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The integration of distributed generation (DG) units into distribution networks
(DNs) has brought about several operational challenges, including voltage issues
and increased power loss. Energy storage equipped soft open points (E-SOPs)
can accurately and flexibly control active and reactive power flows to address
these problems. Additionally, the photovoltaic (PV) inverter and the network
reconfiguration (NR) play a significant role in voltage control by adjusting the
reactive power and the topology of the DN, respectively. However, due to
differences in response times, there is a lack of systematic coordination
between NR and the inverters of the E-SOP and PV. This paper proposes a
multi-time-scale voltage control model that includes day-ahead NR scheduling,
inter-day droop control optimization of the PV and E-SOP, and real-time local
droop control. Considering the uncertainties of renewable DG outputs and loads,
a robust optimization method is used in the day-ahead stage to obtain a reliable
network structure. Then, with more accurate intra-day predictions, a stochastic
optimization method is used to obtain the optimal state-of-charge interval,
aiming to provide a flexible regulation range for battery energy storage to
cope with the power fluctuations during the real-time stage. In addition, to
address the intra-day voltage control model with bilinear constraints of the droop
control function, a particle swarm optimization method is used. The results are
verified on a 33-bus DN system through comparative analyses, showing effective
performance.
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1 Introduction

The proliferation of renewable distributed generation (DG) within distribution
networks (DNs) is rapidly expanding. Due to the stochastic property and uncertainty of
renewable DG output, the extensive collaboration of renewable DG may cause problems
such as increased line overload and voltage fluctuations, which present significant
operational challenges for the DN (Hua et al., 2019). Moreover, implementing
infrastructure upgrades and curtailing renewable DG power are also not
economically efficient.

To address this challenge, network reconfiguration (NR) is a common and effective
measure. It can change the DN topology by operating the switches. Based on this, the power
flow in lines and substations can be reallocated according to the reconfiguration results.
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Currently, extensive studies have been conducted on NR, and their
objectives mainly focus on power loss deduction, voltage deviation
reduction, and load balance function in the DN (Li et al., 2023). Azizi
et al. (2023) proposed a DN reconfiguration approach that considers
renewable DG, soft open points (SOPs), and protection devices,
aiming to minimize the power loss while ensuring the correct
operation of protection devices under normal and fault
conditions. Meanwhile, the loop-closing situation during the NR
process was considered by Jun et al. (2016) to obtain the optimum
NR scheme without power interruption. Moreover, in order to
obtain the optimal NR strategy, various modeling and
optimization methods have been applied. A mixed-integer
quadratic programming (MIQP) problem was constructed by
Yang et al. (2021) with the consideration of NR and modified
DistFlow, which can be efficiently solved using commercial
solvers. Quang et al. (2023) applied a genetic algorithm to obtain
the NR strategy and enhance the operational efficiency of the DN,
aiming to address the impact on the solving time caused by a large
number of binary variables. Additionally, in order to minimize the
risk of falling into local optima, artificial intelligence algorithms such
as reinforcement learning and Q-learning have been widely used
(Dong et al., 2023; Gholizadeh et al., 2023). The literature above has
considered comprehensive research on the involvement of NR in the
DN and demonstrated favorable operational performance. However,
due to the physical limitations of line switches, the NRmethod needs
to be determined in advance and cannot effectively adapt to the
frequent fluctuations in renewable DG output (Zhang et al., 2019).

To achieve fast tracking of power fluctuations in the DN, the
installation of SOPs, which can achieve the precise control of power
flow between feeders and achieve dynamic reactive power
compensation (Wang et al., 2016), has drawn significant
attention. In general, the existing literature on DN operation
optimization based on SOPs mainly focuses on the economic or
power quality aspects of the DN (Cao et al., 2021). Li et al. (2023)
investigated the output characteristics of SOPs and developed a
reactive power optimization model. Li et al. (2022) proposed an
adaptive voltage control strategy for SOPs based on a deep
deterministic policy gradient network and showed the high
efficiency of the SOPs in maintaining the safe and stable
operation of the DN. However, due to the high cost of SOPs, the
number of SOPs installed in the DN may fall short of fulfilling the
requirements for DN operation (Hu et al., 2022). Thus, it is
important to investigate a collaborative optimization approach of
SOPs and NR to enhance the regulatory capability of the DN
(Dai, 2022).

Considering the difference in the responding time between SOPs
and NR, the existing literature on DN operation optimization based
on SOPs and NR mainly obtains optimal solutions through
constructing multi-layer optimization models (Hu et al., 2023).
Pamshetti and Singh (2022) and Wang X. et al. (2022) both
constructed a two-stage collaborative optimization model
integrating SOPs and a battery energy storage system (BESS), but
they all ignore the collaboration of traditional voltage control
methods such as NR. Furthermore, Nazir et al. (2019) presented
a two-stage chance-constrained voltage control model to minimize
the expected power loss, which involves determining the operational
strategy for OLTC, CB, and voltage regulators in the first stage and
optimizing the reactive power output of inverters in the second

stage. A multi-time-scale model was constructed by Li et al. (2017)
and Shi and Zheng (2018) based on the coordination of NR and
SOPs to achieve the time-series voltage optimization of the DN.
However, these articles primarily focus on optimizing the power set
point of power electronic devices such as SOPs at different time
intervals, without taking into account their real-time droop
regulation performance. Given the inevitability of forecast errors
in renewable DG prediction and the shorter time duration of voltage
fluctuation caused by stochastic renewable DG output than the
prediction duration (Sun et al., 2023), there is a need to construct a
multi-time-scale optimization model considering real-time local
voltage control.

Recently, the collaboration of real-time local voltage control and
day-ahead intra-day control has drawn significant attention and
mainly focused on optimizing the droop control function of a
photovoltaic (PV) inverter and SOPs (Chu et al., 2021).
Regarding PV droop control optimization, a real-time voltage/var
droop control function was optimized by Wang B. et al. (2020). It
segments the droop control function into multiple sections, and a
maximum value comparison function is used. These will result in
increased nonlinearity and complexity in solving the model. Zhang
and Xu (2020) proposed a central and local voltage/var control
strategy to reduce real-time voltage deviation by using a linear droop
controller for PV inverters and showed its high efficiency in
regulating the voltage quality of the DN. Considering the high
performance of PV droop control function, it can be used in this
paper. Regarding SOP droop control optimization, Li et al. (2019)
and Hu et al. (2020) optimized the V-Q droop control function of
SOPs based on the pre-determined reference set point; they divided
the droop function into several pieces and optimized them
separately. However, the nonlinear model and the large newly
introduced binary variables increase the computation burdens.
Moreover, considering that due to the large R/X value of the DN,
the active power also significantly influences the voltage profiles
during operation. It is necessary to consider the optimization of the
V-P droop function of SOPs (Sun et al., 2021a). Based on this, Sun
et al. (2021a) proposed a multi-time-scale energy management
robust optimization model with multiple-terminal SOPs. In this
model, the droop control function is formulated through V2-P and
V2-Q models. However, given that the master port of SOPs needs to
monitor the power fluctuations of other ports to ensure its steady
operation, the implementation of V2-P droop control may limit the
adjustability of its master port. The utilization of energy storage
equipped soft open points (E-SOPs) may offer an effective solution
to this issue. By integrating the BESS into the SOP DC line, internal
power equilibrium can be achieved without the need to adjust the
master port. Consequently, each port of the E-SOP can
independently adjust the V-P droop control based on its port
voltage level. Recently, existing literature considering E-SOP
regulation is mainly based on prediction data to obtain an
operating set point during the day (Chen et al., 2022; Sarantakos
et al., 2022), and its local droop regulation characteristics of active
and reactive power are often ignored. In addition, the limited
capacity of the BESS and inadequate planning of its charging and
discharging strategy may lead to insufficient operation range during
real-time operation. Wang Y. et al. (2020) and Wang Y. et al. (2022)
introduced an interval optimization model to allocate the optimal
SOC interval for the BESS. This approach aims to ensure that the

Frontiers in Energy Research frontiersin.org02

Ding et al. 10.3389/fenrg.2024.1374704

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1374704


BESS can have sufficient adjustment capacity to cope with the
uncertainty of renewable DG outputs and loads throughout the
day. This can serve as a reference in the management of the BESS
in E-SOPs.

The above literature review showed that existing works do not
comprehensively consider the coordination of NR and the droop
control model of E-SOPs and PV inverters in the multi-time-scale,
including the real-time local voltage control. Moreover, the SOC
interval optimization of the BESS in E-SOPs has also not been
integrated. In addition, a multi-stage hierarchical framework is
required to systematically coordinate the NR with the E-SOPs
and PV inverter. Thus, this paper introduces a multi-time-scale
voltage control model considering the factors mentioned above. The
main contributions of this paper are summarized as follows:

(1) A multi-time-scale voltage control method is proposed to
efficiently coordinate the NR and inverter control of the BESS
and E-SOP, aiming to minimize the voltage fluctuation and
power loss of the DN. In the day-ahead stage, the robust
optimization (RO)method is applied to obtain the reliable NR
strategy of the DN. Then, in the intra-day stage, operation set
points and droop control functions of the PV inverter and
E-SOP, as well as the SOC interval of the BESS, are obtained.
Lastly, in the real-time stage, the automatic control of the
E-SOP and PVs is carried out based on the local voltage
measurements.

(2) In the intra-day stage, a droop control optimization model of
the PV inverter is constructed. Moreover, the V-P and V-Q
droop control function of the E-SOP is obtained with the
coordination of SOC interval optimization in multiple
scenarios to enhance the regulation ability of the DN in
the real-time stage. The SOC interval will be used to
restrict the charging and discharging power of the BESS to
ensure the sufficient regulation range of the BESS for E-SOP
V-P control in the real-time stage.

(3) To tackle the intra-day optimization problem with the
bilinear constraints of the droop control function, a
particle swarm optimization (PSO) method is introduced
to promote the solving efficiency.

2 Coordination framework of
multi-time-scale DN voltage
optimization

This paper introduces a multi-time-scale voltage control method
to minimize the power loss and voltage fluctuation of the DN. The
proposed method consists of three parts, namely, day-ahead
optimization, intra-day optimization, and real-time adjustment,
whose framework is shown in Figure 1.

In the day-ahead stage, with the day-ahead renewable DG and load
predictions, the NR strategy of the DN is determined to obtain the
reliable DN topology, considering switch action limitation. Moreover,
the optimal power dispatch of PV inverters and E-SOP ports is
considered, but they will be re-optimized in the intra-day stage.

In the intra-day stage, based on the hour-ahead prediction, inverter
operation set points and the parameters of the E-SOP V-P and V-Q
droop control function and the PV V-Q droop control function are
obtained. Moreover, considering the time coupling of the BESS and the
uncertainties in renewable DG output and loads, the SOC interval of the
BESS is optimized, and a rolling method is used to reduce prediction
errors in the intra-day model (Wang B. et al., 2020). During the rolling
process, only the results of the first hour are executed, and the remaining
parts are discarded until the next horizon is updated.

In the real-time adjustment stage, the inverters of the PV and
E-SOP regulate the active and reactive power according to their
droop control function. Meanwhile, to ensure the stable operation of
the E-SOP, the BESS will monitor the required change in the active
power at E-SOP ports and compensate for the power imbalances
that may arise between them.

FIGURE 1
Proposed multi-time-scale voltage optimization method framework.
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3 Day-ahead coordinate voltage
control model

3.1 E-SOP operating model

The E-SOP achieves the parallel connection of DC/AC inverters
and BESS DC/DC inverters on a DC bus, with their AC side linked to
the distribution grid feeder lines. Each inverter independently
regulates the active and reactive power at its ports within its
capacity, enabling flexible and interconnected operation of the
distribution grid. Moreover, the collaboration of the BESS
eliminates the requirement for real-time power balance between
the E-SOP ports, thereby improving the adjustability of the E-SOP.
The operation model of the E-SOP can be expressed as follows:

EES
es,t � EES

es,t−1 + PB
es,tτ, (1)

PB
es,t � Pch

es,tηchES − Pdis
es,t/ηdisES , (2)

PESOPinv
i,t + PESOPinv

j,t + PESOP,L
i,t + PESOP,L

j,t + Pch
es,t − Pdis

es,t � 0, (3)

PESOP,L
i/j,t � AESOP

��������������������
PESOPinv
i,t( )2 + QESOPinv

i,t( )2√
, (4)��������������������

PESOPinv
i/j,t( )2 + QESOPinv

i/j,t( )2√
≤ SESOPi/j , (5)

where τ is the time interval, EES
es,t and PB

es,t are the capacity and the
operating power of the BESS, respectively, PESOPinv

i/j,t and PESOP,L
i/j,t are

the i/jth port active power and loss of the E-SOP, respectively, and
QESOPinv

i/j,t is the reactive power of the i/jth port of the E-SOP.
Eqs 1, 2 construct the time coupling relationship of the E-SOP

based on the time absolute continuity of the BESS. Eq. 3 ensures the
real-time balance of active power within the E-SOP, thereby forming
the space coupling relationship of energy power. Eq. 4 is the
expression of power loss, and constraint (5) represents the
capacity constraint of the E-SOP.

3.2 Distribution network
reconfiguration model

The NR model of the DN can be expressed as follows:

−Mαij ≤Pij,t ≤Mαij,−Mαij ≤Qij,t ≤Mαij, (6)
∑

iϵu j( )Pij,t � ∑
kϵv j( )Pjk,t + PLD

j,t − PDG
j,t − PESOPinv

j,t , (7)
∑

iϵu j( )Qij,t � ∑
kϵv j( )Qjk,t +QLD

j,t −QESOPinv
j,t −Qpvinv

j,t , (8)

Vi,t − Vj,t ≤ 1 − αij( )M + rijPij,t + xijQij,t( )
V0

, (9)

Vi,t − Vj,t ≥ − 1 − αij( )M + rijPij,t + xijQij,t( )
V0

, (10)

∑ αij � n − ns, (11)

where Pij,t and Qij,t denote the branch active and reactive power of
the DN, respectively. Vi,t represents the voltage of node i. PLD

j,t , P
DG
j,t ,

and PESOPinv
j,t represent the injection power of the load, renewable DG

[i.e., PV and wind turbine (WT) generator], and E-SOP in node j,
respectively. QLD

j,t , Q
ESOPinv
j,t , and Qpvinv

j,t denote the reactive power
output of the load, E-SOP, and PV, respectively. n is the total

number of nodes of the DN, and ns is the number of substations
in the DN. αij is a binary variable that represents the connection
status of the line in the context. If the line ij is in a connected state,
αij will be 1, and if in a disconnected state, it will be 0.

Constraints (6)–(10) set the limitations on the branch power and
node voltage through the Big M method, ensuring that if αij � 1,
constraints (6)–(10) will be equal to the common power flow model.
If αij � 0, the branch power Pij,t andQij,t will be limited to zero, and
the voltage Vi,t and Vj,t will not be forced equality. Eq. 11 is the
topology constraint of the DN, which ensures that the DN can
remain radial after NR.

Through adjusting the value of the switch control variable αij,
the DN can flexibly adjust its topology, thereby mitigating the power
loss and voltage fluctuation. In addition, to prevent isolated nodes,
adding a micro-amount of load power to nodes without load is an
effective method for enhancing the radial structure of the
distribution network, with negligible impact on the actual power
flow. The detailed principle of adding micro load power is elaborated
by Fang et al. (2023).

3.3 Day-ahead voltage control model

The day-ahead optimization model aims to simultaneously
obtain the NR strategy of the DN and the dispatch of inverter
reactive power in order to minimize the power loss and voltage
fluctuation. The model can be formulated as follows:

minω1 ∑
t∈T

∑
ij∈B

Ploss
ij,t + ω2 ∑

t∈T
Vdev

t .

s.t. (1)–(11),

Ploss
ij,t � P2

ij,t + Q2
ij,t

V2
0

rij, (12)

Vdev
t � 1

Ni
∑

i∈I
Vi,t − V0

∣∣∣∣ ∣∣∣∣, (13)
�V≤Vi ≤ V , (14)

P2
ij,t +Q2

ij,t ≤ s2ij, (15)
0≤ Pdis

es,t ≤ βesPrate
bess, (16)

0≤ Pch
es,t ≤ 1 − βes( )Prate

bess, (17)
EES
es,0 � EES

es,24, (18)

SOCes,t � EES
es,t

EES
es,cap

, (19)

SOCmin ≤ SOCes,t ≤ SOCmax, (20)
−Qpvinv

i,t,max ≤Qpvinv
i,t ≤Qpvinv

i,t,max, (21)
0≤∑

ij∈B
αij − αinitij

∣∣∣∣∣ ∣∣∣∣∣≤ bmax. (22)

Eqs 12, 13 represent the average bus voltage deviation and
branch power loss, respectively, and the bus voltage and branch
apparent power are restricted by constraints (14) and (15),
respectively. Constraints (16)–(20) and constraints (1)–(2)
collectively represent the operational limitations of the BESS in
the E-SOP. Constraint (21) limits the reactive power output of the
PV inverters. In addition, constraint (22) limits the action number of
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switches in the DN, where bmax represents the maximum number of
operations and αinitij is the initial stage of the switches in the DN.
Moreover, constraint (22) can be effectively transformed into linear
constraints through the BigMmethod (Sun et al., 2016). Meanwhile,
the nonlinear constraint (4) can be relaxed into a quadratic circle
constraint (Liu and Wang, 2022), and the quadratic circle
constraints such as constraints (5) and (15) can be further
relaxed into linear constraints through a polygonal inner
approximation method (Zhang et al., 2020).

3.4 Robust optimization for uncertainties

To address the uncertainties of renewable DG outputs and loads,
a RO method (Wang et al., 2021) is introduced. This method
searches for the worst scenario based on the uncertainty set.
Then, the most reliable solution can be obtained under the worst
scenario of uncertainty realization. In this paper, the uncertainty set
can be modeled as

UDG/LD �
PDG/LD

i,t,pre
≤PDG/LD

i,t ≤ �PDG/LD
i,t,pre

λmin ≤
∑i∈Ωbus

∑t∈TP
DG/LD
i,t∑i∈Ωbus

∑t∈TP
DG/LD
i,t,pre

≤ λmax.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (23)

In this uncertainty set, �PDG/LD
i,t,pre and PDG/LD

i,t,pre
are the upper and lower

limits of renewable DG outputs and loads at time t, respectively. In
addition, the robustness of the obtained results is determined by the
value of λmin and λmax. If λmax increases and λmin decreases, the result
will be more robust, and the objective will be more conservative.

Thus, the detailed expression of the proposed RO model is
as follows:

min
x

aTx +max
uϵU

min
y

bTy. (24)

s.t. (1)–(22).
In model (24), x represents the decision variables αij and βes of the

day-ahead stage and y represents other day-ahead operating variables,
including Qpvinv

i,t , QESOPinv
i,t , PESOPinv

i,t , and other decision variables. This
model is a typical two-stage robust optimization problem and can be
divided into a single-layer master problem (MP) and a dual-layer
subproblem (SP). Moreover, considering that the inner-layer
problem of the SP is a convex optimization problem, it can be
reformulated into a single-layer optimization problem through the
Karush–Kuhn–Tucker (KKT) method and then be iteratively solved
using the CC&G method (Zeng and Zhao, 2013; Wang et al., 2021).

Moreover, it is worth noting that after solving model (24), only
αij* is determined, while the value of Qpvinv

i,t , QESOPinv
i,t , PESOPinv

i,t , and
Pch/dis
es,t will be further optimized in the intra-day stage.

4 Intra-day coordinate voltage
control model

4.1 SOC interval optimization model for the
BESS in the E-SOP

Based on αij* obtained through the day-ahead stage, the output
power of BESS Pch/dis

es,t will be recalibrated through the hourly

predicted data. Moreover, considering the time coupling of
operation constraints and prediction errors of uncertainties, the
BESS state-of-charge (SOC) interval needs to be obtained based on
multiple scenarios. This interval will restrict the SOC range based on
the operational requirements of the following hours in each rolling
cycle, aiming to prevent over-charging and over-discharging. It can
also be used to ensure that the BESS can obtain the adjustable
capacity in each time period of the day to address the impact of
uncertain renewable DG outputs and loads. The SOC interval
optimizing model of the BESS can be expressed as follows:

(1)−(2), (16)−(20)
SOCes,t

min ≤ SOCes,t ≤ SOCes,t
max, (25)

SOCmin ≤ SOCmin /max
es,t ≤ SOCmax, (26)

εmin ≤ SOCes,t
max − SOCes,t

min ≤ εmax, (27)
where εmax /min is the maximal/minimal reserved capacity of the
range. SOCmin /max

es,t constructs the SOC interval at time t, and its
value is limited by constraints (26) and (27). Constraints (1)–(2) and
(16)–(20) represent that the intra-day charging/discharging power
still needs to adhere to the operational constraints of the BESS.
Constraint (27) ensures that the BESS maintains a certain reserved
capacity throughout each time period, thereby providing a flexibility
range for adjustments to the BESS. It is worth noting that a large
interval width means more reserved capacity for the BESS to adjust
at time t in the real-time stage but may reduce the regulation
flexibility in subsequent time.

4.2 Droop control model of the E-SOP

Considering that the E-SOP inverters have a redundant capacity,
adopting the traditional droop curve with deadband may waste the
inverter capacity. To make full use of the inverter capacity, the no-
middle-deadband droop control function is applied (Xu et al., 2022),
which is shown in Figure 2. Moreover, given that the active power is
also an important influencing factor in the voltage fluctuation of the
DN, adopting the V-P droop control function is also a significant
way to promote the real-time security of the DN (Sun et al., 2021a).
Thus, the droop control function of the E-SOP can be summarized
as follows:

Vi − Vref ,i � kp,i P
ESOPinv
i,t − Psetsop

i,t( ), (28)
Vi − Vref ,i � kQ,i Q

ESOPinv
i,t −Qsetsop

i,t( ), (29)
kp,i
min ≤ kp,i ≤ kp,imax, (30)

kQ,i
min ≤ kQ,i ≤ kQ,imax, (31)

−Qmaxsop
i,t ≤Qsetsop

i,t ≤Qmaxsop
i,t , −Pmaxsop

i,t ≤ Psetsop
i,t ≤ Pmaxsop

i,t , (32)
Pmaxsop2

i,t +Qmaxsop2

i,t ≤ SESOP
2

i , (33)
EES
es,cap SOCes,t−1min − SOCes,t

min( )/τ ≥ PESOPinv
i,t + PESOPinv

j,t −M 1 − βes( ),
(34)

EES
es,cap SOCes,t

max − SOCes,t−1max( )/τ≥ − PESOPinv
i,t + PESOPinv

j,t( ) −Mβes,
(35)

where Qsetsop
i,t and Psetsop

i,t are the droop set power, the value of which
is limited by constraint (32). Qmaxsop

i,t and Pmaxsop
i,t are the maximum
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output power of the E-SOP at time t. Constraints (30) and (31)
define the range of droop slopes. It is worth noting that the BESS in
the E-SOP only follows the active power difference in the E-SOP
ports to maintain the stability of the DC bus voltage. Constraints
(33)–(35) limited the maximum active power output of the droop
control function. Constraint (33) ensures that the output power of
the E-SOP will not exceed its port capacity. Constraint (34) ensures
that the BESS SOC should satisfy the maximum energy discharge
demand of multiple scenarios. Similarly, constraint (35) guarantees
that the maximum energy charge demand scenario can be fulfilled
within the BESS SOC interval.

It is worth noting that, in the real-time stage, the E-SOP control
system will first calculate the SOC after regulation and port-required
adjustment power based on local voltage measurement and the
droop control curve. If the calculated SOC exceeds the interval, the
BESS will reduce the adjustment power to maintain the SOC within
the interval. At this point, the maximum power that the BESS can
charge/discharge will be prioritized to support the port of the E-SOP
with higher voltage deviation.

4.3 Droop control model of PV inverters

Given the redundant capacity of PV inverters and their potential
as a voltage var control device, in this section, a Q-V droop control
function of the PV inverter is also constructed with reference to the
droop control curve discussed in Section 4.2.

Qpvinv
i,t � Qpvset

i,t + ΔQi,t, (36)
ΔVi,t � Vi,t − Vi

exp, (37)

ΔQi,t � KPV
i ΔVi,t, (38)

KPV
i,min ≤KPV

i ≤KPV
i,max, (39)

−Qi,t
max ≤Qpvset/pvinv

i,t ≤Qi,t
max, (40)

where KPV
i is the slope of the droop control curve. Qpvset

i,t represents
the set point of the reactive power output of the PV inverter. Qi,t

max

denotes the reference maximum reactive power output of the PV
inverter at time t; it can be obtained based on the output prediction
of the PV inverter.

Eq. 36 denotes the actual reactive power output of the PV
inverter. Eqs. (37)–(40) form the expression for the droop
control function of PV inverters. Eq. 37 calculates the deviation
of the node voltage, and Eq. 38 represents the reactive power
adjustment considering the voltage change based on the slope of
the droop function. The slope of the droop control curve is limited
by constraint (39). Constraint (40) limits the range of reactive power
output and set points.

4.4 Intra-day stochastic optimization model

In this research, it was considered that the NR strategy obtained
from the RO method is sufficiently reliable, and the accuracy of
intra-day rolling forecasts is high. Compared to obtaining an
optimal droop curve that adapts to the worst-case scenario,
acquiring the droop model that can achieve the expected optimal
performance across multiple potential operational scenarios will be
more efficient in reducing the voltage deviations caused by real-time
stage power fluctuations. Thus, a stochastic optimization (SO)
method is applied. In this method, the scenario sets are

FIGURE 2
Droop control function of the energy storage equipped soft open point (E-SOP).
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randomly generated based on intra-day forecast data to obtain the
optimal expected control strategy. Moreover, considering that the
probability distribution may not be known, a sample average
approximate method is applied. Thus, the intra-day voltage
optimization model can be expressed as follows:

minω1∑i∈Ωbus
∑

t∈T
SOCes,t

max − SOCes,t
min( )

+ 1
Ns

min
ys

ω2∑t∈T
∑

ij∈B
Ploss
ij,t + ω3∑t∈T

Vdev
t + ω4EScost( ). (41)

s.t. (1)–(10) (12)–(20), (25)–(40),

EScost � ∑
t∈T

Pch
es,t + Pdis

es,t( ), (41a)
∀ i, j, t, s,

PDG
i,t,s, P

LD
i,t,s ∈ S,

where Ωbus is the set of the nodes of the DN. S is the scenario set of
renewable DG outputs and loads. ys denotes the operating decision
variables including Pch/dis

es,t , Vi,t, and other decision variables in
scenario s. Objective minω1∑i∈Ωbus

∑t∈T(SOCes,t
max − SOCes,t

min) is
used to acquire the optimal SOC interval width that fulfills the
charging/discharging requirements in multiple scenarios.
Constraint (41a) aims to minimize the charging/discharging
power of the BESS to reduce the active power loss in the DN. By
solving model (41), the inverter set power Qpvset

i , Psetsop
i,t , and Qsetsop

i,t ;
the droop curve slopesKPV

i , kp,i, and kQ,i; and the BESS SOC interval
SOCes,t

max and SOCes,t
min are optimized under the generated scenarios.

Moreover, constraints (28), (29), and (38) are bilinear constraints,
which will increase the computing burden on the solver. Thus, this
paper combines the PSO method (Zhang et al., 2023) and Gurobi to
reduce the solving burden.

5 PSO-based intra-day solution
method

The PSO algorithm is an evolutionary algorithm based on the
observation and research of bird predatory behavior. It was
proposed by Dr Eberhart and Kennedy in 1995. This algorithm
was initially inspired by the regularity of bird clustering activities,
and then, a simplified model was established by using swarm
intelligence. In the PSO method, each bird is a particle, and the
process of foraging based on the instinct of birds is the process of
finding the optimal solution in the solution space (Swari et al., 2022).
Compared with other modern stochastic intelligent optimization
algorithms, PSO has been widely used due to its advantages of
simple implementation and no need for gradient information (Liu
et al., 2019), and it can also effectively solve nonlinear
optimization problems.

The PSO method first initializes a group of random particles,
and then, the optimal solution is found through iteration. In each
iteration, the particles update the iteration by tracking the local
optimal extremum Pb and the global optimal extremum Gb. The
update formula for speed and position speed can be expressed
as follows:

Xk+1
i � Xk

i + Vk+1
i , (42)

Vk+1
i � ωVk

i + c1r1 Pk
i − Xk

i( ) + c2r2 Pk
g − Xk

g( ), (43)

where Xk
i and Vk

i are the position vector and velocity vector of each
particle in the kth iteration, respectively. r1 and r2 are the random
variabilities in range [0, 1]. c1 and c2 are learning factors of the PSO
method. Pk

i is the local optimal position vector of the particle in the
kth iteration. Pk

g represents the global optimal position vector after
the kth iteration. ω is the inertia weight factor.

It is worth noting that the parameter ω regulates the impact of
particle velocity in the previous iteration on the particle velocity in
the current search process. A higher value of ω results in stronger
global search capability, but it will diminish the local search ability.
Therefore, maintaining ω as a constant value is not a rational choice.
This paper uses a linearly decreasing inertia weight factor to improve

FIGURE 3
Flowchart of the proposed particle swarm optimization
(PSO) algorithm.
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the efficiency of the solution. The weight factor can be calculated
as follows:

ω � 0.9 − 0.9 − 0.4
itermax

× iter, (44)

where iter is the current number of iterations and itermax is the
maximum iteration number.

The steps to use the PSO algorithm to solve the proposed intra-
day coordinated voltage optimization model can be seen in Figure 3
and can be summarized as follows (Feng et al., 2023):

(1) The particles to be solved are chosen: KPV
i , kp,i, kQ,i, QPVset

i,t ,
Psetsop
i,t , and Qsetsop

i,t .
(2) PSO parameters and initial particle position and velocity are

initialized.
(3) Model (41) is optimized based on Gurobi, and the speed and

position of particles are updated according to Eqs 42, 43.
Then, the fitness values of each particle are calculated.

(4) The local and global optimal solutions of the algorithm are
updated based on the fitness values in each particle.

(5) Whether itermax is reached is judged; if not, the algorithm will
repeat from step (3).

6 Case study

6.1 System setting

A 33-bus distribution network is applied to test the proposed
method, and the topology is shown in Figure 4. This system has
33 nodes with 37 branches, and each branch is equipped with a
switch to respond to the scheduling demands of NR (Li et al., 2023).
The rated power of renewable DG, BESS, and E-SOP inverters is given in
Table 1. In addition, the prediction profiles of renewable DG output and
load are shown in Figure 5, regarded as the expected prediction. The
prediction intervals are set as ±10% of the renewable DG output

and ±10% of the load output. Then, 100 scenarios are generated to
participate in the intra-day optimization. In addition, the ratedmaximum
output power of the BESS is 400 kW, and the capacity of the BESS in the
E-SOP is 600 kWh (Huang et al., 2022). Meanwhile, the allowed voltage
range of the DN is set as 0.95 p.u–1.05 p.u., and the maximum action
number of switches is 6. Additionally, in the PSOmethod, themaximum
iteration number is 15, and the population size is set as 20.

The proposed optimization model is programmed on the
MATLAB 2022b platform with the YALMIP toolbox and solved
using Gurobi 10.0.

6.2 Day-ahead operating results

By solving the day-ahead voltage operating model considering NR,
the optimal NR strategy is obtained, as shown in Figure 6. By controlling
switches between nodes 7 and 8 and nodes 12 and 13 into a disconnected
state and switches between nodes 21 and 8 and nodes 18 and 33 into a
connected state, NR can adjust the distribution of renewableDG and load
by altering the DN topology to promote the balanced distribution of the
system source and loads, thereby promoting the safe operation of theDN.
The calculated average power loss cost and voltage range throughout the
entire day were determined to be 2.448 MW and 0.192 p.u., respectively.

In addition, without the NR and the inverter reactive power
regulation, the voltage range under the expected condition is [0.948,
1.0017], which is out of the allowed voltage range. On the other
hand, with the coordination of inverter voltage control and NR, the
voltage range can be [0.965, 1.0011], indicating that the change in
the voltage can be maintained in the acceptable range.

6.3 Intra-day operating results

In the intra-day stage, the N in the rolling procedure is set as
four; based on this, the SOC interval of the BESS can be obtained by

FIGURE 4
Topology of the 33-bus distribution network (DN) system.
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solving the proposed model (41), and the result is shown in Figure 7.
The BESS will start discharging power before 4:00 because of the low
renewable DG prediction power output. Then, with the increase in
the PV output, the BESS will continue to charge from 4:00 to 11:00.
Moreover, the operating range of the BESS is relatively flat due to the
high WT output power between 12:00 and 19:00. Furthermore, with
the increase in load demand and the decrease in renewable DG
output, the BESS will be forced to discharge power to fulfill the
peak loads.

Then, taking the load peak period of 21:00 to 22:00 as an
example, the total expected renewable DG generation and loads are
1.31 MW and 3.678 MW, respectively. Figure 8 shows the solving
process of the proposed intra-day optimizing problem; it can be
found that in the 7th iteration, the convergence, as well as the
minimal objective (fitness value), can be obtained. Through solving
the proposed intra-day optimization model, the expected power
loss is 0.11 MW, and the computing time in each rolling process is
approximately 300 s, which is fully compatible with the online use

of intra-day scheduling. Moreover, the results of reactive power
set points Qset, expected bus voltage Vi

exp, and the slope of droop
control functions of the E-SOP and PV inverter are given in
Figure 9. It can be found that due to the active power of the PV
inverter being zero, the reactive output of the PV inverter can
reach its maximum capacity of inverters. Moreover, some of the
inverters such as VSC1 reach their maximum reactive power, and
VSC1 and PV1 have negative active and reactive power set points,
respectively, while other inverters have positive set points. On the
other hand, the droop control curve during the peak PV output
period 9:00 to 10:00 is also given in Figure 10 for comparison. In
this case, the PV has the highest active power output during the
day; thus, the maximum reactive output power of the PV inverter
has a significant decrease. At this hour, the active power set
points of E-SOP ports are both negative, which means that both
ports of the E-SOP system are required to absorb power from the
DN, thus requiring the BESS to have sufficient capacity to
absorb them.

TABLE 1 Rated power of photovoltaic (PV), battery energy storage system (BESS), and energy equipped soft open point (E-SOP) inverters.

PV Wind turbine (WT) E-SOP

Bus Rated power/kW Bus Rated power/kW Device Bus Rated power/kW

7 500 9 500 VSC1 9 600

17 500 25 550 VSC2 15 600

22 500 32 550 BESS — 600

23 500 — — — — —

FIGURE 5
Prediction profile of renewable distributed generation (DG) and load.
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6.4 Operating performance in the real-time
stage and comparison with other methods

In the real-time stage, the inverters of PVs and E-SOP that
operate under the droop control function can change the active
and reactive output power in response to the measurement of local
bus voltage based on the optimized droop control curve. Figure 11
shows the real-time stage BESS operating states in terms of SOC
under some of the scenarios. It can be found that during the real-
time stage, the BESS can achieve a flexible transfer of power on the
time scale by adjusting its charging/discharging power, thereby

enhancing the temporal flexibility of power distribution network
operation. Moreover, during the periods of 6:00–8:00 and 17:
00–19:00, the BESS exhibits minimal fluctuations due to the
reduced load and increased renewable DG outputs. This
indicates a relatively balanced active power within the DN, and
the demand for active power adjustment of E-SOP ports during
these times is low. Furthermore, in the tested scenarios, the BESS
can maintain SOC within its intervals while addressing real-time
fluctuations in the DN.

In addition, to analyze the real-time system operating security
performance, the peak load period of 21:00–22:00 is taken as an

FIGURE 6
Network reconfiguration (NR) operating result in the day-ahead stage.

FIGURE 7
Battery energy storage system (BESS) state-of-charge (SOC) interval.
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example; another two voltage control methods are applied for
comparison, given as follows:

Method A: A two-stage central voltage control method that
optimizes the NR and inverter output power of the PV inverter and
E-SOP without considering the droop control function. The inverter
output power dispatch is re-optimized per hour and fixed.

Method B: A multi-time scale voltage control model considering
PV and E-SOP Q-V control function. The active power output set
points of the E-SOP are determined based on hourly forecast data
and rolling optimization during the intra-day stage.

For each forecast error, 1,000 test scenarios are randomly
generated in the uncertainty set to test the operating security of
the two methods. The results are shown in Table 2. In this test, a

reliable probability index (RPI) is defined to reflect the system
security performance:

RPI � Nsecurity

Nsample
, (45)

whereNsample is the total number of testing scenarios andNsecurity is
the number of the scenarios that satisfy all the security constraints
of the DN.

The RPI and the expected power loss cost are shown in
Table 2, and θ represents the upper and lower limits of the
interval for the production of testing scenarios. Table 2 shows
that the implementation of the droop control strategy can
effectively enhance the operational safety of the DN and

FIGURE 8
Convergence process of the proposed PSO method.

FIGURE 9
Droop function for the period 21:00–22:00.
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FIGURE 10
Droop function for the period 9:00–10:00.

FIGURE 11
Real-time stage BESS operating states.

TABLE 2 Comparison of the three methods in the real-time stage.

θ Method A Method B Proposed

Expected power
loss/MW

Reliable probability index
(RPI) (%)

Expected power loss
cost/MW

RPI
(%)

Expected power
loss/MW

RPI
(%)

5% 0.392 92.7 0.36 100 0.356 100

10% 0.44 84.6 0.372 97.8 0.364 98.6
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reduce network losses. Furthermore, compared to method B, the
proposed method demonstrates similar RPI values under varying
prediction errors. However, using the proposed method can
effectively reduce the power losses during the real-time
operation. Therefore, the proposed method exhibits superior
comprehensive performance in terms of the security and
economy of the distribution grid.

Moreover, the probability distribution of voltage at bus 18 under
the ±5% interval testing set is shown in Figure 12. In this figure,
method A has the widest voltage range and largest voltage violation
rate. The voltage profile in method B and the proposed method has
significantly improved compared with method A. Meanwhile,
compared with method B, the proposed method demonstrates a
smaller voltage deviation and better voltage waveform during the
real-time stage, attributed to the incorporation of the V-P droop
control function.

7 Conclusion

This paper proposes a multi-time-scale voltage control method,
aiming to minimize the power loss and voltage fluctuation of the
DN. In this method, the reliable NR strategy is obtained via the RO
method. Meanwhile, to tap the optimized potentials of the PV
inverter and E-SOP, the SOC interval of the BESS and the droop
control function of the PV inverter and E-SOP are fully modeled. In
addition, to solve the bilinear constraints, a PSO method is applied
to reduce the computing burden. The results indicate that the
proposed method can minimize power loss and voltage
fluctuation and improve the reliability of the DN under
uncertainties.

This study mainly focuses on the coordination between the BESS
and linear droop control function without deadband. Future work
will focus on constructing a more universally applicable droop
control function to facilitate the coordinated optimization of
multiple regulating devices such as the E-SOP, BESS, PV
inverters, and capacitors.
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