environments.

Despite advancements in camera-based SLAM for electric
substation construction, persistent challenges in achieving detailed
and dynamic CO2 emission monitoring underscore a critical
research gap. This work introduces a novel approach employing
RGB cameras and multi-camera collaboration to surpass traditional
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limitations, offering refined CO2 tracking and mapping precision.
This contribution not only addresses the granularity needed for
effective carbon management but also facilitates the integration of
digital twins and IoT for sustainable construction practices, marking
a significant leap in environmental stewardship within the industry.

2 Proposed methodology and
experiments

The proposed methodology comprises two primary
components: acquiring a 3D model and estimating real-time
CO2 levels. The proposed methodology comprises two primary
components: acquiring a 3D model and estimating real-time CO2
levels. The method illustrated in Figure 2 initiates with 3D design
creation and point cloud generation from RGB images, following
camera layout optimization using Building Information Modeling
(BIM) for enhanced surveillance (Wang and Rojas, 2014; Albahri
and Hammad, 2017). The process involves sequential steps of
background removal, feature extraction, and key image selection,
leading to spatial depth analysis and radiation regularization for
depth data processing. It then incorporates affine regularization
for denoising, further feature point extraction, nearest neighbor
matching, and concludes with moving least squares (MLS) for
precise surface reconstruction and 3Dmodel enhancement (Albahri
and Hammad, 2016; Concha and Civera, 2017). This approach
ensures comprehensive emission estimation and accurate 3D
modeling for real-time monitoring.

The approach utilizes BIM to identify camera placement
constraints for optimal surveillance coverage in electric substations,
addressing environmental, geometric, operational, logical, and legal
factors including surface height, monitoring areas across floors,
key coverage and privacy zones, and lighting conditions (Albahri
and Hammad, 2017). Decision variables include X, Y (fixed for
optimal height), and Z coordinates, along with Pan/Tilt/Zoom
angles, to determine the best positions for cameras, as illustrated in
Figure 3 (Albahri and Hammad, 2016; Zhou et al., 2019). A genetic
algorithm refines camera positionswithin the BIMgrid by iteratively
optimizing X, Y, Z coordinates and tilt angles, involving search
space definition, coverage evaluation through weighted importance,
and position adjustments via crossover and mutation until optimal
coverage is achieved (Albahri and Hammad, 2017; Lim et al., 2018).
This process considers the performance and cost-efficiency of
cameras, factoring in field of view, resolution, lens size, and type
to automate placement for effective surveillance and accurate CO2
emission mapping in complex construction environments (Albahri
and Hammad, 2016; Chen et al., 2021).

Kx =
X

∑
x=1
(
∑m

i=1
(IVi∑

n′

v=1
Civ)

∑m
i=1
(IVi∑

n
j=1

Cij)
) (1)

In Eq. 1, Kx represents optimal coverage, X represents the total
number of cameras; m is the total number of areas monitored, n
and n′ represent the total counts of units and coverage units in
each area, respectively, Cij represents the camera count and CCiv
represents individual camera coverages. This equation models the
effectiveness of camera deployment in achieving comprehensive

surveillance coverage, balancing camera quantity and placement to
optimize area monitoring.

0 ≤ X ≤ L, Hmin ≤ Y ≤Hmax, 0 ≤ Z ≤W (2)

0 ≤ PAN ≤ 360°, 0 ≤ Tilt < 90° (3)

In Eqs 2, 3, L, Hmin, Hmax, and W define the feasible
placement region for cameras within a space bounded by maximum
length L, width W, and height range [Hmin,Hmax], alongside
permissible pan (0–360°) and tilt angles (0 to less than 90°). These
equations also establish the physical limits for camera positioning,
crucial for optimizing field-of-view coverage and ensuring precise
alignment between cameras and the monitored environment,
thereby facilitating enhanced spatial analysis and accurate 3D scene
reconstruction. Mathematically it is written as:

λgm =
λ[x,y, f (x,y)]T

‖[x,y, f (x,y)]T‖
=

λ[x,y, f (ρ)]T

‖[x,y, f (ρ)]T‖
= P (4)

Eq. 4 defines gm as the vector from the optical center to point p,
where p is the projection of a 3D point onto the camera’s coordinate
system, and T represents its corresponding point on the imaging
plane. Distances λ and ρ measure from p to the optical center
and from the optical center to pixel m, respectively. Utilizing the
line-line intersection principle for camera pose estimation, the
above equation determines the spatial coordinates (X,Y,Z) within
the camera group system, essential for accurately reconstructing
spatial points in the RGB camera system (Přibyl et al., 2017). To
transform the spatial coordinates (X,Y,Z) into image coordinates
( ̃x, ̃y), camera calibration parameters are calculated using following
equations (Tsai, 1987):

̃x−Cx

Fx
=
r0X+ r1Y+ r2Z+TX

r6X+ r7Y+ r8Z+TZ
(5)

̃y−Cy

Fy
=
r3X+ r4Y+ r5Z+TY

r6X+ r7Y+ r8Z+TZ
(6)

In Eqs 5, 6, Cx and Cy are the principal point coordinates, and
Fx and Fy are the camera’s focal lengths. The ri elements (0–8)
and TX ,TY ,TZ from rotation and translation matrices respectively
facilitate geometric transformations, with only r0, r4, and r8 non-
zero for the left-eye camera. The mathematical equations for both
left camera Pl and right camera Pr can be written as:

Pl = [

[

FxlXc − ( ̃xl −Cxl)Zc

FylYc − ( ̃yl −Cyl)Zc

]

]
= 0 (7)

Pr = [

[

∑2
i=0
[( ̃xr −Cxr) r6+i − Fxrri]vi

∑5
i=3
[( ̃yr −Cyr) r6+(i−3) − Fyrri]vi

]

]

+[

[

( ̃xr −Cxr)TZ − FxrTX

( ̃yr −Cyr)TZ − FyrTY

]

]
= 0 (8)

Utilizing normalized image plane coordinates ̃xl, ̃xr, ̃yl, and ̃yr
for left and right cameras, the Eqs 7, 8 streamline the calculation of
sensor positions and attitudes, taking into account principal points
(Cxl,Cxr,Cyl, andCyr) and focal lengths (Fxl, Fxr , Fyl, and Fyr).These
equations efficiently map real-world points to sensor projections,
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FIGURE 2
Conceptual framework diagram illustrating the sequential flow of steps.

crucial for identifying point pairs (2D− 2D,2D− 3D,3D− 3D)
across dimensions and precise camera pose estimation (Zhou et al.,
2013). Such streamlined calculations aid in more accurate point
cloud registration and 3D scene reconstruction, enhancing the
utility of camera systems in complex spatial analyses.

To improve the point cloud reconstruction accuracy and reduce
background pixel errors, the pixel area ratio method utilizes
the Green View Index (GVI) to isolate green vegetation from
source photos by calculating the ratio of green to total pixels,
allowing for targeted background removal and improved accuracy
in architectural point cloud reconstruction (Li et al., 2015).TheGVI
is computed using the number of green pixels Areagreen over the total
pixels Areatotal in an image (Eq. 9).

GVI =
Areagreen

Areatotal
(9)

To isolate green vegetation using predefined thresholds and
criteria, this method accurately identifies green vegetation in scenes
by extracting pixels with significant green channel dominance,
comparing the green channel G) with red R) and blue B) channels.
diff1 and diff2 are differences between distinct color channel. A pixel
is identified as green if diff3 > 0 and diff1 > 0, assigning 1 to green

pixels and 0 to non-green ones, using Eq. 10.

G−R = diff1,G−B = diff2,diff1 × diff2 = diff3 (10)

Along with green vegetation isolation, sky region extraction
employs segmentation to define the sky opening index (SOI),
calculating the ratio of skywithin the viewing cone fromobservation
points (Holz et al., 2012; Hu et al., 2014). This involves counting the
number of sky regions Nsky, pixels in the ith sky region ri, and the
total number of pixels N in the image, thus facilitating accurate
isolation of sky regions based on color inhomogeneity criteria within
segmented areas (Eq. 11) (Yang et al., 2007).

SOI =

Nsky

∑
i=0
|ri|

N
× 100% (11)

Eq. 11 allows for the precise evaluation of sky exposure in
environmental monitoring, contributing valuable insights into
atmospheric conditions and spatial openness in the observed scenes.
Extracting and deleting green vegetation and sky areas from source
photos minimizes background pixel interference, enhancing point
cloud matching and surface reconstruction accuracy for precise
architectural reconstruction.

During the image data processing for point cloud feature
extraction and surface reconstruction, key images are discerned
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FIGURE 3
Camera grouping and placement for 3D visualization of substation.

using the interval overlap estimation algorithm, which evaluates
the temporal sequence and frame overlap of camera images
(Guo et al., 2014; An et al., 2017). Criteria for key frame selection
post-initialization and repositioning include idle mapping thread
intervals, RGB image point proportions, and non-overlapping
map point matches (Liu, 2006). The algorithm strategically selects
frames, optimizing map size, and resource use, and pairs them
with corresponding street view images for feature extraction and
matching. Occlusion assessment and image selection based on
position, pose, and overlap ensure efficient registration and robust
surface reconstruction, eliminating redundancies and consolidating
the dataset for accurate analysis.

To estimate depth maps for key images, the DH-RMVSNet
network regresses each reference image against adjacent images
(Torii et al., 2009). A dynamic consistency check algorithm further
validates and corrects the depth values to refine the depth map
accuracy (Yin and Shi, 2018), as delineated by Eq. 12. This process
underpins the network’s generation of a 3D cost volume, using
differentiable homography and mean square error, which is crucial
for the network’s training and the depth prediction of the 3D
building model.

|preproj − pi| < 1,
|dreproj − di|

di
< 0.01 (12)

The point pi is then re-projected through its depth estimate (di),
to the reference point of view, resulting in a re-projected point,
preproj. The depth estimate of preproj is denoted as dreproj.

Spatial depth data refinement is achieved through the
application of an affine regularization algorithm and Gaussian
filtering, significantly enhancing the quality of RGB depth
images by mitigating noise (Ju et al., 1996; Zhang and Tam,
2005; Zhou et al., 2019). The optimization process involves a
comprehensive energy minimization strategy, incorporating both
first-order and second-order regularization to balance fidelity and
smoothness (Robert and Deriche, 1996; Li et al., 2017; Yan et al.,
2020). The energy function, as articulated in equation 13, integrates
data fidelity and regularization terms to yield high-quality depth
estimations.

E (d; IL, IR) =min
d∈ℝ2
(∫

Ω
α1|∇d−w| + α2|∇w|

+ |∇CW (IL (x+ d,y) , IR (x,y)) |,dΩ) (13)
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FIGURE 4
RGB image and Spatial depth image of the Substation.

In Eq. 13, E(d; IL, IR) is the energy function with d as disparity
over the domain Ω, α1, α2 as regularization weights, ∇d the
disparity gradient, w the targeted gradient, and |∇CW(IL, IR)| the
intensity of image difference. This optimization is fine-tuned to
the characteristics of the observed scene, addressing occlusion,
varying illumination, and radiance differences between stereo
images. Specifically, the second-order total generalized variation
targets and supports affine surfaces, enhancing the adaptability
and robustness of the algorithm (Robert and Deriche, 1996). The
resulting depth maps, characterized by reduced noise and improved
feature preservation, demonstrate the effectiveness of these affine
regularization and denoising techniques in producing reliable, high-
quality spatial depth data, as shown in Figure 4.

The feature point extraction process commences with
constructing an image pyramid, a multi-scale representation
of the input image, to facilitate the detection of feature points
across various resolutions (Adelson et al., 1991). Employing
the proportional feature transformation method, feature points
are detected at each pyramid layer, ensuring scale invariance
(Sedaghat et al., 2011). This process involves resizing the image
at each layer with a scaling factor α, ensuring the number of features
per layer is proportional to its area. The total number of features is
derived from the cumulative area of all pyramid layers, facilitating
the proportional distribution of feature points (Eq. 14).

Ns =
N
S
= N
s0 ⋅ α0 + s0 ⋅ α1 +⋯+ s0 ⋅ αn−1

=
N ⋅ (1+ α)
s0 ⋅ (1+ αn)

(14)

Eq. 14 calculates the total detectable feature points Ns, using
the proportional transformation across the image pyramid’s n
layers. It considers the total feature points N, scaling factor α,
and the cumulative area S for a compact and scale-invariant
feature detection. Once the image pyramid is established, feature
detection proceeds at each layer, employing the gray-scale centroid
and moment method to ensure rotation invariance of the feature
points (Guojun et al., 2021; Zhao et al., 2022a). The direction and
distribution of feature points are ascertained using the moment of
image blocks, culminating in an accurate feature point cloud using
Eq. 15, wherempq represents the moment of order p+ q of the image

block B. These feature points are illustrated in Figure 5. The entire
process ensures a systematic approach to feature point extraction,
providing a robust basis for subsequent 3D modeling and analysis
tasks.

mpq = ∑
x,y∈B

xpyqI (x,y) (15)

To facilitate the matching of image feature points and construct
reliable tracks, the approximate nearest neighbor algorithm is
employed with a k-dimensional tree structure (Boom et al., 2013;
Malkov and Yashunin, 2018). Refinement is conducted through
random sample consensus and eight-point algorithms (Hartley,
1997; Kim and Im, 2003), while forest-based trajectory matching
techniques and binary tree indexes enhance efficiency, as depicted
in Figure 6 (Rao and Ross, 1998; Babin et al., 2021). The Iterative
Closest Point (ICP) algorithm iteratively optimizes rotation and
translation for precise point cloud registration (Marani et al., 2016;
He et al., 2017), as delineated in Eq. 16.

1
2

n

∑
i=1
|qi −Rpi|

2 = 1
2
(

n

∑
i=1
|(qi −

n

∑
j=1

qj) −R(pi −
n

∑
k=1

pk)|
2

+ |
n

∑
i=1

qi −R
n

∑
i=1

pi −T|
2) (16)

In Eq. 16, qi and pi are individual points from target point clouds
Q and source point clouds P. R denotes the rotation matrix, and T is
the translation vector. The centroids of sets Q and p are represented
by μq and μp respectively, while q′i and p′i are the coordinates of
points relative to these centroids. The index k serves as a summation
index over the points in the sets.

Upon acquiring feature point matches between photo pairs,
trajectories are established by tracking these points across multiple
photos. A progressive sampling consensus algorithm is employed
to mitigate pixel migration and noise, enhancing the robustness of
the matching (Song et al., 2013). The matching quality is assessed
by introducing a quality factor q, to rank point pairs and determine
the homographymatrix using only high-qualitymatches. Point pairs
below a certain quality threshold are discarded. The Hamming
distance is used to evaluate feature point similarity, with the
matching quality ratio, β, calculated from the minimum distances,
dmin1 and dmin2, between matched pairs (Hofbauer et al., 2012). The
correlation of quality factor q and ratio β is defined in the Eq. 17.

β =
dmin1

dmin2
, q = 1

βdmin1
(17)

The creation of a 3D model using the processed images is
achieved using moving least squares (MLS) method for point cloud
matching and a directed 3D triangulation (Fleishman et al., 2005;
Cignoni and Scopigno, 2008).The initial step inverts the facade point
cloud, converting image features into straight lines and simplifying
geometry. The least squares method then approximates the error in
distance between adjacent points for 3D surface construction using
the following equation:

RMLS| ̃x =
N

∑
i
wi (xi − ̃x)(bT (xi)c ( ̃x) − ui)

2 (18)

In Eq. 18, RMLS| ̃x functions as the local objective function for
point ̃x, minimizing squared errors between MLS approximations
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FIGURE 5
Feature points marked on the RGB image.

FIGURE 6
Matching of feature points using approximate nearest neighbor algorithm.

FIGURE 7
Projection of a triangulated mesh in an approximate plane. (A) Integration of Tetrahedron BCDE with Hyperplane ACGDFB in 3D. (B) 2D Projection of
3D Configuration on the X–axis and Y–axis.

xi and actual values ui through the weighted influence of
neighboring points wi(xi − ̃x) and a combination of basis functions
b(xi) and control weights c( ̃x). This formulation serves as the
core of the MLS method for smooth surface reconstruction
from point clouds, iteratively refining the surface based on
continuous weights and localized subdomains until a predefined
error threshold is met. The 3D Delaunay triangulation refines the
smooth surface generated by incremental point cloud triangulation
into a detailed mesh, utilizing a tetrahedron data structure with
vertices and adjacent pointers to define feature points robustly.
Each tetrahedron is associated with four directed triangular pieces:
f0(v0,u1,u2), f1(v0,v3,v1), f2(v1,v3,v2), and f3(v2,v3,v0). The
methodology enhances geometrical fidelity by considering the

cumulative geometry of surrounding triangles like BCE, CDE, and
BDE around point E, ensuring mesh continuity and structural
integrity (Figure 7). Incremental triangulation employs the included
angle criterion for triangle selection and adjacency, focusing on
geometric nuances and refining the mesh post noise removal with
random sampling methods, as illustrated in Figure 8 (Kenwright,
2015). This comprehensive approach preserves the original point
cloud data’s integrity while enhancing the constructedmodel’s detail
and accuracy.

The comprehensive 3D model is finalized by generating a height
model via a digital elevation model (DEM) (Kršák et al., 2016),
classifying ground points and employing triangulation for irregular
interpolation. This process normalizes the original data to yield

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1370873
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wang et al. 10.3389/fenrg.2024.1370873

FIGURE 8
Triangular mesh construction with random sampling method to
remove noise.

normalized height point cloud data, which is then interpolated using
inverse distance weighted method (Remondino and El-Hakim,
2006). CO2 estimation, integral to the model’s utility, utilizes an
overlap technique in a 3D design generated from RGB images. This
approach combines Iterative Closest Point (ICP) and Scale-Invariant
Feature Transform (SIFT) techniques for precise alignment and
carbon emission estimation from the substation (Eo et al., 2012),
ensuring the model’s accuracy and effectiveness in environmental
impact analysis.

The technique consists of a series of steps to ensure accurate
feature point matching and alignment in 3D models and designs.
Initially, the Scale-Invariant Feature Transform (SIFT) algorithm is
utilized to identify and match key feature points between the 3D
model and design, extracting local descriptors invariant to scale and
orientation as defined by the scale-space function L(x,y,σ) in Eq. 19,
whereG represents the Gaussian function,D is the input image, and
(x,y) are the image coordinates (Ni et al., 2021).

L (x,y,σ) = G (x,y,σ) ∗ D (x,y) (19)

Following this, the Iterative Closest Point (ICP) algorithm
minimizes point cloud discrepancies between corresponding points
p and p′ by optimizing rotations R and translations t using
equation 20, until a set error threshold is met.

min‖Rp+ t− p′‖2 (20)

The SIFT algorithm is reapplied to extract distinctive features
using the difference-of-Gaussian function in the scale-space yielding
robust descriptors for feature matching. D(x,y,σ) denotes the
difference between Gaussian-filtered images G at scales σ and kσ,
relative to the original image I(x,y) (Eq. 21).

D (x,y,σ) = (G (x,y,kσ) −G (x,y,σ)) ⋅ I (x,y) (21)

Eq. 21 calculates the difference between Gaussian-blurred
images at distinct scales, essential for identifying distinctive image
features. Feature matching is then accomplished using Nearest
Neighbormatching to identify pairs of feature points using euclidean
distance d(i, j), calculated using Eq. 22, where fi and fj are the i− th
and j− th feature descriptors (Yang and Newsam, 2008).

d (i, j) = √∑( fi − fj)
2 (22)

RANSAC estimates the initial alignment between the real-
time 3D model and design, optimizing the transformation to
minimize squared differences between matched points using Eq. 23
(Shen et al., 2020). The transformation T is composed of a rotation
matrix R and a translation vector t, and residual displacement
between aligned points p and p′, given as:

min
T
∑|T [R|t] ⋅ p− p′|2 (23)

Post-alignment quality assessment utilizes Root Mean Squared
Error (RMSE) to measure alignment accuracy, as detailed in Eq. 24,
iterating for refinement. RMSE evaluates the precision of aligning
original point clouds p with their corresponding points p′, based
on the deviation of points post-transformation R× p+ t from their
targets, where N is the total number of corresponding point pairs
used in the calculation. This metric is critical for optimizing the
alignment process, ensuring high fidelity in the registration of 3D
spatial data.

RMSE = √
∑‖R× P+ t− p′‖2

N
(24)

Finally, segmentation is performed using the Random Walker
algorithm, partitioning point clouds into labeled segments as
defined by the spatial extents Ri in Eq. 25, with X,Y,Z denoting
the minimum and maximum bounding coordinates of each
region (Lai et al., 2009). This process ensures accurate 3D model
segmentation for CO2 estimation and structural analysis.

Ri = (Ximin
,Yimin
,Zimin
) − (Ximax

,Yimax
,Zimax
) (25)

Experiments conducted on an under-construction electric
substation validated a novel 3D modeling method combining
computer vision and machine learning for accurate CO2
emission estimation (Cjs). This estimation integrates emissions
from building materials (Cjc), transportation (Cys), labor (Cx),
construction machinery (Cm), and energy consumption (Cjn) for
total construction phase emissions is formulated in Eq. 26.

Cjs = (Cjc +Cys +Cjn) +Cx +Cm (26)

• Building Material CO2 Emissions (Cjc): Building material CO2
emissions (Cjc) are calculated as a total of the product of
material consumption (qi) and emission factors (ei).

Cjc =
n

∑
i=1

qi × ei (27)

• CO2 produced during transportation (Cys): TransportationCO2
emissions (Cys) are computed as the sum of each material’s
consumption (Mi), transport distance (Di), and emission factor
(ei).

Cys =
n

∑
i=1

Mi ×Di × ei (28)

• CO2 produced by labor (Cx): Labor CO2 emissions (Cx) are
calculated using the number of workers X) and their respective
emission factor (ei).
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FIGURE 9
Real-time detection of construction workers and machinery for CO2

emission estimation during substation construction.

Cx = X× ei (29)

• CO2 produced by construction machinery (Cm): Machinery
CO2 emissions (Cm) are derived from fuel consumption (FC),
emission factor (ei), and operation time (OT).

Cm = FC× ei ×OT (30)

• CO2 produced by energy consumption (Cjn): Energy
consumption CO2 emissions (Cjn) are computed from each
energy source’s emission factor (ei), usage frequency (|Uj,i|),
and machinery energy consumption (Qj,i).

Cjn =
n

∑
i=1
(ei × |Uj,i|) ×Qj,i (31)

CO2 emissions from construction workers and machinery are
estimated using a YOLOv8 model trained on a custom dataset of
workers and machinery images. The model calculates the number
of workers and machinery from real-time RGB images of the
substation, with detections shown in Figure 9 using green and
red rectangles for workers and machinery, respectively, along with
detection probabilities.

The total carbon emission of the substation (CO2md
) is

determined by summing up the CO2 emissions for each segmented
part (CO2m) in the 3D model, where each segment’s emission is the
product of its design emission (CO2d) and the ratio of its current
status (Xm) to the design status (Xd). This cumulative approach, as
shown in Eq. 32 provides a comprehensive estimation of emissions
by considering the individual contributions of all segments within
the 3D model.

CO2md
=∑

i
CO2mwhereCO2m = CO2d ×(

Xm

Xd
) (32)

Table 1 presents a detailed overview of CO2 emission factors
and transportation-related emissions for item categories in
substation construction, serving as a reference for the materials’
carbon footprints. The item categories include building materials,
components forming a transformer, gas insulated switchgear (GIS),

FIGURE 10
Map location of 110 kV Chengbei substation.

switchgear, 10 kV static var generator (SVG), ground transformer
arc suppression coil, and energy sources. This table presents the
carbon emission factor for each item in a tabular format, reflecting
their respective carbon emissions per unit quantity. Additionally,
this table displays the actual CO2 emissions of each item during
its transportation to the substation site, considering the density of
diesel as 0.835 kg/L, which is used to calculate the emission factor
of diesel.

The methodology combines RGB cameras with advanced
algorithms including ICP and SIFT to achieve precise 3D
model alignment and design. It effectively addresses segmented
part variations for accurate CO2 emission estimation, with
comprehensive results and analysis presented in Section 3.

3 Experimental results

This section details the experimental results and analyses
from the proposed 3D modeling and CO2 emission estimation
methodology. A total of twenty experiments are performed within
an 9-month period, starting from T1 and concluding at T20.
The initial stage of construction, denoted as T0, served as the
baseline reference point, representing a phase with no construction
activities and negligible CO2 emissions. The initial stage at T0
involved a comprehensive location survey and documentation
of the substation, establishing the baseline 3D design that
served as the reference point for comparisons throughout the
subsequent experimental stages. Each experiment, from T1 to
T20, corresponds to a distinct time interval within the 9-month
period, allowing for a comprehensive investigation of the substation
construction dynamics. The experimental methodology employed
the overlapping technique, aligning and comparing 3D model
with 3D design at different time intervals to analyze changes and
advancements in the construction process.

During each experimental trial, a 3D model is meticulously
constructed to represent the current state of the substation at
that specific time interval, starting from T1 and concluding at
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TABLE 1 Table of CO2 emission factors and transportation-related CO2 emissions for substation construction materials.

Item category Item Emission factor Transportation (tCO2e)

Building material

Hot rolled carbon steel beam 2380 kgCO2e/t 0.79

Hot rolled carbon steel wire rod 2375 kgCO2e/t 0.6

hot rolled carbon steel bar 2310 kgCO2e/t 0.34

Concrete C30 175 kgCO2e/m3 1.32

Concrete C15 175 kgCO2e/m3 16.69

Solid brick 323.6 kgCO2e/m
3 0.35

Gravel 2.18 kgCO2e/t 8.05

Portland cement 735 kgCO2e/t 0.48

Architectural ceramics 16.9 kgCO2e/m
3 8.47

Aluminum window 194 kgCO2e/m3 0

Cement mortar 0.792 kgCO2e/m3 0.57

Styrofoam board 5020 kgCO2e/m
3 0.01

Facing ceramics 16.9 kgCO2e/m3 0.03

Steel window frames 121 kgCO2eq/m2 0.01

Aluminum ceiling sheet 7.95 tCO2eq/t 0

BPIV photovoltaic 2.06 kgCO2e/W 0.04

Transformer

Silicon steel sheet 4 kgCO2e/kg 2.46

Self-adhesive transposed wire 10.3 tCO2eq/t 0.08

Combined wire 10.3 tCO2eq/t 0.13

Paper wrapped flat copper wire 10.3 tCO2eq/t 0.01

Cardboard 0.82 kgCO2e/kg 0.05

Laminated wood −1.025 tCO2eq/t 0.03

Steel plate 2.3 tCO2eq/t 0.05

Mineral vegetable oil 5.84 tCO2eq/t 1.93

GIS

5052 aluminum alloy sheet 18.3 tCO2eq/t 0.23

T2Y Copper 10.3 tCO2eq/t 0.03

Epoxy resin 5.84 tCO2eq/t 0.09

Q235 steel 3.003 kgCO2e/kg 0.09

CO2 1 kgCO2e/kg 0.03

Switchgear
Steel 2.05 kgCO2e/kg 1.65

Copper 10.3 kgCO2e/kg 0.55

10 kV SVG
Steel plate 2.3 kgCO2e/kg 0.4

Copper 10.3 kgCO2e/kg 0.11

(Continued on the following page)
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TABLE 1 (Continued) Table of CO2 emission factors and transportation-related CO2 emissions for substation construction materials.

Item category Item Emission factor Transportation (tCO2e)

Ground transformer arc suppression coil

Ground transformer; copper 10.3 kgCO2e/kg 0.01

Ground transformer; silicon steel sheet 4 kgCO2e/kg 0.03

Arc suppression coil; copper 10.3 tCO2eq/t 0.01

Arc suppression coil; silicon steel sheet 4 kgCO2e/kg 0.04

Energy
Electricity 0.581 tCO2/MWh -

Diesel 3.15 tCO2/t 0.05

TABLE 2 CO2 emissions of various items in tCO2e.

Experimental trial Material Labor Construction machinery Total CO2

T1 34.19 0.02 25.48 74.41

T2 42.37 0.01 27.61 85.83

T3 45.9 0.01 18.56 85.52

T4 72.84 0.02 17.82 123.81

T5 61.51 0.01 17.6 109.91

T6 61.51 0.01 25.01 114.85

T7 101.28 0.02 10.33 168.27

T8 106.29 0.02 11.07 176.91

T9 121.53 0.02 17.37 204.7

T10 92.36 0.02 0.47 146.96

T11 78.42 0.02 1.11 124.43

T12 117.44 0.01 0.92 186.48

T13 85.11 0.01 9.37 146.66

T14 99.05 0.01 0.21 157.46

T15 91.98 0.01 0.06 205.32

T16 128.78 0.01 0.34 204.7

T17 124.69 0.02 0.51 204.39

T18 123.2 0.01 9.47 201.92

T19 117.44 0.01 0.91 186.79

T20 111.87 0.01 0.06 177.84

T20. The 3D models are generated by incorporating the physical
components and structural elements that are implemented up
to each respective experimental phase. Pertinent information
regarding the quantity of materials used during construction at T1
and the subsequent experiments is collected through consultations

with project supervisors and leaders, facilitating a comprehensive
analysis of the construction progress at T0.

Table 2 provides a comprehensive analysis of CO2 emissions
from various materials listed in Table 1, detailing emissions for
each of the 20 experimental trials (T1 to T20) using Eq. 26 to
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FIGURE 11
Total CO2 (tCO2e) Emissions of 110 kV Chengbei Substation (Ours) during each Experiment. (A) Comparative Trends of CO2 Emissions at 110kV
Chengbei Substation Over 20 Trials. (B) Cumulative CO2 Emissions Curve at 110 kV Chengbei Substation During Construction Period.

quantify contributions from building materials (Cjc), transportation
(Cys), energy consumption during construction (Cjn), labor (Cx)
with an emission factor of 0.95 kgCO2/unit (Jiang et al., 2018), and
construction machinery (Cm).

The proposed methodology is implemented on an under
construction 110 kVChengbei substation.This substation is situated
in the north of the Zhejiang Anke Jinji Technology Development,
positioned at the northwest intersection of North Ring Road and
East Ring Road. The geographical coordinates are approximately
(30.675504, 119.697,859), as depicted in the map in Figure 10. The
elevation of the station site ranges from 10.86 m to 12.98 m above
sea level.

By calculating the carbon emissions from each component
individually in each trial, the total carbon emissions for T20 are
estimated at 177.84 tCO2e, enabling a detailed assessment and
monitoring of the 110 kV Chengbei substation’s carbon emission
trajectory. This precise estimation facilitates sustainable practices
and informed decision-making in managing the environmental
impact of construction projects. Comprehensive evaluation of
various contributing factors ensures effective environmental impact
management throughout the project lifecycle.

A theoretical CO2 emission baseline of 225 tCO2e for the 110 kV
Chengbei substation was determined prior to the construction
phase, as documented in the substation’s design scheme. This
baseline acts as a reference point, indicating anticipated emissions
in the absence of specific modifications or optimizations. It
encompasses expected CO2 emissions from various sources
during construction, including machinery, building structures,
construction materials, energy consumption, and other pertinent
factors depicted in Figure 1. This comprehensive baseline aids in
understanding and managing the environmental impact of the
substation construction.

Figure 11A illustrates the CO2 emission trends for the 110 kV
Chengbei substation across 20 experimental trials in tCO2e, with
the blue solid line depicting the CO2 emissions resulting from the
application of the proposed method and the orange dotted line

representing the established baseline emissions. Consistently, the
blue line remains beneath the baseline, demonstrating that the actual
emissions were lower than those projected for optimal conditions,
thus affirming the effectiveness of the proposedmethod in capturing
the reduced CO2 emissions. Conversely, Figure 11B presents
the cumulative CO2 emissions curve for the 110 kV Chengbei
substation in tCO2e, evidencing an upward trend as the substation
approaches completion. This increasing trend underscores the
robustness of the proposed method in delivering real-time CO2
emission estimations, reflecting the progressive accumulation of
emissions throughout the construction period.

Figure 11 illustrated that our proposed method significantly
captured the real-time CO2 emissions in substation construction,
demonstrating superiority over traditional approaches by effectively
handling unpredictable variables and deviations from initial
designs. Unlike the rigid predictions of traditional methods, our
approach adapted to unforeseen machinery factors and other
variables, offering dynamic insights and real-time optimization
throughout the construction process. This adaptability extended
beyond construction, enabling continuous monitoring and
management of CO2 emissions during the operational phase of the
substation. The method’s robustness and comprehensive coverage
underscored its potential in guiding future low-carbon strategies
and fostering sustainable construction practices, thus contributing
to a greener, more sustainable future in substation construction
and operation.

4 Conclusion

This study presents a robust and effective methodology
for accurately estimating CO2 emissions during the
construction of substations, demonstrating superiority
over traditional approaches by effectively handling
unpredictable variables and deviations from initial
designs. Leveraging advanced techniques including image
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processing, feature extraction, feature matching, and point cloud
generation, the proposed approach yields a comprehensive
representation of the construction site, capturing crucial geometric
details and depth information. The utilization of algorithms
including SIFT for key-point detection and rectification significantly
improves the accuracy and alignment of images, ensuring precise
reconstruction of the 3D model. The experimental results confirm
the method’s efficacy in quantifying CO2 emissions, as the 3D
model successfully captures the underlying geometry of the
scene, enabling accurate assessment of the current completion
state and corresponding CO2 emissions. By comparing the 3D
model with the initial design, the study tracks and analyzes
the dynamics of CO2 emissions throughout the construction
process, offering valuable insights for monitoring and evaluating
the environmental impact. Unlike traditional methods that rely
on static predictions, our method adapts to unforeseen variables,
offering dynamic insights and real-time optimization throughout
the construction process. This adaptability extends beyond
construction, enabling continuous monitoring and management
of CO2 emissions during the operational phase of the substation,
thus providing a more holistic and impactful environmental
management strategy. Future research can further enhance this
methodology by exploring additional techniques for refining
the point cloud, incorporating machine learning algorithms for
semantic segmentation and object recognition, and integrating data
from various sources, such as LiDAR or drone imagery, to provide
a more comprehensive and accurate estimation of CO2 emissions in
construction projects.
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