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As the high carbon emission entities in the city, laying photovoltaic (PV) panels for
public buildings is an effective way to reduce building carbon emissions.
Meanwhile, public buildings play an important role as charging station access
for the explosive growth of electric vehicles. However, the disorderly charging
behavior of single-phase charging piles exacerbates the existing three-phase
unbalance inside the buildings, which in turn affects operating costs and PV
consumption. Energy storage system (ESS) configuration is considered an
effective solution. Thus, An ESS configuration strategy is proposed for public
buildings aiming at PV local consumption and three-phase unbalance
management. To quantify the correlation between multiple loads and PV
output, an improved affinity-propagation clustering algorithm based on the
spatial weighted matrix distance is developed to obtain operational typical
power supply-demand modes. Based on the construction of the three-phase
power supply system with both single-phase and three-phase ESSs, a bi-level
planningmodel is formulated for the configuration and operation optimization of
ESSs inside the public building. The upper-level problem aims tominimize the life
cycle cost of ESS allocation. The lower-level model deals with the coordinated
economic scheduling of single-phase ESS and three-phase ESS under the
obtained typical operational modes. Numerical results show the effectiveness
and rationality of the proposed clustering algorithm and ESS
configuration strategy.
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1 Introduction

In recent years, as environmental pollution and energy shortages have become
increasingly serious, various industries have been driven to develop in a clean and
efficient direction (Chen, 2024). In this background, countries around the world are
gradually paying more and more attention to renewable energy industries such as wind
power and photovoltaic (PV). As one of the important energy consumers in the city, public
buildings provide a suitable environment for the laying of PV panels and PV local
consumption. However, due to the randomness and intermittent nature of PV output,
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there will be a supply-demand mismatch problem in buildings. The
configuration of energy storage system (ESS) equipment is
considered an effective solution to achieve supply-demand balance.

Meanwhile, the rapid development of electric vehicles (EVs) has
effectively promoted the planning and construction of urban
charging piles. Large public buildings such as urban office
buildings and commercial buildings are often regarded as
important groups for charging pile access. However, the single-
phase and disordered charging of EVs aggravates the three-phase
power unbalance in public buildings. The traditional power quality
control methods have the problem of high cost. With the ability to
regulate active power in two quadrants, ESS can promote PV
consumption while also addressing three-phase unbalance,
achieving “one machine for multiple uses.” Therefore, the
planning and operation of ESS will become the key to the
economic and stable operation of public buildings.

The capacity planning problem of ESS mainly focuses on two
aspects: the typical operational mode selection method and the
optimization model modeling method. Among them, the typical
operational mode selection can reduce the computational
complexity of planning problems while retaining effective
information, which is the foundation of ESS planning and design
(Guo et al., 2020). Many approaches have been proposed to achieve
typical mode selection, including subjective selection method,
heuristic scenario reduction method, sampling method, and
clustering method. The subjective selection method presented by
Guo et al. (2013) first classifies the data according to conditions such
as cloudy/sunny days or holidays/working days. Then the typical
days are determined from various categories artificially. This
selection method is highly subjective, and the selection results
may not represent the original data well. Based on the
submodular function, Wang et al. (2017) propose a scenario
reduction algorithm, which optimizes the number of scenarios
endogenously as well as ranks these scenarios. The heuristic
search algorithm is adopted by Li et al. (2016) to solve the
proposed scenario reduction model, which can effectively
approximate the original scenarios set. The above heuristic
scenario reduction methods are able to process large-scale data,
but cannot ensure that the selection result is globally optimal.
Morales et al. (2010) generate statistically dependent samples
from input random variables through Monte Carlo simulation.
Gao et al. (2017) and Cai et al. (2014) adopt the Latin hypercube
sampling to guarantee the uniformity of the spatial projection.
However, the sampling method may have a significant overall
deviation from the original data as the weight coefficient of
typical scenario cannot be optimized. The clustering method
adopts algorithms to classify data and obtain class centers. The
selection results are representative and can preserve the time-series
information of the data. Therefore, more and more research is
focusing on obtaining typical scenarios through clustering. Based on
a graphic method, a method is proposed for the selection of typical
days from hourly energy demand data (Ortiga et al., 2011). By
improving the k-medoids clustering method, Zatti et al. (2019)
propose a mixed integer linear program clustering model called
k-MILP, which aims to simultaneously find both typical days and
extreme days in a year. Considering the dynamic behavior of the
system in the typical day selection process, Sayegh et al. (2022)
propose a typical short sequence algorithm, which completes the

typical day selection through two functions iteratively. A k-means-
average algorithm is proposed to help reduce the complexity of the
CCHP optimization model to an acceptable level (Gao et al., 2018).
Delubac et al. (2023) develop a method that combines heuristics and
clustering to select typical days, reducing the dimension of the
optimization model to a manageable size. How to improve
clustering algorithms is the research focus of typical scenario
selection methods. However, existing clustering algorithms lack
quantification of the correlation between different variable
dimensions when dealing with multi-dimensional data. Thus, a
novel clustering algorithm needs to be adopted to obtain typical
power supply-demand modes if the correlation of multi-
dimensional data affects ESS configuration results.

Considering the differences among various power supply-
demand entities, many scholars have conducted research on ESS
configuration issues for objects such as microgrids, integrated
energy systems, and wind/PV power stations. Akram et al. (2018)
propose a joint capacity optimization method for a typical
residential standalone microgrid with three objects: system cost,
greenhouse gas emissions and dump energy. To ensure reliability
and resilient operation under typical and extreme fault conditions,
Xie et al. (2019) propose a bi-level optimization model for ES sizing
in networked microgrids. A storage capacity expansion planning
model is established considering multiple functions of hybrid energy
storage in regional integrated energy system (RIES) (Wang et al.,
2020). Meanwhile, the wavelet packet decomposition method is
adopted to achieve the function of stabilizing fluctuation. To address
renewable energy fluctuations and user demand in RIES, Gao et al.
(2023) propose a multi-time scale configuration approach for multi-
element hybrid ESS. A wind-photovoltaic-battery hybrid generation
system capacity configuration method is developed considering
return on investment (Yang et al., 2020). The proposed bi-level
model is solved by using the adaptive weighted particle
swarm algorithm.

Due to the functions of ESS in renewable energy consumption,
demand management, peak load shifting, and ancillary service
provision, many studies have been conducted on different
application scenarios. To cope with the wind curtailment loss
and traditional energy power uncertain reserve, the ESS capacity
configuration is studied from the perspective of compensating the
prediction error of wind power (Nazir et al., 2020). Considering the
demand management and energy arbitrage effects of ESS, Ding et al.
(2020) construct a bi-level optimal sizing model for industrial
consumer-owned ESS by maximizing the net income of the life
cycle. To alleviate the demand-generation mismatch, Alhumaid
et al. (2021) realize the optimal allocation and scale
determination of ESS based on a deterministic multi-input
nonlinear programming technique. A siting and sizing method
for the distributed energy storage system (DESS) is presented to
accomplish grid control and reserve provision (Massucco et al.,
2021). Considering the influence of battery energy storage system
(BESS) providing reserve capacity on wind output uncertainty, a
BESS optimal capacity model is proposed by Su et al. (2017) for wind
farm integration with adapting the scheduling plan. Focusing on the
DESSs participating in peaking shaving of grid load, Jin et al. (2020)
are committed to searching for the optimal installation location and
capacity allocation scheme of DESSs. Based on the spectral analysis
method, Zhao et al. (2015) propose a scheme for capacity allocation
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of hybrid ESS for power system peak shaving. A BESS sizing
methodology is proposed by considering the participation in both
energy and frequency regulation markets (Wu et al., 2022). Moreno
et al. (2015) study three system services that ESS can provide,
including reactive power control, frequency regulation services,
and energy peak shaving arbitrage. An optimal whole-life-cycle
planning approach is proposed by Du et al. (2022) with
normalized quantification of multi-services profitability, aiming
to discretize battery lifespan into multi-cycle-life scales and apply
the most profitable service in each scale. However, there is still a lack
of research on the ESS capacity configuration for the rapidly
developing public building PV-battery system under the low-
carbon background. Meanwhile, three-phase unbalance
management inside public buildings will become a new problem.
The research on how to effectively utilize ESS to solve the issues is
still a blank space.

Accordingly, this paper proposes a public building ESS
configuration strategy to promote PV local consumption and
three-phase unbalance management. Through the joint dispatch
of single-phase ESS (SESS) and three-phase ESS (TESS), public
buildings can operate economically and stably within the
planning cycle. The main contribution of this paper is
summarized as follows.

1) A typical power supply-demand mode selection method based
on multivariate time series clustering is proposed in this paper.
To quantify the correlation between different variables’
dimensions, spatial weighted matrix distance (SWMD) is
adopted to improve the traditional affinity propagation
algorithm. The proposed method reduces the computational
complexity of ESS configuration while ensuring the typicality
and extremity of PV and load data.

2) Considering three-phase unbalance, a novel SESS and TESS bi-
level planning model is constructed for public buildings.

Intending to minimize the life cycle cost, the upper-level
model optimizes the capacity allocation of SESS and TESS.
The lower-level model realizes the economic operation
through the coordinated strategy of commutation switches
and ESSs. Meanwhile, the three-phase unbalance constraint is
fully considered. The effectiveness and economy of the
proposed method in achieving local PV consumption and
three-phase unbalance management are demonstrated in the
case study.

2 Three-phase power supply and
utilization system structure of
public buildings

With the continuous increase of large-scale power load in public
buildings, the construction of power distribution rooms in buildings
will be a future trend to achieve three-phase power supply. Among
them, single-phase loads in public buildings mainly include lighting,
office equipment, household appliances, etc. Three-phase loads
mainly include centralized air conditioning equipment, elevator,
water pump, fans, etc. For large public buildings equipped with
centralized air conditioning, the proportion range of single-phase
load is generally between 40% and 60%. However, the running time
differences of single-phase load in the building will lead to
unbalanced three-phase load. Meanwhile, as the important entity
of single-phase charging pile access, the randomness of EV charging
time further aggravates the three-phase unbalance problem in the
public building.

The three-phase unbalance in public buildings usually leads to
problems such as decreased power supply efficiency, increased
energy loss of transformers and lines, etc. Traditional solutions
mainly include capacitance compensator, static var generator
(SVG), and composite commutation switch. Among them, the

FIGURE 1
Three-phase power supply and utilization system structure of public building.
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capacitance compensator and SVG cannot deal with the line loss and
low voltage problems caused by branch line current unbalance.
Moreover, the equipment and maintenance costs are relatively high,
so it is not the best choice to solve the three-phase
unbalance problem.

The latest research on three-phase unbalance mostly adopts
commutation switches for intelligent switching of loads or PV
modules to achieve management and improvement. Therefore,
according to the relevant characteristics of public building power
supply and utilization system, this paper proposes a novel three-
phase unbalance management method that combines SESS and
intelligent commutation switch. The structure of the three-phase
power supply and utilization system under the proposed
management measure is shown in Figure 1.

The SESS phase selection system consists of SESS, intelligent
commutation switch, and control terminal. Assuming that the
monitoring terminal detects the distribution of three-phase
injection power is Pa >Pb >Pc at a certain moment. According
to the requirements of the power supply and utilization system for
load unbalance degree, the control terminal will control the
commutation switch to discharge SESS 1 to a-phase. At the same
time, SESS 2 will be controlled to charge c-phase. While achieving
three-phase unbalance management, SESSs can also be jointly
scheduled with TESS to further improve the PV consumption rate.

3 Typical power supply-demand mode
selectionmethod based onmultivariate
time series clustering

Considering the correlation between the internal load operation
and the external lighting and temperature of public buildings, a
spatial weighted matrix distance-based affinity-propagation
(SWMDAP) clustering algorithm is proposed to extract typical
power supply-demand modes.

SWMDAP algorithm utilizes information granules to represent
time series, transforming high-dimensional, fine-grained complex

time series into low-dimensional, coarse-grained information
granule series. By introducing SWMD to reflect the position
information of each element in multivariate time series (MTS),
the correlation between variables such as single-phase/three-phase
load power and PV output can be quantified, thereby improving the
quality of clustering. The specific process of typical mode selection
based on the SWMDAP algorithm is shown in Figure 2.

3.1 Multi-granularity interval information
granules representation of MTS

Multiple types of data such as PV output and load power are
measured at the same time intervals and generated sequentially,
which can be expressed as MTS groups. During the 1-year data
monitoring period, the daily collection results of data can generally
be represented as an MTS. Assume that a MTS is a finite set of
M-dimensional vectors observed at time t1, t2, . . . , tn corresponding
to a certain observation day, which can be defined as
D � Xt � [x1,t, x2,t, . . . , xM,t]T | 1≤ t≤N{ }. When M � 1, a MTS
becomes a univariate time series. A MTS can be represented by a
M × N matrix, which is expressed as Eq. 1.

D � X1, X2, . . . , XN[ ] �
x1,1

x2,1

..

.

xM,1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1,2

x2,2

..

.

xM,2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦/
x1,N

x2,N

..

.

xM,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

x1,1 x1,2 / x1,N

x2,1 x2,2 / x2,N

..

. ..
.

1 ..
.

xM,1 xM,2 . . . xM,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

The multi-granularity interval information granules representation
of MTS includes two steps: MTS subsection and information granules
representation. To achieve the MTS subsection, it is necessary to
establish a cost function that can reflect the internal homogeneity of
the subsequences. Then, the cost function is used as an indicator for

FIGURE 2
Typical power supply-demand mode selection based on SWMDAP algorithm.
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subsection, so that the internal homogeneity of the segmented
subsequences is high while the inter subsequence homogeneity is
low. Assuming that a MTS is divided into K segments during the
segmentation process, for the kth (1≤ k≤K) subsequence Dk �
Xt � [x1,t, x2,t,/, xM,t]T | ta ≤ t≤ tb{ } (ta and tb, respectively
represent the starting and ending observation times of the
subsequence Dk), this paper defines the cost function Sk as Eq. 2.

Sk � ∑M

m�1Em,k � ∑M

m�1∑tb

t�ta xm,t − km,kt − bm,k( )2 (2)

where, Em,k is the fitting error of the mth variable dimension in
subsequence Dk. bm,k and km,k are the linear function constant term
and first-order regression coefficient fitted by the least squares
method for the subsegment of the mth variable dimension in
subsequence Dk.

Furthermore, with the goal of minimizing the sum of each
subsequence’s cost function values, a segmentation algorithm is used
to obtain the optimal partitioning of the time series. For piecewise linear
approximation, Keogh and Pazzani (1999) point out that bottom-up
segmentation can achieve the best results without the need for real-time
segmentation. Therefore, this paper uses the bottom-up segmentation
method to complete MTS segmentation. This segmentation method
first creates the best-fitting straight lines for theMTSD, which generates
N/2 subsequences. Then, the cost function value of each adjacent
subsequence after merging is calculated. Among all adjacent
subsequences, the adjacent subsequence with the lowest cost
function value after merging is selected and merged. Finally, iterate
continuously until the number of segments in the sequence reaches a
predetermined value.

Divide D into H non-overlapping and continuous subsequences
D1, D2,/, DH{ } through time series segmentation. Assuming that
the hth subsequence of the mth variable dimension
Dm,h(m ∈ M,h ∈ H) is fitted with a straight line to obtain
regression coefficient km,h, constant term bm,h, and residual term
Um,h. Therefore, the information granule of Dm,h can be initially
represented as Gm,h � km,h, bm,h, Um,h{ }. If the subsequence Dm,h

contains L observation data points after segmentation, then
Um,h � um,1, um,2,/, um,L{ }. According to Cramer decomposition
theory, the variation of residual term is a process that tends towards
stability. Therefore, by using the interval set to represent residual
sequence Um,h, information granule Gm,h can be further simplified.

According to the reasonable granularity principle, the optimal
interval is represented by the composite product of coverage index
and specificity index. Select the average value rep(Um,h) of the
sequenceUm,h as a numerical representation, the data can be divided
into two parts from the middle. Finally, the interval boundary
functions V(ΩU) and V(ΩL) of the upper and lower bounds are
represented as Eqs 3, 4.

V ΩU( ) � f1 card x ∈ Um,h

∣∣∣∣rep Um,h( )< x≤ΩU( )( )
× f2 ΩU − rep Um,h( )∣∣∣∣ ∣∣∣∣( ) (3)

V ΩL( ) � f1 card x ∈ Um,h

∣∣∣∣ΩL ≤x< rep Um,h( )( )( )
× f2 rep Um,h( ) −ΩL

∣∣∣∣ ∣∣∣∣( ) (4)

Where, card(x ∈ U|a<x≤ b) represents the number of
elements belonging to sequence U within the range of (a, b]. f1

and f2 are optional functions that can effectively control the impact

of specificity and coverage on interval construction, which can be
expressed as Eqs 5, 6.

f1 u( ) � u (5)
f2 u( ) � exp −αu( ) (6)

Where, α indicates the information granularity level, α≥ 0. By
changing α, the “coverage” and “specificity” of the information
granule can be controlled.

When V(ΩU) and V(ΩL) take the maximum values
respectively, the optimal interval [ΩL,α

m,h,ΩU,α
m,h] that characterizes

the residual sequence Um,h under parameter α can be obtained
through Eqs 7, 8:

ΩU,α
m,h � argmax

ΩU ≥ rep Um,h( )
V ΩU( ) (7)

ΩL,α
m,h � argmax

ΩL ≤ rep Um,h( )
V ΩL( ) (8)

Finally, the residual sequence Um,h can be represented by the
interval set. Obviously, using a single interval set to construct the
information granule is quite limited. To ensure that the information
granule can fully retain the characteristics of MTS, this paper adopts
interval sets under three different α to represent the residual
sequence. Considering that residual can be attached to the
constant term, the information general of Dm,h can be further
represented as Eq. 9:

Gm,h � km,h,Ωm,h � bm,h +ΩL,α1
m,h , bm,h +ΩU,α1

m,h[ ],{{
bm,h +ΩL,α2

m,h , bm,h +ΩU,α2
m,h[ ],

bm,h +ΩL,α3
m,h , bm,h +ΩU,α3

m,h[ ]}} (9)

Where, the interval coverage under α1 is the highest. The interval
specificity and coverage under α2 are at a moderate level. The
interval specificity under α3 is the highest. Finally, the residual
term and constant term are merged to obtain a simplified
information general representation of Dm,h: Gm,h �
km,h,Ωm,h � [aα1m,h, b

α1
m,h], [aα2m,h, b

α2
m,h], [aα3m,h, b

α3
m,h]{ }{ }.

Therefore, the time series D � D1, D2,/, DH{ } can be
expressed as a M × H dimensional “information granules
matrix” G, which is shown as Eq. 10.

G � G1, G2,/, GH[ ] �
G1,1

G2,1

..

.

GM,1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
G1,2

G2,2

..

.

GM,2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,/,

G1,H

G2,H

..

.

GM,H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

G1,1 G1,2 / G1,H

G2,1 G2,2 / G2,H

..

. ..
.

1 ..
.

GM,1 GM,2 . . . GM,H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

3.2 Spatially weighted matrix distance
extraction

To calculate the MTS distance, this paper adopts an MTS
similarity measurement method proposed in the ref. He and Tan
(2018): SWMD.
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Assume that MTSDi,Dj of observation day i and j are expressed
as M × H dimensional information granules matrix Gi and Gj. For
the convenience of matrix calculation, this paper changes Gi, Gj

from anM × H feature matrix to a 1 × (M × H) feature matrix gi,
gj, which is represented as Eqs 11, 12.

Gi → gi � Gi
1,1, G

i
2,1, . . . , G

i
M,1, G

i
1,2, G

i
2,2, . . . ,[

Gi
M,2, . . . , G

i
1,H, G

i
2,H, . . . , G

i
M,H] � gi

1, g
i
2, . . . , g

i
M × H[ ] (11)

Gj → gj � Gj
1,1, G

j
2,1, . . . , G

j
M,1, G

j
1,2, G

j
2,2, . . . ,[

Gj
M,2, . . . , G

j
1,H, G

j
2,H, . . . , G

j
M,H] � gj

1, g
j
2, . . . , g

j
M × H[ ] (12)

Where, assuming gi
u is the uth element of the information

granules matrix gi, corresponding to Gi
a,b, whose position is row

a and column b in Gi. Then, u satisfies u � a +M × (b − 1).
Then, the SWMD between Gi and Gj can be expressed as Eq. 13.

SWMD Gi, Gj( ) � �����������������������∑M×H

u,v�1 suvd gi
u, g

j
u( )d gi

v, g
j
v( )√

(13)

Where, d(·, ·) is the distance between pairs of information granules.
suv is the spatial weighted matrix coefficient corresponding to

d(gi
u, g

j
u) and d(gi

v, g
j
v).

Assume that there are two information granules g1, g2. The
distance d(g1, g2) between g1 and g2 can be calculated as Eq. 14.

d g1, g2( ) � dΩ + dtrend

�
����������������������������������
aα12 − aα11( )2 + aα22 − aα21( )2 + aα32 − aα31( )2

+ bα12 − bα11( )2 + bα22 − bα21( )2 + bα32 − bα31( )2
√
+ η k1 − k2| | (14)

Where, g1: k1,Ω1 � [aα11 , bα11 ], [aα21 , bα21 ], [aα31 , bα31 ]{ }{ },
g2: k2,Ω2 � [aα12 , bα12 ], [aα22 , bα22 ], [aα32 , bα32 ]{ }{ . dΩ is the distance
between the interval set of information granules g1 and g2. dtrend is
the distance between the trend items k1 and k2. η is the
correction parameter.

The calculation formula for the spatial weighting matrix
coefficient suv is as Eq. 15.

suv � 1

2π 1 − h−1( )2 exp − dD,uv

2 1 − h−1( )2( ) (15)

Where, if the position of gi
u, g

j
u is the row a and column b in Gi, Gj,

the position of gi
v, g

j
v is row a′ and column b′ in Gi, Gj, then dD,uv ������������������

(a − a′)2 + (b − b′)2
√

.

3.3 Affinity propagation clustering based on
spatially weighted matrix distance

Affinity propagation (AP) algorithm is a clustering algorithm
that simulates information propagation (Frey and Dueck, 2007).
AP algorithm treats each sequence as a data point and takes the
similarity between pairs of data points as input. Then, cluster
information is continuously exchanged between data points until
high-quality clustering results appear. AP algorithm mainly
consists of two parts: initialization and message exchanged.

The initialization of the AP algorithm requires the input of the
similarity matrix S of the data to be clustered. The off-diagonal
element s(i, j) in the similarity matrix represents the similarity
between data point i and j. The diagonal element s(i, i) in the
similarity matrix is the bias parameter p (preference), which is pre-
set by the user. The bias parameter value of each data point is
generally the same, which is set as the median of the similarity
matrix. The larger the bias parameter value, the more likely data
point i is to become the cluster center.

Traditional AP clustering adopts negative Euclidean distance
to form similarity, which has difficulties when dealing with
multi-variable clustering. Therefore, this paper adopts SWMD
to replace Euclidean distance. Meanwhile, the bias parameter
value p on the similarity matrix S of traditional AP clustering is
the same, which means the same probability of all data points
being selected as representative points. However, this ignores the
structural information of the data itself. If there are more points
around a point within a cluster, the probability of that point
being the center of the cluster should be higher. So the idea of
density clustering can be introduced, using the density of data
points around a point to set the bias parameter value for that
point. Therefore, the modified similarity matrix is expressed as
Eq. 16.

s i, j( ) � −SWMD xi, xj( )2, i ≠ j
−nε/mi, i � j

{ (16)

Where, n is the number of data points. mi is the number of data
points within the neighborhood of point i. ε is the median of
similarities between data points.

The message exchanged of the AP algorithmmainly includes the
“responsibility” r(i, k) and the “availability” a(i, k). r(i, k) reflects
the accumulated evidence for how well-suited point k is to serve as
the exemplar for point i, taking into account other potential
exemplars for point i. a(i, k) reflects the accumulated evidence
for how appropriate it would be for point i to choose point k as
its exemplar, taking into account the support from other points that
point k should be an exemplar.

Initially, the “responsibility” r and “availability” a of each data point
are both zero. AP algorithm updates the r and a of each point through
an iterative formula. Finally, while generating cluster centers, data
points will be divided into different clusters. During the iterative
process of AP clustering, if the information of each data point
changes too much, it may lead to non-convergence of the results.
Therefore, a damping factor λ is generally set during iteration to reduce
changes in the “responsibility” and “availability”. The formula for the
tth iteration is expressed as Eqs 17, 18.

rt i, k( ) � 1 − λ( ) × s i, k( ) −max
k′≠k

at−1 i, k′( ) + s i, k′( ){ }( )
+ λ × rt−1 i, k( ) (17)

at i, k( ) �
1 − λ( ) × min 0, rt−1 k, k( ) +∑

i′ ∉ i,k{ } max 0, rt−1 i′, k( ){ }{ }( ) + λ × at−1 i, k( ), i ≠ k

1 − λ( ) × ∑
i′≠k max 0, rt−1 i′, k( ){ }( ) + λ × at−1 i, k( ), i � k

⎧⎪⎪⎨⎪⎪⎩
(18)

When the cluster centers to which all data points belong no
longer change, or the changes in the information r and a exchanged
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by each point are lower than a certain fixed threshold, the iteration
stops and the clustering results are output.

Assuming that typical power supply-demand modes need to be
extracted from PV and load data of N observation days, the specific
process of SWMDAP clustering is as follows.

1) Divide MTS Dn(n � 1, 2,/, N) of each observation day into
H segments by the bottom-up segmentation method.

2) Use the information granule representation method to
construct the “information granules matrix” Gn

corresponding to Dn.
3) Calculate the SWMD between Gn(n � 1, 2,/, N) by Eq. 13.
4) Obtain the similarity matrix by Eq. 16.
5) Initialize the “availability” a(0)(i, k) � 0 and “responsibility”

r(0)(i, k) � 0 of data points. And set the damping factor λ.
6) Update a(t)(i, k) and r(t)(i, k) for the tth iteration by Eqs 17,

18. And update the clustering centers for each MTS.
7) Determine the condition for stopping the iteration. If the

condition is met, output the clustering result; otherwise,
return to 6).

4 Energy storage system capacity
planning for public building

This chapter models the capacity configuration problem of SESS
and TESS in the public building. Based on the time scale differences
between capacity configuration and optimized operation, a bi-level
optimization model is constructed. The transfer relationship of
optimization decision variables between upper and lower levels is
shown in Figure 3. Firstly, the upper level transfers the planned
capacity of SESS and TESS to the lower-level model. The lower level
simulates the operation of ESS based on the given capacity. Then the
optimal cost of electricity purchasing and light discarding will be
returned to the upper-level model. Secondly, the upper-level model
modifies the life cycle cost based on lower-level results and further
optimizes the planned capacity of SESS and TESS. Finally, through
optimization iterations between upper and lower levels, the optimal
ESS configuration and operation plan will be obtained with the
minimum life cycle cost within the planning period.

Among them, the upper-level model aims at minimizing the life
cycle cost on a long time scale to determine the capacity and rated
power of SESS and TESS. The lower-level model aims at minimizing
all-weather operating costs on a short time scale to optimize the
switching strategy of the commutation switch and ESS charging/
discharging strategy.

4.1 Upper-level capacity planning model

The current cost of ESS in the initial investment process is still
high, making it difficult to achieve positive returns in the short term.
Therefore, it will be more meaningful to consider the revenue and
cost of ESS throughout its life cycle on a long-term scale. The core
concept of life cycle cost refers to the total sum of all direct and
indirect expenses incurred during the production, operation,
maintenance, and premium recovery stages. Life cycle cost
technology has been applied in many aspects such as power grid
planning and power system asset management.

4.1.1 Objective function
The upper-level capacity planningmodel aims at minimizing the

net present value of the life cycle cost. The objective function can be
expressed as Eq. 19.

minCtotal � Cinv + Cmain + Cgrid + Ccut (19)
Where,Ctotal is the net present value of the life cycle cost.Cinv,Cmain,
Cgrid, and Ccut represent the costs of initial investment, operation
and maintenance, electricity purchase, and PV curtailment penalty,
respectively.

The initial investment cost of ESS can be expressed as Eq. 20.

Cinv � ∑2

k�1E
s,k,Ebat + Et,Ebat( )einv,Ebat

+ ∑2

k�1E
s,k,Pbat + Et,Pbat( )einv,Pbat (20)

Where, Es,k,Ebat, Et,Ebat represent the rated capacity for the initial
installation of SESS k and TESS, respectively. Es,k,Pbat, Et,Pbat

represent the rated power for the initial installation of SESS k
and TESS, respectively. einv,Ebat, einv,Pbat represent the ESS cost
per unit capacity and power, respectively.

The operation and maintenance cost of ESS can be expressed as
Eq. 21.

Cmain � ∑NY

n�1
∑2

k�1E
s,k,Ebat + Et,Ebat( )emain,Ebat + ∑2

k�1E
s,k,Pbat + Et,Pbat( )emain,Pbat

1 + r( )n−1
(21)

Where, emain,Pbat, emain,Ebat respresent the operating cost coefficient
of unit energy storage power and installation capacity, respectively. r
is the discount rate. NY is the planning cycle.

When the electricity supply of PV cannot meet the load demand,
electricity needs to be purchased from the power grid. The electricity
purchase cost can be expressed as Eq. 22.

Cgrid � ∑NY

n�1
1

1 + r( )n−1 ∑TY

t�1λ
grid
t Pgrid

t Δt[ ] (22)

FIGURE 3
Transfer relationship of optimization variables between upper
and lower levels.
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Where, Pgrid
t , λgridt represent the power purchased from the power

grid and the corresponding electricity purchase price at time period
t, respectively. Δt is the time interval. TY is the number of time
periods throughout the year.

In order to promote the local consumption of PV, the
curtailment of PV should be included in the cost, which can be
expressed as Eq. 23.

Ccut � ∑NY

n�1
1

1 + r( )n−1 ∑TY

t�1λ
cutPpv,cut

t Δt[ ] (23)

Where, λcut is the unit solar power curtailment penalty cost. Ppv,cut
t is

the amount of solar power curtailment at time period t.

4.1.2 Constraints
The capacity of ESS is proportional to the rated power, which

can be expressed as Eqs 24, 25.

Es,k,Ebat � βbatEs,k,Pbat (24)
Et,Ebat � βbatEt,Pbat (25)

Where, βbat is the energy multiplier of ESS.

4.2 Lower-level optimization
operation model

On the basis of general economic operation problems, the lower-
level optimization operation model additionally considers the PV
consumption rate and three-phase unbalance problem of the
building. Combined with the relevant constraints during
operation, the optimization of switching and charging/
discharging strategies can be ultimately achieved.

4.2.1 Objective function
Integrating the electricity purchase cost and PV curtailment

cost, the lower-level optimization operation model aims at
minimizing the all-day operation cost of the public building. The
objective function can be expressed as Eq. 26.

minCoper � ∑TD

t�1 λgridt Pgrid
t Δt + λcutPpv,cut

t Δt( ) (26)

Where, Coper is the all-day operation cost of the public building. TD

is the number of daily operating time periods.

4.2.2 Constraints
The power balance constraint of the public building can be

expressed as Eq. 27.

Pload
abc,t + Pbat,ch

abc,t +∑
φ∈ a,b,c{ } ∑2

k�1P
bat,k,ch
φ,t + Pload

φ,t( )
� Ppv

t + Pgrid
t + Pbat,dis

abc,t +∑
φ∈ a,b,c{ } ∑2

k�1P
bat,k,dis
φ,t (27)

Where, Pload
abc,t, P

bat,ch
abc,t , P

bat,dis
abc,t represent the three-phase load power,

TESS charging power and discharge power at time period t,
respectively. Pload

φ,t , Pbat,k,ch
φ,t , Pbat,k,dis

φ,t represent the φ-phase load
power, φ-phase charging power and discharge power of SESS k
at time period t, respectively. Ppv

t is the actual dispatched output of
PV at time period t.

The actual dispatched PV output of the public building should
not exceed the PV output power. Therefore, the PV curtailment
power constraint can be expressed as Eqs 28, 29.

Ppv,cut
t � Ppv,c

t − Ppv
t (28)

0≤Ppv
t ≤Ppv,c

t (29)
Where, Ppv,c

t is the output power of PV at time period t.
SESS is equipped with a commutation switch, which can only be

connected to one phase of the three-phase lines at each time period.
Therefore, the charging and discharging power constraints of SESS k
can be expressed as Eqs 30, 31.

∑
φ∈ a,b,c{ } u

bat,k,ch
φ,t +∑

φ∈ a,b,c{ } u
bat,k,dis
φ,t ≤ 1 (30)

0≤Pbat,k,ch
φ,t ≤ ubat,k,ch

φ,t Es,k,Pbat

0≤Pbat,k,dis
φ,t ≤ ubat,k,dis

φ,t Es,k,Pbat

⎧⎨⎩ ,φ ∈ a, b, c{ } (31)

Where, ubat,k,chφ,t , ubat,k,disφ,t represent the charging and discharging
status of SESS k at time period t, both of which are binary variables.
ubat,k,chφ,t � 1 or ubat,k,disφ,t � 1 represent that SESS k is connected to the
φ-phase and in the charging/discharging state at time period t.

The state-of-charge (SOC) constraints of SESS k are expressed as
Eqs 32–34.

SOCbat,s,k
t � SOCbat,s,k

t−1 +∑
φ∈ a,b,c{ }

Pbat,k,ch
φ,t ηchΔt
Es,k,Ebat

− Pbat,k,dis
φ,t Δt

ηdisEs,k,Ebat
( )

(32)
SOCbat,s, min ≤ SOCbat,s,k

t ≤ SOCbat,s, max (33)
SOCbat,s,k

T � SOCbat,s,k
0 (34)

Where, SOCbat,s,k
t is the SOC of SESS k at time period t. ηch, ηdis

represent the charging and discharging efficiency of ESS,
respectively. SOCbat,s, min, SOCbat,s, max represent the minimum
and maximum SOC of SESS, respectively.

The charging and discharging power constraints of TESS are
expressed as Eqs 35, 36.

ubat,ch
abc,t + ubat,dis

abc,t ≤ 1 (35)
0≤Pbat,ch

abc,t ≤ ubat,ch
abc,t E

t,Pbat

0≤Pbat,dis
abc,t ≤ ubat,dis

abc,t Et,Pbat{ (36)

Where, ubat,chabc,t , u
bat,dis
abc,t represent the charging and discharging

status of TESS at time period t, both of which are binary variables.
ubat,chabc,t � 1 or ubat,disabc,t � 1 represents that TESS is in the charging/
discharging state at time period t. Pbat,ch

abc,t , P
bat,dis
abc,t represent the

charging and discharging power of TESS at time period t,
respectively.

The SOC constraints of TESS are expressed as Eqs 37–39.

SOCbat,t
t � SOCbat,t

t−1 + Pbat,ch
abc,t η

chΔt
Et,Ebat

− Pbat,dis
abc,t Δt

ηdisEt,Ebat
(37)

SOCbat,t, min ≤ SOCbat,t
t ≤ SOCbat,t, max (38)

SOCbat,t
T � SOCbat,t

0 (39)
Where, SOCbat,t

t is the SOC of TESS at time period t. SOCbat,t, min,
SOCbat,t, max represent the minimum and maximum SOC of TESS,
respectively.
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Due to the complexity of commonly used formulas for
calculating the voltage or current’s three-phase unbalance degree,
it is difficult to express them concisely in the model of this paper.
According to the ref. Zhan et al. (2015), this paper uses the three-
phase unbalance degree of the load to approximately represent the
voltage or current. In this paper, the three-phase unbalance
constraints are expressed as Eqs 40–42.

ϕunb
t � 3 · max Pa,t − Pavg

t

∣∣∣∣ ∣∣∣∣, Pb,t − Pavg
t

∣∣∣∣ ∣∣∣∣, Pc,t − Pavg
t

∣∣∣∣ ∣∣∣∣{ }∑φ∈ a,b,c{ } Pload
φ,t

≤ δunb (40)

Pavg
t � 1

3
Pa,t + Pb,t + Pc,t( ) (41)

Pφ,t � Pload
φ,t +∑2

k�1 Pbat,k,ch
φ,t − Pbat,k,dis

φ,t( ),φ ∈ a, b, c{ } (42)

Where, ϕunbt is three-phase unbalance degree at time period t. δunb is
the allowable upper limit of three-phase unbalance degree. Pφ,t is the
φ-phase injected active power at time period t. Pavg

t is the average
value of the active power injected into the three phases at
time period t.

5 Bi-level optimization model
solution method

The typical power supply-demand mode selection method
greatly reduces the computational complexity of the lower-level
optimization operation model. Then the efficiency of model

optimization can be improved. Therefore, based on the
typical mode extraction results, the solution process of the bi-
level optimization model is shown in Figure 4. Compared to
traditional genetic algorithm, elitist genetic algorithm (EGA)
incorporate an elite preservation strategy, which copies the
individual with the highest fitness value during the
population evolution process directly to the next-generation
population without undergoing crossover, mutation, and
other operations. This avoids the disruption of the optimal
individual during the evolution process. EGA has the
advantages of global convergence and fast convergence speed.
Therefore, this paper uses EGA and Gurobi solver to solve the bi-
level optimization model.

EGA is adopted to randomly generate the capacity
configuration schemes of SESS and TESS in the upper-level
capacity planning model. The lower-level optimization
operation model determines the optimal typical mode
dispatching plan under this capacity configuration through
mixed-integer linear programming. During the interaction
process, the lower level returns the optimal typical mode
dispatching results to the upper level for evaluation of
individual fitness. On this basis, the upper level aims to
minimize the life cycle cost and update the capacity of SESS
and TESS through selection, crossover, and mutation. The
iterative process is repeated until the algorithm converges.
Finally, the public building energy storage optimal planning
scheme will be obtained.

FIGURE 4
The solution process of the Bi-level optimization model.
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6 Case study

6.1 Case setting

Historical measured data of PV and load in a large public
building is adopted in this paper. With a 10-year operational
planning, the ESS capacity configuration and operational
optimization will be finished. Among them, the building is
equipped with a total capacity of 700 kW PV panels. The PV and
load curves obtained with a sampling time interval of 1 h are shown
in Figure 5. Due to relevant policy restrictions, public buildings are
not allowed to return electricity to the grid.

The SESS and TESS are composed of the same type of battery,
and the relevant physical and economic parameters are shown in
Table 1, respectively. The initial SOC of the ESS
SOCbat,s,k

0 � SOCbat,t
0 � 0.2. Energy multiplier βbat � 8. In the

calculation process of the life cycle cost, the discount rate
r � 0.08. The unit solar power curtailment penalty cost λcut � 0.6
RMB/kWh. Time-of-use electricity prices are shown in Table 2. The
allowable upper limit of the three-phase unbalance degree δunb �
0.12.

Typical power supply-demand mode selection is achieved by
using the SWMDAP algorithm. The SWMDAP algorithm adopts
the method described in the ref. Frey and Dueck (2007) to set the
bias parameter p and damping factor λ. Among them, p takes the
median of the similarity matrix, and λ takes the default
value of 0.9.

To verify the effectiveness of the proposed typical mode
selection method in the planning scenario of this paper, the
typical mode selection method based on the SWMDAP
clustering algorithm was compared with three clustering
algorithms, including AP clustering, K-means, and hierarchical
clustering.

Meanwhile, in order to further verify the feasibility of SESS and
TESS joint dispatch in PV local consumption and three-phase
unbalance management, this paper sets up the following four
cases for comparison, as shown in Table 3.

6.2 Effectiveness analysis of typical power
supply-demand mode selection method
based on SWMDAP algorithm

For 1 year data of PV and load, the SWMDAP clustering
algorithm is adopted to select typical power supply-demand
modes. The selection results are shown in Figure 6. Among
them, the weight of each typical mode is shown in Table 4.

In order to compare with the SWMDAP clustering algorithm, the
clustering number of K-means and hierarchical clustering is selected to be
5. Meanwhile, the parameter setting of the AP clustering algorithm is
consistent with SWMDAP. Based on the AP clustering algorithm,
24 cluster centers are ultimately obtained, which will not effectively
reduce the computational complexity of ESS planning. The typical
mode selection results contain various extreme scenarios, but typicality
is lacking. Therefore, ESS configuration optimization is carried out based
on the typical operational modes obtained from the remaining three
algorithms. Finally, the ESS configuration results of the public building
based on different typical mode selection methods are shown in Table 5.

It can be seen from Table 5 that the SESS capacity configuration
result based on the SWMDAP algorithm in this paper is much greater
than the result based on the K-means algorithm, which can better
manage the three-phase unbalance in the building. However, the typical
mode selection method based on the K-means algorithm lacks extreme
scenarios similar to Typical Mode II and V. This leads to an overly
conservative configuration result of SESS capacity, which cannot
effectively cope with some three-phase unbalance situations.
Meanwhile, the total configuration capacity of ESS based on the
hierarchical clustering is larger than SWMDAP algorithm. This is
because hierarchical clustering lacks extreme scenarios similar to
Typical Mode I and V. The overly optimistic assessment of PV
output makes it easier to recover the investment cost of ESS. On the
one hand, the typical mode selection method based on the SWMDAP
algorithm can quantify the correlation between different variables’
dimension. Therefore, it can more accurately extract the difference
between single-phase loads. On the other hand, the fluctuation
differences of multi-dimensional variables can be identified through
SWMD, which ensures that clustering results can have both typicality
and extremism.

6.3 Effectiveness analysis of SESS equipped
with commutation switch for three-phase
unbalance management

According to the typical mode selection results based on the
SWMDAP algorithm, the ESS configuration results of Case 1~Case

TABLE 2 Time-of-use electricity price.

Time period Electricity price (RMB/(kWh))

0:00–8:00 0.3818

8:00–11:00, 16:00–18:00, 22:00–24:00 0.8395

11:00–12:00, 14:00–16:00, 18:00–20:00 1.3220

12:00–14:00, 20:00–22:00 1.4409

TABLE 1 Physical and economic parameters of ESS.

Physical parameters Value Economic parameters Value

ηch 0.95 einv,Ebat (kWh/RMB) 1,100

ηdis 0.95 einv,Pbat (kW/RMB) 1,000

SOCbat,min 0.1 emain,Ebat (kWh/RMB) 30

SOCbat,max 0.9 emain,Pbat (kW/RMB) 2
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4 are obtained, which are shown in Table 6. It can be seen from
Table 6 that the total capacity of ESSs in Case 3 and Case 4 has
increased compared to Case 2. This is because the operation
optimization of SESS not only needs to consider the goals of PV
local consumption and reducing electricity purchase cost, but also
takes into account the three-phase unbalance constraint of Eq. 32.
Meanwhile, comparing Case 3 and Case 4, it can be found that the
total capacity of SESS is consistent under the two configuration
results. However, considering that the coordinated operation of two
SESSs makes it easier to achieve the three-phase unbalance
constraint compared to a single SESS, Case 4 can
correspondingly reduce the capacity configuration of TESS.

The life cycle costs of Case1~Case4 are shown in Table 7.
Compared to Case 1 without ESS, Case 2~Case 4 significantly
reduces the cost of electricity purchase and PV curtailment
penalty, and achieves cost recovery for initial investment and

maintenance. Due to the addition of the three-phase unbalance
constraint, the life cycle cost of Case 3 and Case 4 has increased.
Meanwhile, taking advantage of the coordinated operation of two
SESSs, Case 4 has lower costs than Case 3 in all four aspects.

The comparison of three-phase unbalance degree ϕunbt between
Case 2~Case 4 under five typical modes is shown in Figure 7.
Comparing Figures 7A–E, it can be found that configuring SESS
has a significant effect on managing three-phase unbalance.
Meanwhile, compared to a single SESS, two SESSs will have
better three-phase unbalance management effects by
discharging at maximum-phase load and charging at minimum-
phase load, respectively.

6.4 Economic analysis under different upper
limits δunb of three-phase unbalance degree

Under different values of δunb, the corresponding ESS
configuration results and life cycle cost are shown in Table 8.
It can be found that when δunb is within the range of 0.12~0.08, as
the degree of three-phase unbalance management deepens, the
cost increases significantly. However, when δunb ranges from
0.16 to 0.12, the increase in cost with the deepening of
management is relatively small. Therefore, this paper selects
δunb � 0.12 can achieve a good three-phase unbalance
management effect while ensuring economic efficiency.
Meanwhile, when δunb � 0.08, the configuration of a single
SESS will not be able to meet the three-phase unbalance

TABLE 3 Case setting.

Case Configuration of TESS Configuration of SESS Number of SESS

Case 1 No No —

Case 2 Yes No —

Case 3 Yes Yes 1

Case 4 Yes Yes 2

FIGURE 5
Historical measured data of PV and load in the public building. (A): PV, (B): Three-phase load, (C): a-phase load, (D): b-phase load, (E): c-phase load.

TABLE 4 Weight of each typical power supply-demand mode.

Typical power supply-demand
mode

Weight coefficient
(days)

Typical Mode I 106

Typical Mode II 180

Typical Mode III 53

Typical Mode IV 18

Typical Mode V 8
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constraint. In this case, the ability of SESS to reduce operating
costs will be weakened, while the capacity of TESS will increase.

7 Conclusion

In response to the three-phase unbalance problem in large
public buildings caused by the temporal differences of electrical
load and the connection of single-phase charging piles, this
paper proposes an ESS configuration method aimed at PV
local consumption and three-phase unbalance management.
SWMDAP algorithm is developed to quantify the correlation
between multiple types of load and PV output. Then the typical
modes are selected by the proposed clustering method. Based on
the life cycle cost assessment, a bi-level optimization model is
constructed for the SESS-TESS capacity planning of the public
building. Finally, the bi-level optimization model is solved by
EGA and Gurobi solver. The analysis of the case study
shows that:

1) The typical power supply-demand mode selection method based
on the SWMDAP algorithm proposed in this paper achieves data
dimensionality reduction through multi granularity information
granules. Then, SWMD is adopted to measure the similarity of
information granules, which fully quantifies the correlation of
multi-dimensional data. The proposed clustering method makes
the typical mode selection results both typical and extreme. At the

same time, the computational complexity is greatly reduced in the
ESS planning process.

2) Through joint dispatching between two ESSs equipped with
commutation switch, the three-phase unbalance inside the
public building can be fully reduced. Meanwhile, compared with
the configuration situation of a single or no SESS, the SESS-TESS
configuration strategy of the public building proposed in this paper
effectively promotes PV local consumption and three-phase
unbalance management while ensuring good economic efficiency.

3) The typical power supply-demand mode selection results and
the upper limit coefficient setting of three-phase unbalance
degree have a significant impact on the ESS configuration
results. On the one hand, the extremeness and typicality of the
selection results will become the key to guiding the operation
of ESS. On the other hand, only by setting a reasonable δunb can
the three-phase unbalance degree be significantly reduced
while maintaining economy as much as possible.

However, current research simplifies the quantification of three-
phase unbalance degree by adopting three-phase load
characterization method. The actual topology within the building
power supply and utilization system has not been considered yet.
The future research work is devoted to finely characterizing three-
phase unbalance adopting current or voltage. Meanwhile, it is also
worth in-depth research on merging the three-phase unbalance
degree into the objective to form a multi-objective optimization
model and exploring its impact on the configuration results.

TABLE 6 ESS Configuration results of Case 1~Case 4.

Case Capacity (kWh)/Power (kW) of
SESS 1

Capacity (kWh)/Power (kW) of
SESS 2

Capacity (kWh)/Power (kW) of
TESS

Case 1 —

Case 2 — 1,460/182.5

Case 3 113/14.125 1,384/173

Case 4 39/4.875 74/9.25 1,373/171.625

TABLE 7 Life cycle cost calculation results of Case 1~Case 4.

Case Ctotal (RMB) Cinv (RMB) Cmain (RMB) Cgrid (RMB) Ccut (RMB)

Case 1 8,458,258 0 0 7,828,975 629,283

Case 2 7,145,987 1,788,500 320,059 4,973,870 63,558

Case 3 7,207,895 1,833,825 328,170 4,982,437 63,463

Case 4 7,175,928 1,820,350 325,758 4,966,858 62,962

TABLE 5 Comparison of public building ESS configuration results under different typical mode selection methods.

Typical mode selection
method

Capacity (kWh)/Power (kW)
of SESS 1

Capacity (kWh)/Power (kW)
of SESS 2

Capacity (kWh)/Power (kW)
of TESS

SWMDAP 39/4.875 74/9.25 1,373/171.625

K-means 12/1.5 38/4.75 1,426/178.25

Hierarchical Clustering 138/17.25 114/14.25 1,326/165.75
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FIGURE 6
Typical power supply-demandmode selection results. (A): Typical Mode I, (B): Typical Mode II, (C): Typical Mode III, (D): Typical Mode IV, (E): Typical
Mode V.

FIGURE 7
Comparison of three-phase unbalance degree curves between Case 2~Case 4. (A): Typical Mode I, (B): Typical Mode II, (C): Typical Mode III, (D):
Typical Mode IV, (E): Typical Mode V.

TABLE 8 ESS Configuration results and life cycle cost under different values of δunb.

δunb Capacity (kWh)/Power (kW) of
SESS 1

Capacity (kWh)/Power (kW) of
SESS 2

Capacity (kWh)/Power (kW) of
TESS

Ctotal

(RMB)

0.16 36/4.5 31/3.875 1,393/174.125 7,152,894

0.14 46/5.75 44/5.5 1,380/172.5 7,162,787

0.12 74/9.25 39/4.875 1,373/171.625 7,175,928

0.10 101/12.625 62/7.75 1,340/167.5 7,208,878

0.08 142/17.75 36/4.5 1,351/168.875 7,234,517
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