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With the increasing complexity of power systems and the proliferation of
renewable energy sources, the task of calculating carbon emissions has
become increasingly challenging. To address these challenges, we developed
a new method for predicting carbon emission factors. Bayesian optimization
technique graphical convolutional networks with long- and short-term network
(BO-TGNN) is used to predict the carbon emissions of the power system. The
method aims to quickly predict the day-ahead carbon emissions of power system
nodes with enhanced feature extraction and optimized network training
hyperparameters. The effectiveness of the proposed method is demonstrated
through simulation tests on three different power systems using four deep
learning algorithms. The method provides a tailored solution to the evolving
needs of carbon reduction efforts and is a significant step forward in addressing
the complexity of carbon emission calculations for modern power systems.

KEYWORDS

Bayesian optimization, graph neural network, long- and short-term neural network day-
ahead prediction, carbon emission factor, carbon reduction

1 Introduction

Emission source analysis and emission trend prediction help electricity consumers
(Zeng X. et al., 2023; Zhang X. et al., 2023) and power generation enterprises (Zhang et al.,
2020; Ruhnau et al., 2022) explore effective paths and measures for carbon emission
reduction and theoretically ensure the development of reasonable carbon reduction and
emission reduction operations and behaviors (Sun and Huang, 2022). Therefore, there is a
need to explore scientific methods to predict carbon emission. Considering the reduction of
fossil fuels, replacing electricity with renewable energy is gradually becoming popular
around the world, and the mechanisms between carbon footprint and other carbon
reduction measures are worth exploring. In addition to renewable energy, the supply
chain with hydrogen and ammonia is also favorable for shipping organizations and
institutions (Yan et al., 2023).

For the carbon emission prediction, Gao et al. (2022) derived a differential formula-
based gray prediction model with the whale optimization algorithm (WOA) for parameters’
optimization. The carbon emission forecast of the thermal power plant was analyzed in
Zhou et al. (2017) with particle swarm optimization (PSO) for the parameter update of the
backpropagation (BP) neural network. In Ye et al. (2023), the carbon emission of the
industry zone was forecasted quickly via the combination of integrating autoregressive
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integrated moving average (ARIMA) and support vector regression
(SVR). Another important part of the prediction area considering
carbon emission is carbon emission peak (CEP) prediction (Gao
et al., 2023). In Wu et al. (2018), stochastic impacts by regression
on population, affluence, and technology (STIRPAT) is employed to
predict the CEP forQingdao, China. For the carbon emission reduction,
Wu et al. (2022) adopted the radial basis function (RBF) neural network
to extract the feature of the indices with the production of vinyl.

For the carbon emission price prediction, Yang et al. (2022)
presented a generalized autoregressive conditional
heteroscedasticity model to effectively obtain the price of the
carbon, and a mixed-integer linear programming (MILP) model
is constructed for the cooperation of the electricity market and
carbon market. In Sun and Zhang (2022), a cooperation technique
with least square support vector machine (LSSVM) and artificial fish
swarm algorithm (AFSA) is constructed for the effective and robust
of carbon price forecast. For the carbon emission factor (CEF)
forecast, Sun and Huang (2022) adopted the machine learning
technique, extreme learning machine (ELM), to learn the feature
of CEF at a provincial level for carbon emissions in China, with a
heuristic-based approach, WOA, for the optimal operation and fast
convergence. For the prediction of carbon emission or CEF, Zhang
X. et al. (2023) constructed a surrogated optimization with
generalized regression neural network (GRNN) for the
acceleration of a two-stage optimization model for the electricity

vehicle. With the consumer satisfaction, the day-ahead optimization
of air-conditioning control was conducted in Zeng X. et al. (2023)
with a driving training-based optimization (DTBO).

With the continuous breakthroughs in artificial intelligence
technology, deep learning algorithms with their efficient feature
extraction and function approximation ability have gradually
received more attention in the field of carbon emission-related
prediction. Recurrent neural networks (RNNs) and their variants,
including long short-term memory (LSTM) (Kong et al., 2019)
and gated recurrent units (GRUs), focus on capturing the time
dimension feature. Therefore, they are suitable for the task of time
series prediction of carbon prices. The day-ahead prediction with
time series of CEI was performed in Cai et al. (2023) based on the
LSTM neural network. Later, in Chen et al. (2023), the real-time of
CEI with 15 min data was evaluated with the gated cycle unit
network. In Niu et al. (2022), the empirical mode decomposition
(EMD) cooperated with dragonfly algorithm (DA) was employed
to process the features of the time series data considering
uncertainty. And four methods were performed for the
simulation test of carbon price forecast. Zhang K. et al. (2023)
formulated the feature decomposition and capture model for the
carbon price via the cooperation of variational mode
decomposition (VMD) and LSTM. The PSO is adopted to
search the parameter of LSTM in Zeng Q. et al. (2023) for the
CEP at Yangtze River Delta city cluster, China.

FIGURE 1
Framework of BO-TGNN for the power system and electricity consumer.
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In addition, the graph convolutional neural network (GNN)
is one of the brand-new areas of deep learning. It can capture
non-Euclidean geometric spatial features of graph structures,
such as traffic flow, metro lines, and chemical structures, more
efficiently than traditional convolutional networks. Time series
networks can effectively extract high-dimensional non-linear
features between electricity quantities from massive historical
time series data using gate structures and learn the non-linear
relationships between carbon emission time series in the source
network. Therefore, the graph convolution network with long-
and short-term network (TGNN) is constructed for the carbon
emission prediction. Recently, several studies have evaluated
the applications of GNNs in power grids (Boyaci et al., 2022;
Liu et al., 2022; Hansen et al., 2023; Liu et al., 2023). The
Bayesian optimization utilizes Gaussian process regression to

construct a selection function for obtaining the next sample
point. This technique shows good competence for searching the
hyperparameter of network in studies (De Baets et al., 2017;
Aslam et al., 2021; Rana et al., 2021), such as load monitoring
(Rana et al., 2021), cyber-attack detection (De Baets et al.,
2017), and renewable energy power forecast (Aslam et al.,
2021). Rana et al. (2021) combines Bayesian optimization
with machine learning for non-invasive load monitoring. This
process is repeated, including hyperparameter optimization and
network parameter training. On account of these, this paper
proposes a novel Bayesian optimal technique for the graph
convolution network with long- and short-term network (BO-
TGNN) for the prediction of carbon emissions in new power
systems. Through the data-driven form, it can reduce the
dependence on the grid topology and system parameters. With

FIGURE 2
Flow diagram for the day-ahead CEF forecast with BO-TGNN.

FIGURE 3
Network configuration of TGNN.

Frontiers in Energy Research frontiersin.org03

Pan et al. 10.3389/fenrg.2024.1371507

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1371507


the addition of Bayesian optimization, the network’s
hyperparameter optimization operation is carried out to
improve the generalization and convergence ability of the
data-driven model. Finally, the combination of the time series
network can quickly predict the electrical quantity of the CEF
forecast. There are three novel points in this research, which are
explained below:

1) Different from Boyaci et al. (2022), Liu et al. (2022), Hansen
et al. (2023), and Liu et al. (2023), the BO-TGNN algorithm
can effectively extract the high-dimensional electrical quantity
characteristics of the power system spatio-temporally, and it
can predict these characteristics for the user nodes system by
analyzing the historical data on the
source–network–load parameter.

2) Consistent with De Baets et al. (2017), Aslam et al. (2021), and
Rana et al. (2021), this method innovatively applies a spatio-
temporal graph convolutional neural network based on
Bayesian optimization to the power system network in
order to rapidly and accurately predict the carbon emission
factors of power system load nodes.

3) It can meet certain calculation accuracy requirements and
show good ability to effectively adapt to the source–load

dynamics of the power system, providing a powerful tool
for sustainable monitoring and management of power
system carbon emissions.

The rest of the paper is organized as follows: Section 2
introduces the mathematical model for the analysis for carbon
emission factors. Section 3 gives the structure and detailed
implementation of BO-TGNN. Simulation results and
discussion with three power systems are presented in Section
4. At last, Section 5 summarizes the paper.

2 Mathematical model of the CEF
calculation

For the carbon flow prediction based on the graph convolution
network with a long- and short-term network, the prediction
process is divided into five steps, as shown in Figure 1. It
includes the load and generator historical series dataset, carbon
emission factor computation and collection, network training,
hyperparameter of networks based on the Bayesian optimization
technique, and the day-ahead forecast application for the nodes or
electricity consumers in power systems.

TABLE 1 Execution procedure of BO-TGNN for the day-ahead CEF forecast.

1: Data collection

2: Load data and renewable energy power output series set

3: Power flow calculation and carbon equation solving by Eqs (1)-(8)

4: Collect load, renewable energy power, and CEF series data

5: Network training

6: Determine the adjacency matrix of the power system by resistance and reactance

7: Select the hyperparameters and the bounding for Bayesian optimization

8: Dataset standardization and network structure design

9: For τ = 1: To

10: For ε = 1: Te

11: Forward propagation with graph coevolution operation and time series feature captured by Eqs (9)-(11)

12: Loss function calculation and backpropagation update parameters

13: END FOR 1

14: Evaluate the objective function according to MPE of the test dataset

15: Gaussian process regression operation and sample the hyperparameters for the next iteration by Eqs (12)–(14)

16: END FOR 2

17: Day-ahead application

18: For t = 1: Td

19: Input the load, renewable energy power, and CEF historical series data

20: Employ optimal TGNN to quickly obtain the CEF of the current step

21: Update the data on the current step for next iteration

22: END FOR 3

Output: The day-ahead CEF forecast series
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The first step is to collect the load historical sequence inputs
from the PQ nodes, and Newton’s method is employed for power
flow calculation. Then, the carbon flow analysis is performed and the
load input data with the corresponding CEF output data on the
power system nodes are collected. In the third step, the
hyperparameters of the TGNN are selected as the variables for
Bayesian optimization, followed by training the parameters of the
network based on the collected data and updating the LSTM
parameters by combining the loss function evaluation and
backpropagation. In the fourth step, Bayesian optimization
utilizes the Gaussian process regression to construct the ensemble
function of the next sample point and repeats the hyperparameter
optimization iterations and the training of the network parameters.
Finally, the optimization is performed according to the real-time
load sequence data and generator power output data, and the

optimized optimal network is used for the online prediction of
carbon emission coefficients to achieve a fast prediction of carbon
emission coefficients at each node.

2.1 Calculation of the power flow

In order to predict day-ahead CEF, the primary task is to collect
the historical load sequence inputs of PQ nodes and renewable
energy power output data. Then, the power flow calculations should
be performed. The power flow and voltage distribution of the power
system are closely related. For containing Ng generators and Nn

power bus, the power output of a power system with n nodes is
divided into active and reactive parts. The power flow equation of
the power system nodes can be expressed as follows:

FIGURE 4
Spatial parameters of the IEEE-9 system. (A) Topology and (B) adjacency matrix.

FIGURE 5
Spatial parameters of the IEEE-39 system. (A) Topology and (B) adjacency matrix.
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Pi
G − Pi

L � Vi∑Nn

j�1Vj Gij cos θij + Bij sin θij( ), (1)

∑Ng

k�1Q
i
G − Qi

L � Vi∑Nn

j�1Vj Gij sin θij − Bij cos θij( ), (2)
θij � θi − θj, (3)

Pj
min ≤Pi

G ≤Pmax
j , (4)

Qj
min ≤Qi

G ≤Qmax
j , (5)

Vj
min ≤Vj ≤Vmax

j , (6)
where Pi

G and Pi
L are the active power values of the generator and load

at node i, respectively; Qi
G and Qi

L are the reactive power values of the
generator and load at node i, respectively; Gij and Bij are the negative

FIGURE 6
Spatial parameters of the IEEE-118 system. (A) Topology and (B) adjacency matrix.

FIGURE 7
Fluctuation of the power system node considering the load and renewable power output. (A) IEEE-9, (B) IEEE-39, and (C) IEEE-118.
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values of line i–j conductance and inductive reactance, respectively; Vj

denotes the voltage amplitudes at node i; θij denotes the voltage angle
difference between node i and node j; and θi denotes the voltage angle of
node i, wherePj

min,Pmax
j ,Qj

min,Qmax
j ,Vj

min, andVmax
j are theminimum

and maximum values of active power regulation and reactive power
regulation and output voltages for the jth generator, respectively.

2.2 Calculation of the carbon flow

In the carbon emission factor calculation, the CEF of the power
system node corresponds to the active power of the input source and

input source node. The calculation of CEF can be based on the above
current results. The CEF equation can be expressed as follows:

δL,i �
Pi
G · δG,i +∑Nn

j�1P
i,j
L · δL,j

Pi
G +∑Nn

j�1P
i,j
L

, (7)

Pi
G +∑Nn

j�1P
i,j
L( )δL,i −∑Nn

j�1P
i,j
L · δL,j � Pi

G · δG,i, (8)

where δL,i (i � 1, 2, . . .Nn) is the set of solutions to the carbon
flow equation, where Nn is the set of required solutions and
equations. (Pi

G + ∑Nn
j�1P

i,j
L ) is the diagonal component of the

carbon flow equation, which corresponds to the total power
injected into the ith node; Pi,j

L is the active power injected
along the line from the jth node to the ith node; and Pi,j

L is
the non-diagonal component of the equation, which corresponds
to the active power along the j–i line.

2.3 Construction of the data feature

The sequence data on the past Δt length of the power system are
selected as the input, which can be expressed as X �
X1,X2, . . . ,XTS−Th{ },X � x1, x2, . . . , xTS−Th{ }. For a single moment,
the network input feature quantity can be represented as
xi � Li,Gi, δL,i{ } (i � 1, 2, . . . , TS − Th). L � L1, L2, . . . , LTS−Th{ },
� G1,G2, . . . ,GTS−Th{ }, where TS is the total collection data series
length, Th denotes the length of data series for a sample, and TS − Th

is the total valid number of collected samples. For the output
characteristics of carbon emission factor trend analysis, it is necessary
to consider the characteristic quantities of the output sequence of node
carbon emission factors. Therefore, this article selects the load, new energy
output, and carbon emission factor of each node as characteristic outputs.
The network prediction feature quantity is the output of the network’s
feature quantity at the next moment, which can be expressed as Y �
Y1,Y2, . . . ,YTS−Th{ } and Yi � xi+Th(i � 1, 2, . . . , TS − Th).

TABLE 2 System and algorithm parameter settings.

Parameter type IEEE-9 IEEE-39 IEEE-118

Number of buses 9 39 118

Number of inputs 27 117 354

Number of outputs 27 117 354

Train data length 9,216 9,216 9,216

Test data length 2,304 2,304 2,304

Length of historical series 48 48 48

Full layer [16 32] [16 32 64] [16 64 64]

LSTM layer [32] [32 64] [32 64]

GNN layer Cai et al. (2023) [16, 32] [16, 32, 32]

Optimizer Adam Adam Adam

L2 regularization factor [0, 0.001] [0, 0.001] [0, 0.001]

Initial learning rate [0.001, 0.01] [0.001, 0.01] [0.001, 0.01]

Learning rate drop factor [0,0.1] [0,0.1] [0,0.1]

FIGURE 8
Bayesian optimization results of the IEEE-9 system. (A) Bayesian optimization objective function and (B) MSE loss in network training for TGNN.
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3 Design of BO-TGNN for day-
ahead CEF

The following flowchart in Figure 2 complements the specific steps
of the BO-TGNN. In the upper part of the flowchart, the data source,
calculation of electricity quantities, and data collection are presented for
network training in the lower part of the flowchart. For GNN, the
adjacency matrix should be determined according to the topology and
line parameters of the power system. In the flowchart, network training
and hyperparameter optimization are the cores of the whole prediction
process. Bayesian optimization of the network hyperparameters involves
a large loop of iterative Bayesian optimization. In each iteration of this
grand loop, a series of network training iterations are performed.

3.1 Principle of LSTM

During the training of the network, historical sequences of input
and output features of the dataset will be used to train the network
parameters. The trained network will be utilized to quickly assess the
carbon emission factors during the pre-testing process of the
network. The forward propagation of LSTM with the gate and
output computation is given as follows:

ft � σ(wf · ht−1
xt

[ ] + bf

it � σ wi · ht−1
xt

[ ] + bi( )
gt � σ wg · ht−1

xt
[ ] + bg( )

ot � σ wo · ht−1
xt

[ ] + bo( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where xt and ht−1 denote the input of the tth time dimension; ft, it, gt,
and ot are the forget, input state, new vector, and output state at the tth
time dimension, respectively; wf , wi, wg, and wo, and bf , bi, bg, and bo

represent the weight and bias parameters of the LSTM layers, respectively;

and
ht−1
xt

[ ] represents the aggregation operation of two vectors.

3.2 Principle of GNN

GNN shows excellent performance in processing graph
structured data. For a power system, it can represent graph
relationships through topology and lines and use adjacency
matrices to reflect the topological structure of the graph. In this
paper, the topology of the power system and parameters of the lines
(resistance RB and reactanceXB) are selected for the construction of
adjacency matrix A, which are expressed as follows:

Aij � �vi − min �v

max �v − min �v
+ �ui − min �u

max �u − min �u

�vi �
Ri,j − min

j�1,2,...Nn

Ri,j

max
j�1,2,...Nn

Ri,j − min
j�1,2,...Nn

Ri,j

�ui �
Xi,j − min

j�1,2,...Nn

Xi,j

max
j�1,2,...Nn

Xi,j − min
j�1,2,...Nn

Xi,j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (10)

where Aij is the value of the adjacency matrix; �vi and �ui denote the
elements of two normalized vectors; and Ri,j and Xi,j are the
resistance and reactance between ith node and jth node.

Then, for the graph convolution operation of TGNN, the output
feature can be determined by the adjacency matrix, input feature,
and the optimal parameters, which is expressed as follows:

Hout
c � σ ~D

−1
2 ~A ~D

−1
2Hin

c wc + bc( ),
~A � A + I,

~D � ∑Nn
j�1 ~Aij,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(11)

FIGURE 9
Bayesian optimization results of the IEEE-39 system. (A) Bayesian optimization objective function and (B) MSE loss in network training.
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where Hout
c and Hin

c are the output and input features of the GNN
layer, respectively; I denotes an identity matrix; ~D is a degree matrix
computed by ~A; and wc and bc are the parameters of the GNN.

3.3 Design of TGNN with Bayesian
optimization

Due to good competence of LSTM for temporal feature
extraction and GNN for spatial feature, the TGNN is employed
to quickly forecast the carbon emission factor for power system and
electricity consumers. The configuration of TGNN is given in
Figure 3. It has four layers, including the input layer time series
layer, graph convolution layer, and fully connected layer.

For hyperparameter optimization of TGNN, the Bayesian
optimization technique is employed to search the optimum,
which has three optimal steps. First, the hyperparameter of the
system is determined by the sample operation for the current
iterations, which is expressed as follows:

f φ( ) ~ N[m φ( ), k φ,φ′( ), (12)

where φ is the optimal hyperparameter and f(φ) is the
corresponding probability distribution function. φbest is the
location of the lowest posterior mean. ω(φbest) is the
minimum of the posterior mean.

Second, the forward propagation of the network is performed
and the loss is calculated by the mean square error (MSE) function.
Then, a collection function based on Gaussian process regression is
constructed for collecting the sample set for the next iteration, which
is expressed as follows:

�E φ( ) � E{max 0,ω[ φbest( ) − f φ( )]}, (13)

where �E(φ) is the corresponding acquisition function.
Finally, the steps will be repeated until the iteration

conditions are satisfied. The mean percentage error (MPE)

function of the validation set is employed for the value
evaluation, which is expressed as follows:

�φ � arg min empe φ( ),φ ∈ ϑ, (14)
where �φ is the optimal hyperparameter set, �ϑ denotes the optimal
search space, and empe(φ) is the objective function.

3.4 Calculation flow of BO-TGNN

The whole process of calculating the day-ahead CEF forecast by
BO-TGNN is provided in the following Table 1. It follows three steps,
namely, data collection, network training, and day-ahead application.

FIGURE 10
Bayesian optimization results of the IEEE-118 system. (A) Bayesian optimization objective function and (B) MSE loss in network training.

FIGURE 11
Bayesian optimal parameters path with TGNN. (A) IEEE-9, (B)
IEEE-39, and (C) IEEE-118.
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4 Case studies

In this paper, the IEEE-9 node, IEEE-39 node, and IEEE-118
node systems are employed to conduct simulation cases for
simulation. In addition, the simulation is conducted with four
algorithms, namely, BO-FULL, BO-LSTM, BO-GNN, and BO-
TGNN. They all have the same hyperparameters and the same
search space.

4.1 Dataset and parameters of three systems

The system topologies are shown in Figure 4A, Figure 5A, and
Figure 6A. Then, the adjacency matrixes of the power systems for

the GNN computation are given in Figure 4B, Figure 5B, and
Figure 6B. These matrix values are determined by the topology,
resistance, and reluctance of the power system nodes. The
simulation uses 3 months of simulated data with a sampling
time granularity of 15 min, considering the load fluctuation
and renewable energy power output (as given in Figure 7). It
has 11,520 sample data for deep learning technique training. The
ratio of the training set to validation set is 1:4. The specific
parameter data on the node system and algorithm are shown in
Tables 2. For the carbon emission factor of the power system
nodes, it related to the source end power generation technology
of power system nodes. The renewable resources (like wind and
PV) are set to 0 kg/kWh, the coal fired is set to 1.2 kg/kwh, and
gas plant is set to 0.5 kg/kwh.

FIGURE 12
Day-ahead result of CEF in the IEEE-9 node system. (A) Node 9 and (B) node 7.

FIGURE 13
Day-ahead result of CEF for node 15 in the IEEE-39 node system. (A) Node 15 and (B) node 19.
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For Bayesian optimization, three hyperparameters of the four
networks are selected, which are the L2 regularization factor, initial
learning rate, and learning rate drop factor with the optimizer.
These parameters are important for the network prediction
performance, network training convergence, and generalization
ability. To improve the transparency and understanding of the
network for carbon emission factor prediction, these
hyperparameters should be optimal reasonably. The iteration of
Bayesian optimization is set to 35. The iteration of parameter
optimization for deep learning is set to 100. The batch size of the
training process is set to 64, and the Adam optimizer is selected for
the network training. The time series length is set to 48 (12 h) for
the day-ahead carbon emission factor forecast. TheMPE is selected
for the Bayesian optimization objective function, and MSE is
selected for the network training loss function. MSE is widely
used in regression models to analyze the prediction accuracy. MPE
can better reflect the relative errors of various features in the
model. For themth dimension prediction result, the MPE andMSE
can be given as follows:

MSE � ∑m
i�1 yi − �yi( )2

m
, (15)

MPE � ∑m

i�1
yi − �yi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (16)

4.2 Bayesian optimization for TGNN

Bayesian optimization is often applied to the hyperparameter
optimization of networks, due to the good predictive performance
requiring only a small number of iterations. It includes two iteration
processes. The first iteration is the Bayesian optimization for
hyperparameters for the network training, as shown in Figure 8A,
Figure 9A, and Figure 10A. Then, the network parameters of the weight,
bias parameters of each layer will be optimized according to the forward

propagation and backward propagation, and the loss function of the
convergence of the network will be obtained (as given in Figure 8B,
Figure 9B, and Figure 10B).

The following section discusses the optimal process of
Bayesian optimization for each algorithm at different power
systems. For the IEEE-9 node system, four algorithms
eventually converge to approximate optimized values (as
shown in Figure 8A). The TGNN converged first, followed by
the GCN, LSTM, and FULL. The network training loss curves of
TGNN for each Bayesian optimal iterations are given
in Figure 8B.

In addition, for the IEEE-39 node system, the proposed TGNN
has the best convergence value with the fastest convergence rate
than the other three deep networks based on Bayesian
optimization (as depicted in Figure 9A). In the network
parameter training, Figure 9B shows the MSE loss function
convergence process. With the vast majority of Bayesian
optimization hyperparameters, the network parameter training
converges at 30–40 iteration steps.

Finally, for the IEEE-118 node system, the best performance
for Bayesian optimization can also be acquired with the
cooperation of LSTM and GNN (as depicted in Figure 10A),
and it has faster convergence rate and greater objective
optimization than the IEEE-39 node system. This means that
with the increase in power system’s nodes sizes, suitable network
hyperparameter selection is necessary. This improves the
predictive performance and convergence speed of the network.
It is worth noting that the iterative loss function of the optimal
hyperparameters in Figure 10B is instead higher than that of the
other non-optimal iterative sets. This means that Bayesian
optimization helps search the optimal hyperparameters and
improve the generalization of the network, rather than simply
improving the performance of the network’s loss function.

The Bayesian optimal parameter paths of the three systems with
TGNN are given in Figure 11. For the IEEE-9 node system, the
proposed Bayesian technique can optimize the parameters with a

FIGURE 14
Day-ahead result of CEF for node 15 in the IEEE-118 node system. (A) Node 15 and (B) node 28.
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lower fluctuation (as depicted in Figure 9A). In the three parameters, the
L2 regularization factor has the maximum numerical fluctuation than
the other two parameters. In addition, parameter optimization
fluctuations of the initial learning rate also gradually increased (as
depicted in Figure 11B; Figure 11C). These indicate that Bayesian
optimization can effectively explore the hyperparameters of
the network.

4.3 Day-ahead optimization

4.3.1 Comparison for the power system node
The day-ahead results of CEFs for the power system node are

given in Figure 12, Figure 13, and Figure 14 with prediction results of
3 days. For the IEEE-9 node system, the GCN shows shortcoming in
predicting the carbon emission of the system due to the lack of the
time series mechanism. The TGNN has the lower forecast error and
fluctuation amplitude than the GCN (as shown in Figure 12).
However, it fails to demonstrate advantages in comparing the
performance of traditional algorithms, like FULL and LSTM.
This may be due to the few features to the capture. In addition,
in the IEEE-39 nodes system, it can track the trend of carbon
emissions at nodes well. However, there are still lagging
predictions at certain times, like 16:00 and 40:00. Finally, as
given in Figure 13, the TGNN can track the fluctuation in
carbon emission factors of power system nodes, indicating that
it shows the best predictive performance on this testing system
compared to other algorithms.

4.3.2 Statistical results
To further evaluate the performance of the TGNN in the day-

ahead CEF forecast, this section presents the application results of the
four algorithms with three indexes separately, as shown in Table 3,
where MSE is the loss function for deep network training. Higher
values of MSE do not indicate a better network performance, and
there may be network overfitting. In addition, MPE and the mean
absolute error (MAE) are also used to evaluate the algorithm’s forward
prediction performance. It is worth noting that the MPE function is

also the objective function of Bayesian optimization. For the IEEE-9
node system, the MPE value is too terrible; this means that the
network is hard to predict the results due to the bad hyperparameters
for the network training. With the introduction of Bayesian
optimization for hyperparameters of the deep network, the
performance of the networks is improved. For the IEEE-39 node
and 118 node systems, the proposed BO-TGNN has the lowest MPE;
this means that it has the best performance for the prediction of the
day-ahead carbon emission factor of the power system with larger
node sizes. It can help improve the MPE performance for FULL with
89.3%, 53.3%, and 61.2%; LSTM with 94.9%, 67.9%, and 72.6%; GCN
with 96.3%, 18.2%, and 86.7%; andTGNNwith 98.9%, 7%, and 61.3%,
respectively.

5 Conclusion

In conclusion, the work in this paper consists of the below two
contributions:

1) The data-driven model is developed to effectively extract high-
dimensional spatio-temporal electrical quantity characteristics
of power systems, and these features of the user node system
are predicted by analyzing the historical data on
source–network–load parameters.

2) The method innovatively applies the spatio-temporal graph
convolutional neural network based on Bayesian optimization
to the power system network, which achieves a fast and
accurate prediction of the daily-ahead carbon emission
factor of a power system with a large node size.

In this paper, only the carbon emission factor is predictively
analyzed and the impact of the response of the flexibility
resources on the system is not considered. Future work will
seriously address the uncertainty of wind and solar power
generation in carbon emission prediction, in order to improve
the comprehensiveness of prediction models. For the case of
random changes in the load and new energy sources of the power

TABLE 3 Result comparison with Bayesian optimization and none for each algorithm.

Case Index Bayesian optimization None

BO-FULL BO-LSTM BO-GCN BO-TGNN FULL LSTM GCN TGNN

IEEE-9 MPE 13.20 13.21 13.65 13.32 100 100 100 100

MAE 0.0101 0.0108 0.0101 0.0102 0.0103 0.0122 0.0166 0.0207

MSE 0.0026 0.0059 0.0026 0.0057 0.0037 0.0076 0.0047 0.0077

IEEE-39 MPE 17.19 16.00 14.94 14.61 36.84 49.89 18.25 15.70

MAE 0.0166 0.0110 0.0166 0.0148 0.0218 0.0088 0.0064 0.0118

MSE 0.0189 0.0230 0.0321 0.0218 0.0185 0.0218 0.0306 0.0357

IEEE-118 MPE 18.01 20.55 18.91 16.37 46.37 74.96 100 42.29

MAE 0.0053 0.0114 0.0090 0.0119 0.0102 0.0148 0.0093 0.0163

MSE 0.0354 0.0307 0.0264 0.0151 0.0439 0.0169 0.0121 0.0222

The bold values indicates that the TGCN performs better than the other compared algorithms.
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system, the realistic resource response may not be consistent at
all. In order to further improve the operation technology of the
power system and power users, the carbon emission optimization
model is subsequently considered to be combined with the
forecasting technique to achieve the optimal carbon energy
response of flexible loads.
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