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With the continued growth of smart grids in electrical systems around the world,
large amounts of data are continuously being generated and new opportunities
are emerging to use this data in a wide variety of applications. In particular, the
analysis of data from distribution systems (such as electrical substations) can lead
to improvements in real-time monitoring and load forecasting. This paper
presents a methodology for substation data analysis based on the application
of a series of data analysis methods aimed at three main objectives: the
characterization of demand by identifying different types of consumption, the
statistical analysis of the distribution of consumption, and the identification of
anomalous behavior. The methodology is tested on a data set of hourly
measurements from substations located in various geographical regions of
Colombia. The results of this methodology show that the analysis of
substations data can effectively detect several common consumption patterns
and also isolate anomalous ones, with approximately 4% of the substations being
identified as outliers. Therefore, the proposed methodology could be a useful
tool for decision-making processes of electricity distributors.
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Introduction

The incorporation of Smart Grids to electrical networks allows a wide variety of
innovations in their management, both in terms of grid infrastructure and information
processing, with the primary goal of ensuring a more reliable and efficient supply of
electricity to end users while lowering costs and potential risks to operators (Dileep, 2020).
The infrastructure that supports Smart Grids, known as Advanced Metering Infrastructure
(AMI), includes on-site metering devices (located at transmission lines, distribution nodes,
and end users), communication networks to connect such devices, and servers that store the
data that is being continuously generated. While the analysis of these amounts of data poses
significant challenges in terms of computing power and economic investment, the insights
obtained from such process can be used in multiple ways to improve the overall operation of
the network (Chakraborty and Sharma, 2016). Various applications have been developed
based on data generated by Smart Grids (Bhattarai et al., 2019), including, among many
others, real-time optimization of power distribution from generators (Paul et al., 2023),
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reduction of prices through tariff schemes adapted to consumption
(Aurangzeb et al., 2021), assessments of the integration of renewable
energy sources given their inherent variability (Mostafa et al., 2022;
Paul, 2022), and “demand response”, a mechanism designed to
increase the stability of the network through changes at times of
peak consumption through strategies such as user incentives or
automated monitoring (Siano, 2014; Siddiquee et al., 2021).

Integrating Smart Grids into existing power networks is a
complex and expensive process that faces significant and varied
challenges in both developed and developing countries. In
particular, in the case of Colombia, the growth of Smart Grids
has been accompanied by a notable increase in the country’s overall
electricity demand and a boost to the diversification of Colombian
energy sources, mainly hydroelectric and wind power (Colmenares
Quintero et al., 2022). As a result, intelligent management of energy
demand and distribution has become a priority for utilities and
government agencies responsible for overseeing nationwide and
regional distribution and regulating the Colombian energy
market (Giral Ramírez et al., 2017; Téllez Gutiérrez et al., 2018).
The adoption of AMI systems in the Colombian power grid has been
gradually reaching different levels of the network, including end
users and power distribution substations, that serve limited areas
such as small towns or neighborhoods of a large city (Garcia-Guarin
et al., 2019). However, the challenging geographical conditions of
Colombia, a highly mountainous country with a wide variety of
climates, have limited the development of reliable communication
networks and the integration of small local grids (Echeverri
Martínez et al., 2020), which constraint the expansion of Smart
Grids throughout the country (Molina C et al., 2019).

In scenarios such as the Colombian power network, where Smart
Grids are still expanding and have relatively low capabilities, grid
operators and other stakeholders are looking for fast and
undemanding ways to process the data generated by the network
and obtain meaningful information. Therefore, this paper proposes
a methodology focused on the analysis of data from electrical
substations, so that its results are centered around geographic
areas rather than individual users and thus allowing the results to
be more focused on regional electrical distribution. The
methodology comprises three stages of data processing:
dimensional reduction, consumption characterization through
clustering, and statistical analysis through density estimation. The
results of these three processes (each involving two different
methods) include the segmentation of different substation
consumption behaviors and the identification of the most
common and rarest consumption profiles, that is, the detection
of rare or anomalous behaviors. Our proposal is tested by using a
series of three data sets provided by three Colombian grid operators,
that contain hourly active power measurements made by AMI
devices located at 394 electrical substations, covering a period
between 2019 and mid-2022. Our methodology is a lightweight,
easy-to-implement alternative, suitable for small grid operators; we
prove it is able to quickly identify the most frequent behaviors in
daily electrical consumption on substations, and also to isolate
unexpected or infrequent patterns. The main contributions of
this work can be described as:

I. The formulation of a comprehensive methodology for the
analysis of electricity consumption measurements in

substations. This methodology is composed of data
preprocessing, dimensional reduction analysis, segmentation
analysis and density estimation analysis. For each of these
analyses, two different methods are applied in order to
guarantee the robustness of the results.

II. The application of the proposed methodology on three data
sets made up of consumption measurements in electrical
substations in different regions of Colombia, that shows it
is capable of finding common and anomalous behaviors in
multiple ways. Since the methodology is composed of
different data analysis methods, the results of each are
presented in the form of plots and compared using
performance metrics.

III. A comparison of the main results obtained for the data sets,
highlighting differences and similarities between the three
scenarios, and establishing the main advantages of the
proposed methodology, together with some possible areas
for improvement.

The structure of this paper is as follows: Section 2 provides an
overview of related work on worldwide cases of Smart Grids and
AMI implementation, as well as a literature review of the most
commonly used techniques for analyzing data generated by Smart
Grids. Section 3 gives a view of the characteristics of the data sets and
presents the framework in which the selected data analysis methods
are applied, establishing the order in which they are applied. The
results of this process on the data from the three grid operators are
presented in Section 4, and the conclusions of the work are presented
in Section 5.

Background and related work

Smart Grids overview

Classic power grids, originally designed to distribute power from
a few generating hubs to a large number of end users, are currently in
dire need of change. The pressure to improve the power grid system
can be traced, among other issues, to its inefficiency and
environmental footprint, a notable increase in electricity demand
in recent years, and the growing importance of less reliable energy
sources like renewables (Muench et al., 2014). Increasingly sudden
fluctuations in energy supply and demand require efficient and rapid
control of power distribution to maintain acceptable levels of quality
and reliability. Smart Grids promise to address these challenges,
enabling precise and efficient control of large areas of the grid
(Berger and Iniewski, 2012), addressing peak demand and other load
issues (Bhattarai et al., 2019), allowing a precise management of
renewable energy sources (Paul, 2022; Li et al., 2020; Saxena et al.,
2021), and giving greater flexibility to address the rising demand of
electric mobility, such as electric vehicles and ships (Ismail et al.,
2023; Kumar and Panda, 2023).

Smart Grids and AMI infrastructure have been implemented
over the last decade in different regions of the world with varying
degrees of success. An interesting example of Smart Grids
development was presented as part of the implementation of a
smart cities scheme in Sydney, Australia between 2009 and 2014.
This process was relatively successful, but was also held back by high
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costs, regulatory issues and poor government leadership (Lovell,
2020). At national level, although there have been serious
investments in smart metering and renewable sources, other
issues had emerged, including the low levels of grid integration
and communication problems in remote areas (Haidar et al., 2015).
A more optimistic case is China, where the government’s push for
energy efficiency has allowed an accelerated development of smart
grid implementation in large areas, albeit with poorly defined
horizons and an outdated, fossil-fuel based network that is not
well suited to the requirements of Smart Grids (Yu et al., 2012). In
the case of Europe, the regulatory frameworks of the European
Union have promoted a series of programs that seek standardization
among operators in different countries. The geographic and
economic particularities of each region make it difficult to draw
general conclusions (Fotis et al., 2022), but the most successful
projects have been developed following the smart cities paradigm,
integrating Smart Grids with transport and water management in
large and mid-sized cities across Europe (Farmanbar et al., 2019).

Regarding the implementation of Smart Grids in developing
countries, two paradigmatic cases are those of India and Brazil. In
the first case, the obsolescence of the country’s electricity grid and
the reluctance of consumers to the high costs of AMI meters have
been progressively solved through the development of a clear
regulatory framework and a strong collaboration between the
Indian government and industry organizations (Kappagantu and
Daniel, 2018; Asaad et al., 2021). In the second case, Brazil has an
electricity grid based on renewable sources, and regulators are the
main drivers for the implementation of smart grids in the country to
manage the grid efficiently and detect energy losses and illegal
connections. The vast and challenging geography, the lack of
strong investment in modernization and the technological lag are
cited as the main challenges (Di Santo et al., 2015).

Among the challenges that are often common in these cases, it is
important to recall those related to leveraging the data obtained as a
result of Smart Grid deployment. Although these data have the
potential to provide valuable insights for network operators, their
exploitation on a large scale is generally difficult and presents several
important issues (Mohamed et al., 2019). Data is generated
continuously and in large volumes, quickly overwhelming the
capabilities of the information systems of the operators and
preventing effective analysis; in addition, it is often difficult to
integrate data from different operators and from multiple local
grids, which hinders the formulation of nationwide conclusions
(Bhattarai et al., 2019; Tu et al., 2017). This represents a long-term
loss of value, both for companies that could better understand the
consumption patterns of their users, and for government agencies
interested in formulating more efficient energy distribution policies
(Moreno Escobar et al., 2021).

Data analysis methods on Smart Grids

With the development and growth of Smart Grids, processing
the data they generate has become one of the main sources of
information for electric grid managers. The results of data analysis
can be applied to problems such as demand response, identification
of profiles or prediction of consumption or long-term costs, among
others (Bustos-Brinez et al., 2023). The data generated, however, are

generated in large volumes and are increasingly complex, so they
usually start with a pre-processing stage that includes data
downsizing (Kotsiopoulos et al., 2021). In general, dimensional
reduction makes it possible to obtain results with greater
efficiency and improve visualization, at the cost of a small loss of
information. One of the most commonly used techniques for this
purpose is Principal Component Analysis (PCA), a method that
constructs linear combinations of existing features by minimizing
the loss of information measured by variance (Salem and Hussein,
2019). In the electricity sector, this technique and its variations have
been used as part of analysis schemes aimed at managing demand
response (Kafash Farkhad and Akbari Foroud, 2023) or detecting IT
security breaches in the data generated by Smart Grids (Acosta
et al., 2020).

Once data reduction has been performed, there are a large
number of applications in which different combinations of
methods are used for various purposes. Some of these
applications focus, for example, on the identification of load
profiles. In this area, the preferred methods are clustering
techniques, that aim to segment the data into a series of groups
(called “clusters”) such that the data in each group are similar to each
other and very different from those in other groups (Si et al., 2021).
The most well-known clustering algorithm is K-Means, a distance-
based method that constructs a previously defined number of
clusters in such a way that minimizes their inner variances by
centering each cluster around a central point known as
“centroid”. The predefined number of clusters (denoted as k) is
the basic parameter of the method. An extensive list of applications
of this method within Smart Grids is presented in (Miraftabzadeh
et al., 2023), highlighting its uses to identify multiple load profiles.

Another commonly used clustering method is called Density-
based Spatial Clustering of Applications with Noise (DBSCAN), a
method that allows the construction of clusters of highly variable
sizes and determines some rare or anomalous values that might not
belong to any group. The method relies on the definition of dense
areas through the revision of the neighborhoods of data points; this
depends on two parameters, the size of the considered neighborhood
(determined by a parameter called eps) and the minimum number
of points in a dense area (denoted as min samples). Data points in
dense areas tend to belong to the same cluster as its neighbors, and
data points outside of them are regarded as noise or outliers. Some
representative examples of the use of DBSCAN in Smart Grids are
shown in (Yang et al., 2018), where a wide variety of consumption
profiles are identified for price prediction purposes, and in
(Ravinder and Kulkarni, 2023), where the method is used to
detect possible intrusions in the network that communicates
radio sensors.

There are many other types of data analysis methods that are
used in different applications of Smart Grids. In the area of load
forecasting, dimensional reduction can be accompanied by
regression models [(Mukherjee et al., 2021)-MU1] or
classification models such as Support Vector Machines (Ayub
et al., 2020). The analysis of the best physical location of devices
storing Smart Grid data can be performed with optimization models
on graphs (Gallardo et al., 2021). Detection of cybersecurity
weaknesses or data injection attacks can be addressed by
mechanisms such as neural networks and deep learning
[(Vimalkumar and Radhika, 2017; Mukherjee et al., 2022)-MU2],
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and other unwanted network intrusions, such as power theft, can be
addressed through the combination of clustering methods like
DBSCAN with density estimation methods like Gaussian
Mixtures (Zheng et al., 2017). The latter method is based on the
assumption that the data come from a series of normal distributions
that may or may not be correlated, and whose parameters are found
by the model. The base assumption is the number of different
gaussians that make up the distribution. A Gaussian Mixture model
similar to the previous one is also used in the area of electric mobility
for the identification of load profiles and flexibility analysis, making
an analogy between the different gaussians and the groups obtained
by clustering models (Märtz et al., 2022).

Finally, some models are used in the area of renewable energies,
including the identification of energy generation profiles and their
contrast with consumption profiles (Miguel et al., 2016) or the
analysis of the distribution of solar energy generation in different
geographical areas using density estimation (Bouhorma et al., 2023).
In the latter case, where the density presents forms with multiple
modes that are difficult to analyze analytically, the algorithm chosen
is Kernel Density Estimation (KDE), which constructs a non-
parameterized distribution from the sum of the contributions of
each data point, measured through a transformation function called
a kernel. The distributions obtained with this method, although they
do not have an analytical form, are capable of modeling a wide
variety of complex scenarios (Hu et al., 2021).

Methodology

A graphical summary of the stages of the proposed methodology
and the models included in each stage is presented in Figure 1. By
sequentially applying these analysis methods, a series of
approximations to the cluster segmentation and probabilistic
distribution of the data are constructed. These results are
combined to create a robust model of substation consumption
that takes into account the different types of behaviors that can
occur and separates them into different groups, and also captures the
general distribution of the data to point out the most common and
most anomalous behaviors. Next, we present a detailed description
of the steps performed at each stage.

Data preprocessing

The expected input to the methodology is a set of AMI
measurement records containing at a minimum information on the
substation where the measurement is taken, the date and time of the
measurement, and the value of the measurement. Measurements should
be taken every hour continuously, so that substations have records
associated with each of the 24 h of the day. Under these conditions, a
substation is discarded for further analysis if it has missing or null
measurements. For substations with complete measurements, their
associated records are preprocessed according to the scheme
proposed in (Bustos-Brinez et al., 2023), with the aim of
summarizing the consumption of the substations in average load
profiles. For each substation considered, all its associated records are
isolated and then divided into 24 groups, each one corresponding to the
hour of the day (from 0 to 23) inwhich themeasurement was taken. The

average values of these 24 groups are obtained and then collected in a
load profile corresponding to a vector of dimension 24, where the first
value corresponds to the average of the measurements of hour 0, the
second value to the average of the measurements of hour 1, and so on
until hour 23. In this way, each substation ends up being represented by a
load curvemade from the averages of its records for each hour of the day.

Dimensional reduction

Once the average load curves have been constructed, each
substation is represented by 24 values that depict its average
consumption behavior throughout the day. However, not all of
these values carry the same amount of information, or some of them
can be seen as redundant in some cases. Therefore, in order to
maximize the efficiency of subsequent analyses (both in terms of
processing time and use of computational resources), it is important
to establish how many values are sufficient to analyze the
consumption behavior with a small loss of information. Two
approaches are chosen for this purpose, considering the examples
given in (Duarte et al., 2022) (where dimensional reduction is
also stated as a powerful tool for graphical representation of

FIGURE 1
Structure of the proposed methodology. It consists of four
stages: data pre-processing, dimensional reduction, clustering
analysis and density estimation. The main results obtained through its
application to electrical substation data are also presented.
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high-dimensional data). The first approach involves a MinMax
scaling, which transforms the values in the profiles to the range [0, 1],
followed by the application of a principal component analysis
(PCA) that reduces the dimension of each profile from 24 to just
two. The scaling is intended to remove information about the
magnitude of consumption, allowing two substations with similar
consumption patterns but with different magnitudes to have similar
representations. The second approach also reduces the profiles from
24 dimensions to two, by using two measures of central tendency, the
mean and standard deviation of the 24 values; this discards
information about rising or falling patterns along the day to focus
on the consumption magnitude and the general variation it presents.

Profile characterization

Since two-dimensional reduction approaches are applied, which
generate two alternative representations for each substation, there is

a separate analysis for each one of them. The two-dimensional
representations are used to identify and isolate different electricity
consumption behaviors, in a similar fashion to market
segmentation. In particular, it is desired to find behaviors that
can be associated with different types of end-users, distinguishing
between Residential, Commercial and Industrial load profiles. In
(Di Santo et al., 2015), these are identified as follows: Residential
users tend to show low consumption in the early morning and peaks
in the afternoon or evening, Commercial users have high
consumption in the afternoon and lower consumption in the
morning and evening, and Industrial users show a more
uniform consumption through all the day. Figure 2 shows some
of the expected patterns for each user type, representing profiles as
24-h plots.

In this stage, two different methods are selected to perform the
segmentation of profiles into clusters: DBSCAN and K-Means.
These methods depend on a set of hyperparameters that strongly
influence the quality of the results. Most of these parameters are set

FIGURE 2
24-h plots of some behaviors associated with different types of end users. In general, Residential users show low consumption in the morning and
spikes in the afternoon or evening, Commercial users show more consumption in the afternoon and less in the night, and Industrial users tend to have
stable consumption throughout the day. The plots have been generated using data from (Bustos-Brinez et al., 2023).
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to default values (suggested by the Scikit-Learn Python
implementation), leaving only some to be optimized by a grid
search process. For DBSCAN, the selected hyperparameters are
eps (searched between 0.10 and 0.25 with steps of 0.01) and
min_samples (searched from 2 to 5). In general, small values of
eps lead to the formation of a larger number of smaller clusters. For
K-Means, the main hyperparameter is k, the number of clusters,
searched from 3 to 10.

Consumption distribution

In this last stage, the goal is to build a statistical model of the
data that helps to identify the most common behaviors exhibited
by the substations and allows to perform density estimation and
other statistical tests. This statistical model is set up to emulate a
density function for the data points, that is, to have higher values in
regions where data points appear densely packed and lower values
in regions where data points are scarce. Since data points are
represented as points in a plane, the density model can also be
represented in a plane as a contour plot. The construction of this
density model is done twice, choosing two different methods,
commonly used for this task: Gaussian Mixture and KDE.
Although other, more powerful methods can be used, we select
these two methods because of their ease of implementation (both
are available as part of the Scikit-Learn Python library) and their
interpretability (for Gaussian Mixture, high-density regions are
associated with a series of bivariate Gaussian distributions, and for
KDE, the density of an area is made up of the weighted
contributions of all nearby data points, resulting in higher
densities where points lie in higher numbers). Similar to the
previous stage, the two models are run separately, and there are
a few hyperparameters that undergo grid search optimizations. For
Gaussian Mixture, the selected hyperparameter is the number of
components (that is, the different Gaussian distributions that
compose the overall model), searched between 3 and 8. For
KDE, with a fixed Gaussian kernel function, the selected
hyperparameter is the bandwidth, a value that controls how
much area the contribution of a data point is able to influence;
the value of the bandwidth was searched between 0.10 and
0.50 with steps of 0.05 for PCA-based points, and between
0.10 and 0.30 with steps of 0.02 for mean-variance points.

One application of these models that is explored is the
identification of the most infrequent data points (anomalies),
under the assumption that these appear in low-density regions,
and the rarer a data point is, the lower its density value is. These
anomalies, due to their rarity, could indicate failures in energy
distribution, errors/vulnerabilities in data collection or fraudulent
consumption. To identify which points are anomalous and which
are not, it is necessary to identify a boundary value, from which a
separation between regions of high density and regions of low
density can be established. This value usually depends on the
number of anomalies assumed to be present in the data, or on a
pre-specified percentage of anomalies; in this case, we look for
thresholds that leave out a number of points similar to that identified
by the segmentation methods. The values taken by the selected
threshold in each scenario depend on the values of the contour lines
in the density functions built by each model.

Results and analysis

Datasets

The proposed methodology has been tested against a group of
four data sets provided by three operators of the Colombian power
grid, located in different regions of the country. In total, the four data
sets contain active energymeasurements for 394 substations, and the
number of substations in each data set can be seen in Table 1. In this
work, only the records corresponding to the year 2021 will be taken
into account, since each data set covers a different time period. All
records in each data set share a common structure, containing an
alphanumeric identifier of the substation assigned by the
respective operator, the date of the measurement separated into
year, month and day, the time of the measurement (since only one
measurement is taken per hour) and the value of the respective
measurement, which can be an integer or a float value depending
on the operator.

The proposed methodology was implemented separately for
each of the network operators; in this way it is possible to
observe how the results change depending on whether there is a
large or small amount of data. This analysis is possible because there
is much more information available for one of the operators than for
the other two. Since two different methods are applied at each stage,
the outputs of each are shown for comparison.

Operator A

This grid operator delivered data from 16 grid substations, and
its substations are located in the central region of Colombia.

MinMax Scaling and PCA
The first mechanism of dimensional reduction consists in the

application of a MinMax scaling followed by the application of PCA.
Figure 3 presents a summary of the results of the different methods
applied on the data of Operator A, when starting with this method in
the dimensional reduction phase. From these data points, the
characterization stage is performed, using the two chosen
clustering techniques. For DBSCAN, the selected parameters are
eps � 0.2 and min samples � 2. The results of the method are in
Figure 3, second level from top to bottom. The blue dot labeled “-1”
could not be attached to any cluster, so it is separated as an outlier.
The curves obtained by averaging all the points within each cluster
are also presented. From the cluster graphs, it is possible to clearly
separate the consumption behaviors in each cluster: the red cluster
shows Residential behavior, the green cluster shows a more

TABLE 1 Number of substations whose measurements are contained on
each dataset.

Dataset Substations

Operator A – DB 1 16

Operator B – DB 1 19

Operator C – DB 1 14

Operator C – DB 2 345
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Commercial behavior, and the yellow cluster shows a uniform,
more Industrial behavior. The second clustering technique used
for data analysis is K-Means. After a test with several values of k, it
is decided to use the value k � 4. The result of the method is
presented in Figure 3, third level from top to bottom. The clusters

obtained with K-Means correspond more or less to the same as
with DBSCAN: the green and yellow clusters are retained, while
the larger cluster is split into two halves of similar size. The point
that DBSCAN could not join to a cluster is again isolated, this time
in its own cluster.

FIGURE 3
Results of the application of the methodology (with dimensional reduction by Scaling and PCA) on the data of Operator A.
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In the final stage of the methodology, two different models for
density estimation are applied to the data, which allow the
identification of anomalous points. The first model is Gaussian
Mixture; given the previous results of the clustering methods, it is
decided to use three Gaussians. The last level in Figure 3 on the left

shows the contour lines of the distribution constructed by the
method, where warmer colors represent higher density. The three
Gaussian distributions can be distinguished, although two of them
overlap. The second density estimation model applied is KDE. The
last level in Figure 3 on the left shows the distribution contour lines.

FIGURE 4
Results of the application of the methodology (with dimensional reduction by Mean and Variance) on the data of Operator A.
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The obtained approximation is mostly dominated by the Residential
points. The red lines in the two plots represent the level curve
corresponding to the separation threshold. In the case of Gaussian
Mixture, only one anomalous point is left out, precisely the point
that the clustering methods isolated. As for KDE, the separation
threshold leaves out three points: the point isolated by the clustering
methods, a Commercial type point and an Industrial type point.

Mean and Variance
The second dimensional reduction mechanism uses two main

trend measures: the mean and the variance, which are more
correlated with each other than the components obtained by
PCA. Figure 3 shows the data points in a two-dimensional space
where the mean and standard deviation (to keep the units the same)
are the X and Y axes respectively. With this new representation of
the data, we proceed with the characterization stage, using both DB-
SCAN (with the same parameters eps � 0.2 y min samples � 2)
and K-Means (which looks for k � 4 clusters). The results of both
methods are presented in the second and third levels of Figure 4. In
this case, DBSCAN left three of the points set aside as outliers, and
three clusters were formed whose main difference is in their
magnitude. With respect to K-Means, the cluster curves change a
little, since they include the points separated by DBSCAN; the clusters
are still distinguished by consumption (the pink cluster for the lowest
consumptions and the purple cluster for the high consumptions), but
the intermediate consumptions are separated into two groups, one
with low mean and high variance (in turquoise) and the other with
highmean and low variance (in orange). Although it is a bit difficult to
visualize in the lower consumption curves, all the clusters have a
similar Residential-type load profile.

Finally, on this alternate representation of the data the density
estimation models are applied. The results are shown in the last level
of Figure 4. For the Gaussian Mixture model, three Gaussians were
again used, which are clearly distinguishable and roughly
correspond to the three clusters found by DBSCAN. Only one
data point falls outside the separation threshold, one of the three
previously detected by DBSCAN. As for KDE, the approximation
obtained effectively separates data with high mean and variance
values from data with lower means and variances. Again, the only
point detected as anomalous is the same as with Gaussian Mixture.
This point has a high mean and a very low variance, which could
indicate that it corresponds to an Industrial type point, with high
and constant energy consumption.

Results Comparison
For this operator’s data, the first dimensional reduction

alternative (PCA) favors the distinction of the different types of
consumption. Residential, Commercial and Industrial behaviors can
be found represented by well-defined clusters, with Residential
forming the majority group. The second alternative of dimensional
reduction (Mean and Variance), proposes a characterization much
more focused on the magnitude of consumption, in which the
grouping methods coincide in separating the clusters by
distinguishing between high, medium and low consumption.
Between the two results it is possible to establish a relationship,
presented in Figure 5, where the clusters obtained in the first analysis
(with DBSCAN) are plotted on the points obtained in the second
analysis. The more Industrial and Commercial substations show less

variance for their mean (they are more to the right in their magnitude
clusters) and the Residential ones show more variance (more to the
left in their magnitude clusters). From this relationship, a strong
correlation can be determined between the trend measures of a
substation and its behavior, so it would be sufficient for the
operator to obtain the mean and variance of the substation to
approximately categorize its behavior.

The density estimation models also show some similarities. The
different types of consumption can be approximately modeled by
intermixed Gaussian distributions, since both models propose
relatively similar distributions in which the contour lines present
shapes similar to ellipses. However, the anomalies detected in each
case correspond to different substations. When reducing by PCA, the
outlier found is characterized by the high number of peaks in its load
curve. When reducing by mean and variance, the outlier is detected
due to its remarkably low variance for its mean, i.e., a very flat
consumption curve. Both of these anomalous substations could be of
potential interest to the network operator, as they could indicate
unstable service performance or unexpected consumption variations.

Operator B

This grid operator delivered data for 19 network substations.
These substations are located in the northwest region of Colombia.

MinMax Scaling and PCA
Figure 6 presents a summary of the results of the different

methods on the data of Operator B, when starting with dimensional
reduction by MinMax and PCA scaling. The application of
DBSCAN (with the same parameters selected in the previous
case) generates three clusters and three outlier points. The
average consumption curves of each cluster show behaviors that
are not so different from each other. Although all the curves present
two peaks, one at noon and the other at 18 to 19 h, and the shapes of
their curves point to a Residential profile, where the main distinction

FIGURE 5
Comparison of results between the two analyzes carried out on
the data of Operator A. The yellow dots correspond to the Residential
cluster, the green ones to the Commercial cluster and the blue ones to
the Industrial cluster. The outlier point is shown in purple.
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is in the magnitude of the noon peak. K-Means, applied to find k � 4
clusters, isolates two of the outliers into their own clusters. The
remaining clusters are relatively similar to the previous ones,
separating curves with a high noon peak (purple cluster) from
curves with more moderate variations (orange cluster).

Regarding density estimation, the models coincide in identifying
the two points isolated by K-Means as anomalous. In the Gaussian
Mixture model, the turquoise cluster of K-Means dominates the
estimation, suggesting that the model indicates as more frequent the
Residential behavior with moderate variations. On the other hand,

FIGURE 6
Results of the application of the methodology (with dimensional reduction by Scaling and PCA) on the data of Operator B
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KDE forms two well-defined high-density areas, which include the
two large clusters found by K-Means. The three anomalous points
indicated by the model are also the same as in DBSCAN; these
coincidences between the two methods suggest that the KDE results
may be a robust approximation for these data.

Mean and Variance
Figure 7 presents the results of the different methods on the data

of operator B, using as new dimensions the mean and standard
deviation of the consumption data. Again, it is observed that high
values of mean usually imply high values of variance. DBSCAN

FIGURE 7
Results of the application of the methodology (with dimensional reduction by Mean and Variance) on the data of Operator B
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identifies three clusters and a single outlier point, whose isolation is
due more to its separation from other points than to having a very
high or low variance for its mean. The three clusters obtained clearly
correspond to low, intermediate and high consumption. The
K-Means method, for which this time a value of k � 5 clusters
was chosen, isolated the outlier and one other point in its own
clusters. The remaining three clusters are virtually the same as those
obtained by DBSCAN (i.e., high, medium and low consumptions),
but there is another behavior that the model considers strange. The
Residential profile is repeated in all clusters (although in the low
consumption clusters it is less visible due to the scale of the graph).

In terms of estimation, the Gaussian Mixture model is much
more aligned with the results of the clustering methods: the three
Gaussians are very clearly distinguishable, and correspond to the
DBSCAN clusters both in their range and in that the same point is
detected as anomalous, albeit by little difference from the threshold
value. The separation of this point is much more marked in KDE,
which also clearly distinguishes the three clusters found by DBSCAN
even though the intermediate and high consumption clusters tend to
be grouped together because of the similarity in their variances.

Results Comparison
The first dimensional reduction alternative (Scaling and PCA) was

less effective to distinguish different types of consumption than for the
previous analysis. This may suggest that the data from this operator
present more similar behaviors among themselves, or that in each
substation of this operator there is a high proportion of Residential
users. The less common consumption profiles can be seen in the
centroid curves found by K-Means in both cases, where the isolated
points show profiles that tend towards Industrial or Commercial
(although without leaving Residential). Other points that are
isolated by the methods show either a high number of peaks and
valleys, or intermediate consumption levels with very low variances.

Despite this apparent difference between the two analyses, a new
relationship emerges when applying the clusters of the first analysis
(with K-Means) on the points of the second analysis, as can be seen
in Figure 8. The large central cluster of the first analysis with
K-Means (marked in dark blue) encompasses precisely the points
that appear to better follow a linear relationship between mean and
standard deviation, and the anomalous ones correspond precisely to
the points that deviate most from the trend, either up or down. This
correlation between the mean and variance of a substation with the
degree of anomaly of its behavior presents another tool to quickly
detect if a substation is behaving strangely. Deviations from the
central tendency can have different meanings, with upward
deviation being associated with Commercial behavior and
downward deviation with Industrial behavior.

In addition, anomalous behaviors tend to appear more in
consumptions with low means. The estimation models suggest
that substations tend to exhibit Residential behavior with high
magnitude but relatively smooth peaks, and that variances tend
to be either very low or very high. Although the two estimation
methods tend to agree, KDE has better identification of outliers. The
results suggest that the operator could focus his attention on the
substations where there are more abrupt changes in consumption
(possible indicators of distribution instability) or on the isolated
K-Means points in Figure 7, whose consumption has a similar
profile to that of other substations but its magnitude is notably

lower or higher, which could indicate a scenario of measurement
disturbances or a possible energy loss.

Operator C

This grid operator delivered data from 359 network substations,
located in the central and western regions of Colombia. During the
pre-processing of this data, 24 substations were discarded due to the
high number of null records they presented.

MinMax Scaling and PCA
Figure 9 presents the results of the different methods on the valid

data of operator C, when starting with dimensional reduction by
MinMax and PCA scaling. Unlike the previous cases, these data are
muchmore numerous andmuchmore concentrated in a central area.
When performing the DBSCAN application (where new parameter
values were selected, eps � 0.14 and min samples � 3), the model
presents a large central cluster that groups the vast majority of the
data, four other smaller and relatively compact clusters, and 19 points
cataloged as outliers. The average curve of the central cluster shows
Residential consumption with little variation and a maximum at hour
19. The red and purple clusters show Commercial behavior, the green
cluster groups a more constant Industrial consumption, and the
brown cluster shows a curve with numerous peaks, with a notable
maximum at hours 18 and 19.

For K-Means, a search of k � 7 clusters were performed. The
method divides the large central cluster into five parts, in whichmost
of them present a Residential type behavior. The clusters that deviate
are the pink and brown ones, which group the Commercial clusters
found by DBSCAN together with some additional points. Also, a
single point is isolated in its own cluster, whose curve is higher in the
early morning and falls at night, and whose variations are opposite
to the generality of the clusters.

The density estimation models tend to resemble each other
much more closely than on previous occasions, with an area of

FIGURE 8
Comparison of results between the two analyses carried out on
the data of Operator B. The points of colors other than blue indicate
the behaviors indicated as strangest in the first analysis. A trend line is
added to observe the relative separation of these points.
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high density dominated by the central cluster. In this case, the
Gaussian mixture model uses five Gaussians, and the separation
threshold leaves six points on the outside, only two of which are
relatively far from the edge. However, these outside points tend to
alter the shape of the distribution, causing large empty areas to

remain inside the threshold. KDE, on the other hand, generates a
distribution whose contour lines are more elliptical and much
more centered on the main cluster; thus, the model leaves only four
anomalous points, especially isolating the yellow point separated
by K-Means.

FIGURE 9
Results of the application of the methodology (with dimensional reduction by Scaling and PCA) on the data of Operator C.
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Mean and Variance
Figure 10 presents the results of the different methods on the C

operator data, starting with dimensional reduction by mean and
variance. The vast majority of the data have been concentrated in a

large group of low mean and variance values, and the remainder are
in a more dispersed group with high means and variances. Between
the two groups there is only a single point. DBSCAN (with same
parameters as before) gathers almost all points with low mean and

FIGURE 10
Results of the application of the methodology (with dimensional reduction by Mean and Variance) on the data of Operator C.
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low variance into one large central cluster, leaving only two small
clusters and two outliers. For the high mean and high variance
points, the method separates them into three clusters and leaves
two more outliers. The intermediate point is also labeled as an
outlier. For its part, K-Means (with parameter k � 4) separates the
low mean and low variance points into two clusters, gathers all the
high mean and high variance points into one, and isolates the
intermediate point in its own cluster. Contrary to before, the four
curves all exhibit Residential behavior, distinguished only by their
magnitudes.

Both density estimation methods propose models that are
more consistent with the separation proposed by K-Means,
i.e., two areas of high density at opposite corners of the
plots. The Gaussian Mixture proposal encircles almost
all points in two Gaussians and leaves two points as
anomalous. KDE gives greater prominence to the region of
low mean and variance, which can be seen in the size of the
area surrounded by the threshold curve, much larger there than
in the other region. In this model, three points remain
as anomalous.

Results Comparison
In contrast to the previous cases, the data from this operator

presented an additional challenge to the methods. This was due to
both the quantity and the distribution of the data. In terms of
computational complexity, the methods showed slightly longer run
times, as they encountered twenty times more points than in the
previous cases. Furthermore, the points are not scattered as before,
but highly concentrated in a small area. However, the points at the
edges of this area show interesting behaviors that contrast openly
with the points in its center, both in their profiles and in their
magnitudes.

In terms of profiles, the methods suggest a higher frequency of
Residential type behaviors, represented by a large central group
(DBSCAN orange cluster). The divisions of this group found by
K-Means show only slight variations of the consumption profile.
At the edges of the main group, there are the more Commercial
type profiles (appearing towards the left of the graph) and
Industrial type profiles mixed with Residential (further to the
right of the graph). This suggests that, in general, Residential
profiles forms a large part of this operator’s consumption, being
dominant in almost all substations. Only one substation presents a
really different consumption from the others, suggesting the
operator to review the electric service conditions in the
corresponding area.

Regarding the magnitudes, the model finds two well
differentiated groups, which roughly correspond to the two
databases provided by the operator. The large separation
between the two groups indicates that substation consumptions
could be addressed in two different ways: high consumption
substations, for example, could require a larger amount of
equipment to guarantee service quality, or the operator could
prioritize the construction of new distribution stations in their
areas of influence.

By applying the clusters of the first analysis obtained by
DBSCAN on the points of the second analysis, shown in
Figure 11, it is observed that the linear trend found in operator B
is approximately maintained. The Figure, for visual reasons,

considers only the cluster of low means and variances. The large
central cluster dominates the trend as it is much more numerous,
and the smaller clusters and outliers tend to appear at the edges of
the group, with the more Commercial clusters (in red and purple)
above the trend line, while the more Industrial points (in green)
appear below the line.

Models based on Gaussian Mixture tend to show large regions
of high density (bright yellow) but the anomalous points appear to
alter both the shape and size of the contour lines. This variability is
an undesirable behavior in the models. In contrast, KDE results are
much more robust, as these points have less impact and contour
lines are clearly defined around the areas with more points. The
latter model makes it possible to identify all those points that
require attention by the operator, either because of their relatively
strange profiles or because of the range of their average
consumption.

Results discussion

The quality of the findings of the methodology on each case
(particularly in terms of segmentation) have been measured by
using three metrics: silhouette score, Davies-Bouldin score, and
Calinski-Harabasz score, all of which are calculated using their
respective implementations in Scikit-Learn Python library. The
values of these metrics for each analysis are shown in Table 2,
highlighting (in bold) the best metric for each operator (higher
values for silhouette and Calinski-Harabasz score, lower values
for Davies-Bouldin). Although the values of the metrics for each
operator are pretty similar, regardless of the dimensional
reduction strategy or clustering method being used, in all
cases they seem to lean towards either PCA (the case for
Operator A) or mean and variance (the case for operators
B and C).

Since two of the operators provided information from less than
twenty substations, the transformations of the data points achieved a
high dispersion for both cases, which allowed the clear identification

FIGURE 11
Comparison of results between the two analyses carried out on
the data of Operator C. The orange points belong to the massive
central cluster, and other colors represent minor clusters and outliers.
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of distinct user profiles. This differentiation occurs both in the shape
of the profile (identifying Residential, Commercial and Industrial
profiles) and in its magnitude (clearly separating high, intermediate
and low consumption). In contrast, the third operator provided data
from more than three hundred substations, and the transformations
generated in both cases a large and very dense central group with
some scattered points at the edges. The average behavior of this
central group (with residential and low magnitude consumption)
contrasts with that of the smaller groups. However, all the analyses
of the data provided by the operators are consistent in some
elements, especially in the shapes of the profiles. Residential
profiles tend to be similar for all operators and clearly dominate
the majority of clusters, showing that users connected to the
substations show this type of behavior much more frequently.
Commercial and Industrial profiles from different operators are
also similar to a lesser extent, suggesting that the clusters of profiles
can be extrapolated to the entire territory of Colombia and serve as a
national planning tool, especially when considering the hours of
consumption peaks.

As for the estimation models, Gaussian Mixture tends to
better model clusters with few points, while KDE is more robust
for large clusters. Data points detected as anomalous by the
methods (16 anomalous substations on all operators’ data
from a total of 394) usually have consumption profiles with a
large number of peaks and valleys in their curves and
intermediate levels of consumption. Figure 12 shows the
profiles of some of the anomalies identified by the multiple
analyses, and although some of them appear to slightly
correspond to one or other type of user (mainly Residential or
Commercial), the peaks and falls of their profiles are much more
abrupt and frequent than in other substations. Some of the
anomalous substations appear to serve areas such as industrial
parks or are located near hydroelectric sources. In other cases, the
rare patterns could be related to sudden fluctuations, blackouts,
illicit connections or other problems with the power supply or
distribution infrastructure.

Advantages and disadvantages

The methodology offers several advantages over other
approaches to data analysis for load profiling. The different
techniques used in all stages are well-known and relatively simple
in terms of complexity, either being linear (KDE, PCA, KMeans) or
quadratic (Gaussian Mixture, DBSCAN) in time with respect to the
number of data points. The relatively low time complexity of the
methods allows for a fast implementation of the methodology that
can be adapted to multiple dataset structures and programming
languages, being particularly useful for small grid operators which
may not have strong computational capabilities. To determine if this
proposal is a suitable solution in the Colombian scenario, the
methodology and its results were shared with one of the grid
operators. The operator expressed a favorable opinion of the
proposal after a detailed observation, and found that it is possible
to apply the methodology directly to the measurement data of its
substations as they are stored. The most interesting results from its
perspective were found in the detection of anomalous points.

It is important to mention that this proposal has also some
drawbacks. Many of the selected methods rely on certain
assumptions that simplify calculations but do not necessarily
reflect the real behavior of the data, such as the normality
assumption for Gaussian Mixture. Other relevant assumption is
related to data quality since the methodology only discards
substations with null values, thus being vulnerable to data
injection attacks or other cybersecurity-related issues.
Additionally, searching for the best parameters is a challenging
task that could be resource intensive, due to the fact that optimal
parameters are highly dependent on the intrinsic nature of the data.
More complex methodologies could represent different relations
among data points without the need for prior assumptions or
parameter tuning. However, many advanced techniques are
developed using specific programming frameworks and often
exhibit high computational complexity, which can hinder their
reproducibility and make them less useful for grid operators.

TABLE 2 Summary of performance metrics of the clustering methods in each application of the proposedmethodology. The best value for eachmetric and
dataset is highlighted in bold.

Silhouette Davies-Bouldin Calinski-H

Operator A – PCA + DBSCAN 0.4979 0.3633 29.9486

Operator A – PCA + KMeans 0.4755 0.6074 38.2815

Operator A – MV + DBSCAN 0.4385 1.1612 13.0070

Operator A – MV + KMeans 0.4372 0.5421 27.8078

Operator B – PCA + DBSCAN 0.5780 0.7882 11.9151

Operator B – PCA + KMeans 0.4477 0.4684 22.3639

Operator B – MV + DBSCAN 0.6257 0.3420 108.928

Operator B – MV + KMeans 0.5849 0.3385 123.187

Operator C – PCA + DBSCAN 0.1558 1.9516 30.3292

Operator C – PCA + KMeans 0.3414 0.8673 229.745

Operator C – MV + DBSCAN 0.6106 0.7284 876.581

Operator C – MV + KMeans 0.6434 0.3599 10,011.19
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Conclusion

In this work, a methodology to analyze data from AMI
measurements on electrical substations is presented. This
proposal consists of three main stages (dimensional reduction,
clustering and density estimation), in each of which a series of
data analysis methods are successively applied to the data in order to
characterize the consumption patterns of the substations (relating
these patterns to common types of end users) and to isolate
substations with rare or anomalous behavior. The methodology is

applied to the consumption data of 394 electrical substations
measured by three operators of the Colombian electrical grid.
The quality of the different groupings generated by the
methodology for each operator’s data was measured through
three metrics, that tended to favor the separation between
substations with low and high consumption. Regarding the
detection of anomalous behavior, density estimation models are
used, since anomalies can be understood as points located in regions
of low density. The twomodels used in each scenario usually agree in
their results, and the anomalous behaviors (identified in

FIGURE 12
Load profile curves of six of the identified anomalous substations. These profiles show behaviors that contrast with themajority of the substations by
having sudden changes (peaks and troughs) at different hours of the day.
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16 substations) show significant differences with the usual behavior
of the substations. Since the data analysis methods selected as part of
the methodology are well-known, efficient and easy to implement,
this proposal can contribute to the standardization of processes for
analyzing electricity consumption data in Colombia and other
developing countries. The results obtained can potentially help
grid operators, government agencies and other stakeholders of
the electric power system to better understand the differences
and similarities in electricity consumption patterns between
different regions, and to identify the underlying elements that
generate anomalies (distribution failures, service outages,
erroneous or missing data, power theft, infrequent changes in
consumption) in order to propose mechanisms for their study
and eventual resolution.
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