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In the context of Integrated Energy System (IES), accurate short-term power
demand forecasting is crucial for ensuring system reliability, optimizing
operational efficiency through resource allocation, and supporting effective
real-time decision-making in energy management. However, achieving high
forecasting accuracy faces significant challenges due to the inherent complexity
and stochastic nature of IES’s short-term load profiles, resulting from diverse
consumption patterns among end-users and the intricate coupling within
the network of interconnected energy sources. To address this issue, a
dedicated Short-Term Power Load Forecasting (STPLF) framework for IES is
proposed, which relies on a newly developed hybrid deep learning architecture.
The framework seamlessly combines Long Short-Term Memory (LSTM) with
Temporal Convolutional Network (TCN), enhanced by an attention mechanism
module. By merging these methodologies, the network leverages the parallel
processing prowess of TCN alongside LSTM’s ability to retain long-range
temporal information, thus enabling it to dynamically concentrate on relevant
sections of time series data. This synergy leads to improved prediction accuracy
and broader applicability. Furthermore, the integration of residual connections
within the network structure serves to deepen its learning capabilities and
enhance overall performance. Ultimately, results from a real case study of a
user-level IES demonstrate that the Mean Absolute Percentage Error (MAPE)
of the proposed framework on the test set is 2.35%. This error rate is lower
than the averages of traditional methods (3.43%) and uncombined single
submodules (2.80%).
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1 Introduction

1.1 Motivation

Nowadays, the energy sector is undergoing a grand and
unprecedented transformation (Liu X. et al., 2022). With the
advent of new power systems predominantly driven by renewable
energy sources, the Integrated Energy System (IES), capable
of efficiently accommodating new energy, has emerged. IES
embodies a cohesive unit that consolidates several disparate
energy subsystems (Ke et al., 2023), all of which collaboratively
engage in a multifaceted process encompassing the generation,
conversion, transmission, distribution, storage, and utilization
of a multitude of end-use energy types—such as electricity,
cooling, and heating—within a unified, holistic infrastructure
(Li et al., 2022).

To ensure both stable and economical operation of IES,
accurate power load forecasting result plays a critical role in
long-term planning processes (Qiao et al., 2023) as well as
short-term scheduling decisions (Ma et al., 2023). Power load
forecasting can be categorized into four distinct time horizons:
long-term (Şeker, 2022), medium-term (Han et al., 2022), short-
term (Niu et al., 2022), and very short-term (Li et al., 2023). Short-
Term Power Load Forecasting (STPLF) is about predicting power
demand for daily and weekly operational plans which includes
day-ahead predictions up to the coming week (Akhtar et al.,
2023).

Accurate STPLF for IES can enhance the foundation for
formulating its operational strategies, thereby improving the
utilization rate of renewable energy resources and overall energy
efficiency, ultimately leading to the achievement of sustainable
development. These forecasts are instrumental in formulating
bidding strategies for IES operators participating in day-ahead and
real-time markets, thereby enabling them to secure competitive
advantages (Chen et al., 2022).

1.2 STPLF for IES

IES surpasses the mere combination of subsystems by
employing an intelligent strategy to systematically plan, construct,
schedule, and operate each constituent subsystem cohesively
(Cheng et al., 2019). The integrative and complementary process
empowers the system to reap several benefits: it diminishes energy
losses for amplified efficiency, attenuates reliance on a single
energy source to reinforce safety and stability, and concurrently
curtails unwarranted investments in equipment and operational
costs, thereby contributing to enhanced economic efficiency
(Wang et al., 2016).

Considering the characteristics of IES, where different energy
sources need to work together flawlessly and its parts operate
intelligently and in harmony, the job of predicting energy demand
requires a broad view that sees all these energies as one complete
system. This means combining the ongoing changes happening in
each part over time, resulting in complex predictions that spanmany
connected systems and levels (Lv et al., 2021). Unlike conventional
setups with just one type of energy, the prediction methods used

in IES require more intricate modeling details and a higher level of
accuracy in forecasts.

In IES, short-term load changes are often more random and
unpredictable compared to traditional power systems (Kang et al.,
2022). This is because of different consumption patterns among
external users and complex interdependencies in IES’s internal
energy carriers. This inherent uncertainty makes forecasting harder
(Fan et al., 2022). To tackle this complexity, researchers must study
historical data from various sources. These include meteorological
data, economic trends, and social factors (Zhu et al., 2022). They
aim to extract meaningful but abstract information that connects
these domains.

Moreover, IES is an emerging concept with many projects still
in the pilot phase or planning stages (Guo et al., 2023), which
is characterized by diverse energy equipment (Ke et al., 2022)
and innovative operating methods that exacerbate the complexity
and uncertainty (Chen and Wang, 2021). Furthermore, electric
power often assumes a foundational role in the functioning of
IES (Ding et al., 2022). This ascendancy is largely attributed to its
environmentally benign nature, user-friendly attributes, and facile
transportability, thereby making it a key facilitator in the effective
integration and coordination amongdiverse energy resourceswithin
the system. Consequently, addressing the challenge of accurately
predicting power load forecasting within IES has emerged as a
pressing contemporary issue with substantial implications for the
energy field, drawing extensive scholarly attention and investigation
(Yang et al., 2019).

1.3 Literature review

In fact, many models for STPLF have been developed. Because
shorter time periods in this area produce more data samples
than medium and long-term ones, it is essential to uncover
complex connections within the data. Common methods used are
Time Series Analysis (TSA) (Box, 2013), Support Vector Machine
Regression (SVR) (Noble, 2006), and Artificial Neural Network
(ANN) (Abiodun et al., 2018).

Autoregressive Integrated Moving Average Model (ARIMA)
(Box and Pierce, 1970) is one of the representative methods of TSA.
It can deal with non-stationary time series by difference, but it
is only suitable for univariate data and cannot capture nonlinear
relationship. SVR is good at solving nonlinear problems, but it
needs to store all the support vectors and solve the quadratic
programming problem, which can only handle small data sets
(Zhang et al., 2022). ANN originated from the simulation of
biological neurons and their network connections (Tarmanini et al.,
2023). In recent years, with the improvement of data, algorithms
and computing power, Deep Neural Network (DNN) architectures
have gradually evolved.Theory shows that a single-layer feedforward
neural network can approximate any function defined on a
closed interval with arbitrary precision, as long as the number
of hidden neurons is sufficient (Hornik et al., 1989). Although
DNN broaden the depth of networks, their presentation and
modularity make them more suitable for complex learning tasks,
such as Convolutional Neural Network (CNN) (Alzubaidi et al.,
2021) for image recognition and Recurrent Neural Network (RNN)
(Cho et al., 2014) for natural language processing.
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Li et al. (2017) presented a method leveraging CNN to
transform load forecasting into an image-based problem, extracting
features via a dual-branch network, and predicting load changes
with a Multilayer Perceptron (MLP). Incorporating diverse
external factors, the method beats simpler models and SVM
in accuracy, proving CNN’s advantage in improving STPLF.
(Bianchi et al., 2017) applied advanced RNN to STPLF, reducing
service issues and waste. It confirms RNN’s superiority over
static methods, examines new architectures, and offers guidance
for configuring them on real-valued time series predictions.
(Cai et al., 2019) applied RNN and CNN to predict day-ahead
loads for commercial buildings in recursive and direct multi-
step ways. This research showed that RNN and CNN are more
accurate and efficient than traditional models like ARIMA with
exogenous variables (ARIMAX) which can processing multivariate
sequences.

However, due to the problem of gradient explosion and
disappearance of RNN (Sherstinsky, 2020), the modified Long
Short-Term Memory (LSTM) is more widely used in STPLF
(Yu et al., 2019; Lin et al., 2022) proposed an LSTM-based
dual-stage attention model for accurate STPLF, adaptively
emphasizing relevant input features and temporal dependencies.
The results show that the model surpasses others in both
point and probabilistic forecasting, especially under temperature
variations. On the other hand, before the introduction of
TCN (Bai et al., 2018), CNN were rarely used in STPLF
due to the lack of long-term dependence on processing
capacity (Liu M. et al., 2022). innovatively adapted TCN for
improved STPLF amidst renewable intermittency, leveraging data
reconstruction, feature extraction, and self-attention to enhance
accuracy, as evidenced by substantial performance gains on
benchmark datasets.

There are also some scholars who combine RNN and CNN
for STPLF. (Cai et al., 2022) proposed a network combining
Gated Recurrent Unit (GRU) and TCN, addressing low accuracy
in STPLF by extracting and predicting intrinsic load modes
after empirical mode decomposition, demonstrating improved
performance against single models. (Agga et al., 2022) proposed
a CNN-LSTM architecture that detects local patterns with one-
dimensional CNN and captures long-term dependencies through
LSTM, outperforming standalone machine learning and ANN
models. (Javed et al., 2022) presented a unique two-stage Encoder-
Decoder network integrating TCN and BiLSTM for STPLF,
offering superior accuracy and ability to capture local load trends
compared to existing machine learning and hybrid deep learning
models, includingCNN-LSTM, as validated through comprehensive
evaluations.

1.4 Contributions

In the current research on STPLF for IES, most focuses
on the modeling of the prediction problem itself and pays less
attention to the load characteristics of IES. The lack of prior
knowledge prevents the neural network from fully exerting
its nonlinear fitting ability. In addition, LSTM and TCN
are often used separately in STPLF. A common approach to
combine them for better prediction is stacking them sequentially

through an coding-decoding architecture. Although this stackable
combination can achieve certain improvement effects when
implemented, it also overlays the training process of the two
models and extends the training time, while failing to allow
them to achieve an adaptive balance between competition
and cooperation.

Consequently, a residual and attentive LSTM-TCN (RALT)
hybrid deep neural network and a framework of STPLF for IES that
encapsulates RALT network is proposed. The main contributions of
this research are summarized as follows:

• A framework of STPLF for IES is proposed. The STPLF
problem is described as amulti-variable collaborative univariate
iterative forecasting and the whole process of feature screening,
data preprocessing, data set construction, model training
and verification is encapsulated with RALT as the core.
The proposed framework not only makes the RALT well
encapsulated to enhance its reusability, but also mines
the correlation between multiple loads to introduce prior
knowledge to the training of RALT networks.
• A RALT hybrid neural network is designed. Firstly, the residual

connection is introduced for LSTM and TCN, which ensures
the network depth and the fitting efficiency. Then, the parallel
structure ensures that Residual LSTM and Residual TCN
are independent of each other, which not only plays the
parallel processing capability of TCN, but also retains the long-
term dependency identification capability of LSTM. Thus, the
attention mechanism adaptively calculates the weight of the
two,which ensures the competition of the two in influencing the
prediction output, and incorporates the difference of the two in
the prediction mechanism.
• MAPE, Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE) are used to evaluate the proposed model. The
results showed that the proposed model outperformed other
traditional models (ARIMAX, SVR, GRU, MLP) and the
combined sub-models (Residual LSTM and Residual TCN) on
the three indexes.The comparative analysis of prediction curves
also shows that the model has better anti-fluctuation in fitting
performance.

The rest of this paper is organized as follows. The STPLF
framework for IES is proposed in Section 2. The RALT hybrid
network is formulated in Section 3. A case study of a specific IES
object is performed in Section 4. Result and discussion are given in
Section 5. Conclusions are drawn in Section 6.

2 STPLF framework for IES

This section outlines the step-by-step process of the STPLF
framework tailored for IES, as shown in Figure 1, which
involves selecting the influential factors on power load, defining
a single-step iterative forecasting problem with multivariate
time series data, preprocessing and analyzing the correlations
within the data, constructing input-output pairs using a sliding
time window approach, training the network, and evaluating
the network.
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FIGURE 1
Short-term power forecasting framework for integrated energy system.

2.1 Selecting the factors influencing the
power load of IES

The IES can be categorized into three tiers: inter-district,
regional, and user-levels based on the scale of the region (Song et al.,
2022). However, a uniform division standard regarding the regional
size, voltage level, and other relevant characteristics has not been
established for both regional-level and user-level IES entities. To
address this issue, the framework is applicable to STPLF when
dealing with user-level IES such as schools, hospitals, and shopping
malls, which particularly prioritize end-use energy consumption. As
a result, the research subject within this paper is specifically defined
as user-level IES.

In traditional STPLF for power systems, a multitude of factors
including seasonal changes, weather patterns, holiday effects,
economic growth levels, and consumer electricity consumption
behaviors significantly impact the predictions. These factors
contribute to unique characteristics such as substantial data
volatility, strong nonlinearity, and high uncertainty in STPLF
outcomes (Eren and Küçükdemiral, 2024). To refine prediction
accuracy, it is essential to comprehensively examine the underlying
laws governing load variations in power grids and meticulously
analyze these influential elements. In particular, there are
complex interactions between meteorological conditions, day
types, and short-term load fluctuations (Sheng et al., 2023).
By adopting this holistic analytical approach, conventional
STPLF methodologies ensure that the influence of all critical
variables—meteorology, periodic series, calendar rules, and
historical loads—are adequately addressed when forecasting future
loads (Zhu et al., 2022).

Typically, meteorological factors encompass elements such
as temperature, humidity, solar radiation, among others. The
periodic series number denotes the position of a given data
point within a longer time horizon that exhibits a periodic
pattern. It mainly includes the hour of the day, the day of the
week, and the month of the year in ordinal sequence. Calendar
rules refer to the specific significance that certain moments
carry within the local cultural and political context, examples
being weekends or holidays like Christmas. Historical power
loads represent the patterns and trends exhibited by observed
power load values at various historical timestamps within a
time series.

In addition to electrical equipment that has long been prevalent
in daily life, such as refrigerators and electric air conditioners, a user-
level IES may also incorporate various energy conversion devices
like combined heat and power systems. This integration introduces
the coupling relationship between power loads, heating loads, and
cooling loads, which can be complementary, interdependent, or
exhibit more intricate nonlinear relationships. Consequently, given
the influence of terminal cooling and heating energy loads on power
load, The set of influencing factors for user-level IES is constructed
as Figure 2.

2.2 Defining a single-step-iteratively
forecasting problem of multivariate time
series

STPLF typically views power load at any moment as
a random variable. Depending on the number of such
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FIGURE 2
Factors impacting short-term load forecasting in IES.

variables considered, forecasting methods are categorized into
univariate and multivariate. Univariate methods, exemplified
by ARIMA, focus solely on historical loads. Multivariate
methods, discussed in Section 2.1, account for multiple
influencing factors.

Multivariate forecasting further categorizes inputs into vector-
type and matrix-type based on their structure. Vector-type inputs
construct a multivariate vector from series of random variables.
SVR is a model that utilizes this method. Matrix-type inputs form
matrices from sequences of random variables, representing joint
multivariate time series, with models like LSTM and TCN fitting
this category.

Forecasts can be divided into single-step and multi-step
according to the forecasting horizon. Single-step forecasting predicts
one time step at a time, while multi-step forecasts multiple
steps simultaneously. However, due to inherent complexities,
most researchers adopt iterative single-step predictions to forecast
multiple steps.

For instance, when predicting twenty-four future steps, an
iterative approach first predicts the first step’s load, then uses it as
the actual value to predict the second step, repeating this process in
a loop for twenty-four iterations to achieve a rolling twenty-four-step
prediction.

2.3 Preprocessing data and analyzing their
correlation

Data preprocessing plays a pivotal role in enhancing data
quality, encompassing tasks such as outlier treatment and
normalization, as exemplified by Eqs 1, 2. This preliminary
step is followed by correlation analysis to identify the
factors closely related to short-term power load, thereby
streamlining input variables and boosting forecasting
performance.

x =
{{
{{
{

xQ1 − 3(xQ3 − xQ1) , i f x < xQ1 − 3(xQ3 − xQ1)
x, i f xQ1 − 3(xQ3 − xQ1) < x < xQ3 + 3(xQ3 − xQ1)
xQ3 + 3(xQ3 − xQ1) , i f x > xQ3 + 3(xQ3 − xQ1)

(1)

x =
x− xmin

xmax − xmin
(2)

The Maximal Information Coefficient (MIC) (Reshef et al.,
2011) is employed to quantify the correlation between various
factors and power load. The fundamental principle of MIC
involves using a scatter plot to depict the discrete relationship
between two variables. Initially, the current two-dimensional
space is partitioned into a certain number of intervals, denoted
by a along the x-axis and b along the y-axis, respectively.
Subsequently, the joint probability is computed by observing
how often data points fall into each resulting square, as
illustrated in core Eqs. (3), (4). What differentiates MIC from
traditional correlation coefficients such as Pearson is its ability
to discern not only linear relationships but also non-linear
associations.

Furthermore, this study calculates autocorrelation coefficients
and partial autocorrelation coefficients (Kan and Wang, 2010)
for power load to scientifically determine the historical
window lengths applicable to each time series within the
input matrix.

mic (x;y) =maxa∗b<B
I (x;y)

log2min (a,b)
(3)

I (x;y) = ∫p (x,y) log2
p (x,y)

p (x)p (y)
dxdy (4)

wheremic(x;y) represents theMICvalue between the variables x and
y. Its value ranges from 0 to 1, with a higher value indicating stronger
correlation and a value closer to 0 indicating greater independence
between them. a and b represent the number of blocks in the
x− axis and y− axis directions, respectively. The parameter B is a
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FIGURE 3
Methodology for constructing input-output pairs using a sliding time Window approach.

function of the data size, calculated as the 0.6 power of the data
size (Reshef et al., 2011). I(x;y) represents the mutual information
between x and y. p(x,y) is the joint probability distribution
of x and y.

2.4 Constructing input-output pairs set
with sliding time window

In the context of single-step iterative forecasting for multivariate
time series, the method of constructing input-output pairs data for
training was depicted as Figure 3. Within the figure, T denotes the
length of the historical time window, and D signifies the number of
distinct time series represented by light orange bars. Sliding the time
window incrementally along the temporal axis, thereby generating
the input vector X represented by the light blue segment and its
corresponding output value y depicted in light green. This process
yields a sequence of input-output pairs {(Xn,yn)|n = 1,2,…,N },
which continues until exhausting the end of the dataset.

2.5 Training and verifying the network

The determination of model parameters occurs through the
process of network training and validation, following the selection
of a particular forecasting model architecture. The process is
meticulously detailed in Figure 4.

The model parameters denote the internal variables that are
automatically fine-tuned via backpropagation within the model.
In contrast, hyperparameters are predefined settings that govern
the training procedure, such as the learning rate for parameter
optimization and architectural attributes of the model. Thus,
once the model structure is fixed, it is primarily the tuning
of hyperparameters that influences the model’s performance. As
depicted in Figure 4, this study acquires the optimalmodel following
these steps. Firstly, grid search (Liashchynskyi and Liashchynskyi,
2019) is employed to systematically set hyperparameters across
the search space. Next, the model undergoes training until
convergence. Subsequently, the trained model predicts on the
training data, with corresponding errors computed and recorded.

This iterative cycle continues until the entire hyperparameter
space has been explored. Ultimately, the model that yields
the minimum error on the validation set is selected as the
final model.

The Mean Squared Error (MSE) serves as the error metric
during both training and validation phases. The model parameter
adjustment algorithm utilizes Adaptive Moment Estimation
(ADAM), with a specified learning rate γ of 0.001, as shown
in Eq. (5).

Emse =
1
N

N

∑
n=1
(yn − ỹn)

2 (5)

where y represents the predicted value of power load. ỹ represents
the real observed value of power load.N represents the total number
of samples.

2.6 Evaluating the network

Model prediction and evaluation involve the process of
comparing forecasted power load values, produced by a derived
functional forecasting model, against the actual observed power
load data. This comparison was made among individual models
or various combined models incorporating the same module,
employing both error index calculations and visual plotting
techniques for analysis.

In order to neutralize dimensional effects, MAPE was utilized
primarily as the primary error metric. To provide a more
comprehensive assessment, MAE and RMSE are also calculated.
The specific formulas for these error measures are detailed in
Eqs. (6)–(8).

Emape =
1
N

N

∑
n=1

|yn − ỹn|
yn
× 100% (6)

Emae =
1
N

N

∑
n=1
|yn − ỹn| (7)

Ermse = √
1
N

N

∑
n=1
(yn − ỹn)

2 (8)
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FIGURE 4
Model training and validation process Flowchart.

3 RALT hybrid network

In this section, a RALT hybrid architecture is methodically
devised through the incorporation of residual connections within
the fundamental structures of both LSTM and TCN modules.
The integration is purposefully undertaken to enhance their
intrinsic abilities to process sequential information. Moreover,
an attention mechanism is appended to synergistically blend the
complementary strengths of the LSTM and TCN, capitalizing
on the parallel processing agility of the TCN alongside the
capacity of LSTM to capture long-term dependencies. Thus, the
network is equipped with the adaptive capacity to delve into and
emphasize the most pertinent segments within time series data
in real-time.

3.1 Residual connection

Residual connections have been consistently demonstrated to
effectively couple a variable x with its transformed version, which
is instrumental in mitigating the gradient vanishing issue prevalent
in deeper networks (Shafiq and Gu, 2022). This not only accelerates
convergence rates but also enhances the model’s generalization
capabilities. The calculation method for residual connections is
encapsulated by Eq. (9).

x = relu (x+F (x)) =max (0, (x+F (x))) (9)

The RALT hybrid network integrated residual connections into
LSTM and TCN architectures, thereby allowing them to capture
more direct coupling information between input variables and their
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FIGURE 5
Illustration of a Causal Convolution Process with 2 Hidden Layers, Each Having a Convolution Kernel Size k = 3 and Sequential Dilation Coefficients d =
1, 2, and 3.

transformations.This approach facilitates a reduction in the training
time of the models and contributes to improved computational
efficiency when constructing deeper neural networks.

3.2 Residual LSTM

LSTM enhances the general RNN architecture by incorporating
three gates that regulate the flow of information including input
gate, forget gate, and output gate. The mechanism of information
transfer within an LSTM cell is depicted in the lower right section
of Figure 5, accompanied by a corresponding formula presented as
Eqs. (10)–(15).

In Figure 5, it can be observed that the modified residual
structure consists of an LSTM layer, followed by a Dropout layer for
random deactivation and topped off with a LeakyReLU activation
function.

it = sigmoid(Wi ⋅ [ht−1,xt] + bi) (10)

ft = sigmoid(W f ⋅ [ht−1,xt] + b f) (11)

ot = sigmoid(Wo ⋅ [ht−1,xt] + o f) (12)

ht = ot ⋅ tanh(Ct) (13)

Ct = ft ⋅ Ct−1 + it ⋅ C̃t (14)

C̃t = tanh(Wc ⋅ [ht−1,xt] + bc) (15)

where [⋅] represents the dot product operation of vectors. [,]
represents vector concatenation. i, f, and o represents the input
gate, output gate, and forget gate, respectively. W represents weight
matrices. h represents the hidden units. C and C̃ represents the
memory cell state.

3.3 Residual TCN

TCN, a one-dimensional fully connected convolutional
network, is primarily characterized by its use of causal convolutions.
It deviates from conventional one-dimensional convolutions in that
it applies causal filtering and remains indifferent to the length of
input time series (Bai et al., 2018). Figure 6 elucidates this process for
a causal convolution with 2 hidden layers, each having a convolution
kernel size k of 3 and layer-wise dilation coefficients d incrementing
from 1 to 3.

In Figure 6, channels denote the number of features at each
corresponding time step. The red box in the lower left visually
depicts the initial convolution operation whose general form is
detailed in Eq. (16). The nature of the convolution operation
necessitates forward padding of the time series’ head with data to
complete the process. Thus, the white circle signifies the number of
forward-padded data points, which equals (k− 1)dt . Conversely, the
blue circle represents the tail of the time series, which is not padded
backward with zeros to ensure that information aggregation flows
unidirectionally from past to future. This principle underpins causal
convolution and explains why the output sequence retains the same
length as the input layer.
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FIGURE 6
Schematic representation of the residual LSTM architecture.

F (s) = (x∗dt f)(s) =
k−1

∑
t=0

f (t) ⋅ xs−dtt (16)

where [∗] represents the convolution operation. dt represents the
dilation factor. k denotes the size of the convolution kernel. f(t)
represents the tth element on the convolution kernel. s and i denote
the sth and ith time steps, respectively.

The Residual TCN architecture specifically tailored for
this paper is illustrated in Figure 7. It consists of a sequential
arrangement of seven identical residual blocks, each with
incrementally varying dilation coefficients dt . This design ensures
that the network maintains its receptive field while benefiting from
the depth and expressiveness of the stacked convolutional layers
through residual connections. The incremental dilation across the
residual blocks allows the model to capture both short-term and
long-term dependencies in the time series data effectively, thereby
enhancing the forecasting performance.

3.4 Attention mechanism

The attention mechanism has garnered significant interest and
application following the introduction of the transformer model
by Vaswani et al. (Vaswani et al., 2017), which is premised on
emulating human cognition to selectively concentrate on pertinent
areas (Niu et al., 2021). The computational process of this attention
mechanism can be articulated as follows. It involves calculating
relevance scores between each input element and the focus of

attention, converting these scores into probability distributions, and
ultimately deriving a weighted sum of the initial inputs based on the
score expectations.

The bilinear model (Kim et al., 2018) was employed for
computing relevance scores. The formulation of the attention
mechanism is shown in Eqs. (17)–(20):

Fatt (X ) = ∑
xi∈X

αi ⋅ xi (17)

αi = softmax(s(xi,q)) =
exp(s(xi,q))

∑n
j=1

s(xj,q)
(18)

q =QxTi (19)

s(xi,q) = xTi (U
TV)q = (Uxi)T (Vq) (20)

whereFatt(⋅) represents the function of attention mechanism which
parameterized by α. xi represents the i-th vector at time axis of input
X . α is a probablity distribution indicating the attention weight of
each x-vector, calculated by Eq. (18). q represents a query vector,
calculated by Eq. (19).Q, U and V represent the learnable matrices.
s(⋅) function calculates a score for each x-vector parameterized by q.

3.5 Residual and attentive LSTM-TCN

The combined TCN-LSTM structure, reinforced by residual
links and an attention system, is displayed in Figure 8. This
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FIGURE 7
Schematic Illustration of the TCN Architecture with 7 Identically Structured Residual Blocks in Series, Each Having Different Dilation Coefficients d.

design arises from the aim to utilize the benefits of both
temporal TCN and LSTM. TCN is particularly skilled at identifying
short-range relationships within time series because of their
widened causal convolutions. Meanwhile, LSTM is proficient in
managing long-range dependencies using their cell states and
gate controls.

Initially, the input tensor, characterized by the length of the
time series s and the dimensionality of the input attributes i,
is concurrently processed by independent Residual TCN and
Residual LSTM modules. Here, ht and hl denote the respective
numbers of output neurons for each submodule. This two-
input approach promotes the model to utilize two time series
processing methods, taking advantage of the unique advantages of
each method.

Following this, the ensuing outputs from these residual
units are concatenated through a fully-connected layer, wherein
h represents the cumulative number of output neurons

subsequent to concatenation. This fusion stage empowers the
network to amalgamate the heterogeneous patterns discerned
by the individual layers, fostering a more comprehensive
understanding.

Subsequently, a vector concatenation operation is executed
along the feature dimension, fusing the learned representations from
the disparate models. This is followed by temporal tail pruning,
which retains solely the feature vector associated with the terminal
time step. This procedure ensures that the condensed representation
encapsulates the essence of the entire sequence while preserving a
tractable scale.

Finally, a cross-feature attention mechanism is used
to dynamically evaluate and weight the importance of
different features. This merging approach adaptively maintains
healthy competition between TCN and LSTM internally,
allowing them to work better together to improve predictive
performance.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1384142
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2024.1384142

FIGURE 8
Schematic representation of the RALT hybrid network: Residual and attentive LSTM-TCN.

4 Case study

4.1 Environment of the experiment

The experimental platform was equipped with a Windows
operating system, an AMD Ryzen 5 4600H processor running
at a clock speed of 3.00 GHz, an NVIDIA GeForce GTX 1650Ti
graphics card with 4 GB of dedicated video memory, and
16 GB of Random Access Memory (RAM). The experiments
was systematically executed in a sequential order, adhering
to the progression of the IES-STPLF methodology, which is
supported by the Python programming language and leverages the
Pytorch library.

4.2 Data source

The open-source dataset from the 2017 to 2019 period,
comprising user-level IES data sourced from Arizona State
University’s Tempe Campus in the United States which obtained
from (dat, 2022), was chosen as a case study due to its distinct
characteristics and relevance to this research. The campus
is situated in the southwestern U.S., an area characterized
by a hot climate where electric air conditioning units are
extensively employed to meet substantial cooling energy demands.
Notably, these electric air conditioners also provide heating
functionality, thereby optimizing equipment utilization. This
unique combination results in a typical user-level IES scenario
with a strong interdependence among electricity, cooling, and
heating loads.

In this specific case, the dataset from the first 2 years
(2017–2018) was partitioned into validation and training sets at
a ratio of 7:3, respectively. Meanwhile, the data collected during
the last year (2019) served as the test set for experimental
evaluation.

4.3 Setups of comparison experiment and
selection of model parameters

In this paper, two sets of experiments were set up to compare
the differences between the proposed model and other models. One
set of baseline experiments was used to compare the differences
between the proposed model and other traditional models, and
the other set of ablation experiments was used to compare the
differences between the proposed model and single submodels
within it.

In the series of baseline comparison experiments, four
conventional models were selected to serve as benchmarks:
ARIMAX, SVR, MLP, and GRU. To guarantee a fair and rigorous
evaluation, the principal parameters of these benchmark models
underwent meticulous optimization through a grid search method,
and the comprehensive results of this process have been documented
in Table 1. For ARIMAX model, the autoregressive order p,
moving average order q, and degree of differencing da was
guided by the minimization of the Akaike Information Criterion,
thereby embodying a systematic and statistically informed model
identification procedure. With respect to SVR, the adoption of
the radial basis function kernel was motivated by its efficacy in
addressing non-linear relationships. The regularization parameter λ
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TABLE 1 Baseline model parameter Configurations.

Model Parameters Selected value

ARIMAX

p

minimizing the AICq

da

SVR

K rbf

λ 1,000

σ 0.1

MLP
Lm 2

Nm {64,32}

GRU

Lg 1

ρg 0.2

Ag ReLU

Ng 128

was set at 1,000, aimed at achieving an optimal balance between
model complexity and generalizability, whereas the tolerance
bandwidth σ was precisely adjusted to 0.1 to effectively capture the
subtle patterns inherent in the data. MLP structure was composed
of two hidden layers, each containing 64 and 32 neurons, specifically
designed to facilitate intricate feature extraction and transformation.
GRU incorporated a single hidden layer that was strengthened
by the Rectified Linear Unit (ReLU) activation function,
introducing non-linearity and mitigating the issue of vanishing
gradients. Moreover, a dropout rate ρ of 0.2 was strategically
applied to bolster regularization and deter overfitting during the
training phase.

In the ablation experiment, two key submodules of the proposed
RALT model, residual LSTM and residual TCN, were optimized in
detail. In Table 2, the search range of each parameter is shown in
detail and the final selected optimal value.

For residual LSTM, the number of hidden layers Ll was first
discussed. In candidate set {1,2,3}, a layer network structure was
selected after comprehensive consideration of model complexity
and performance. Next, for the number of neurons per layer Nl,
128 of the candidate set {16,32,64,128} was selected to achieve
the best feature representation capability. For the dropout rate ρl
that prevents overfitting, 0.2 was selected in the candidate set {0.2,
0.3, 0.4, 0.5} to maintain a good model training state. Finally, a
comparative test was conducted between Leaky ReLu and ReLU, and
the final decision was made to use Leaky ReLU to solve the gradient
disappearance problem while maintaining the nonlinear expression
capability.

For the residual TCN, the dropout rate ρl was selected as
0.2 from {0.2, 0.3, 0.4, 0.5} to ensure the robustness of model
training. Secondly, according to the residual TCN neuron structure
presents unique hierarchical characteristics, the number of neurons

TABLE 2 Chosen submodule parameters for the proposed model.

Model Parameter Search
space

Selected
value

Residual
LSTM

Ll {1, 2, 3} 1

Nl {16, 32, 64, 128} 128

ρl {0.2, 0.3, 0.4, 0.5} 0.2

Al {Leaky ReLU,
ReLU}

Leaky ReLU

Residual
TCN

ρt {0.2, 0.3, 0.4, 0.5} 0.2

Nl {16, 32, 64, 128} 128-128-64-64-
32-32

k {2, 3, 4, 5, 6, 7, 8,
9}

7

dt {1, 2, 4, 8, 16, 32} 1-2-4-8-16-32

Nt in each layer should be gradually decreased, and finally
determined to be 128-128-64-64-32-32, which is helpful for the
model to capture different frequency features of time series in
layers. The convolution kernel size k was selected as 7 in the
candidate set {2,3,4,5,6,7,8,9} to achieve the best time window
coverage. In addition, the expansion coefficient dt was optimized in
{1,2,4,8,16,32}, the increasing sequence 1-2-4-8-16-32 was selected
to enlarge the receptive field of the model and enhance the ability to
capture long-term dependencies.

5 Result and discussion

5.1 Analysis of correlation

(Reshef et al., 2011) proposed that the function structure of
MIC is similar to the square of the determination coefficient,
so the similarity score obtained is also similar. In view of the
fact that feature screening is not an outstanding contribution
of this paper, reasonable simplification is carried out when
feature screening is realized according to the MIC value results
(Cui and Wang, 2022). The empirical interval of correlation
strength recognized by statisticians was referred to, which includes
weak correlation interval (0-0.2), medium correlation interval
(0.2–0.8) and strong correlation interval (0.8–1) (Kutner et al.,
2005). Therefore, features that are weakly correlated with power
load (MIC < 0.2) were considered as redundant and should
be removed. Finally, as shown in Figure 9, the cooling load,
temperature, heating load, the mouth, rainfall and dew point
were retained as the key influence characteristics of short-term
power load.

As shown in Figure 10, through in-depth analysis of the time
series, significant daily cycle characteristics of the power load
were revealed. Specifically, there is a strong correlation effect
between the power load at the current time of observation (in
hours) and its historical load at the same time in the past.
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FIGURE 9
Maximum mutual information coefficient analysis between influencing factors and power load.

FIGURE 10
Power load autocorrelation and partial autocorrelation coefficients analysis.

Despite the inherent daily periodicity of power loads, considering
a broader time window can serve to mitigate random fluctuations
effectively, particularly when short-term data encounters outliers or
experiences significant noise interference. Given these results, the
length value T of the history time window was set to 48 to aggregate
more information while capturing this significant time dependency
for modeling.

In order to discuss the influence of feature input on the
prediction performance, the length value T of the history time

window was set to 24 and 48 respectively, and the feature set
was set to all features and filtered features respectively, resulting
in four cases. Regarding these four cases, the model is trained
until convergence under a uniform and equivalent time constraint,
and the mean prediction results over ten repetitions for each
of these four cases are compiled, as displayed in Table 3. The
findings demonstrate that the model’s prediction error is minimized
when feature screening is executed using MIC and when the time
parameter T is set to 48 within a consistent and limited time
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TABLE 3 Comparison of filtered and unfiltered features.

Feature set T Emape Ermse Emae

Whole 24 3.15% 985 kW 711 kW

Selected 24 2.83% 942 kW 676 kW

Whole 48 3.49% 1061 kW 778 kW

Selected 48 2.35% 784 kW 523 kW

frame. This verifies the effectiveness of feature screening and time
series analysis.

5.2 Analysis of prediction performance

In order to evaluate the performance of the model rigorously,
as shown in Figure 11, a period-by-period comparative analysis
between the predicted load curve and the actual load curve is
performed. Owing to constraints in visual density when depicting
full-year data within line charts, generating such representations
frequently leads to excessively cluttered visuals that hinder efficient
comparisons of subtle differences between forecasted and actual load
patterns, thereby compromising their inherent intuitive value for
data visualization purposes. To circumvent this issue, a strategy is
adopted to analyze detailed curve comparisons by extracting a subset
of representative data from a singlemonth within each season. It can
be analyzed from the figure that the impact of the difference in the
variation trend of power load on the forecast results is multifaceted,
as follows:

• The overall load levels during spring and summer exhibit a
significantly higher amplitude compared to those in autumn
and winter, thus leading to considerable deviations from the
actual values at peak periods.
• Spring and autumn display analogous and moderate load

variation trends, consequently yielding a relatively better fit in
the forecast results.
• By contrast, summer and winter demonstrate notably

distinct load variation trends with relatively sharper
fluctuations, resulting in increased numbers of
deviation points in the forecasts during periods
of change.

To clarify, these observations do not imply any inherent issues
with the prediction results. Instead, they precisely elucidate the
reasons behind the challenge of accurately predicting short-term
power loads and hint at how exploring the model’s contributions
could potentially enhance the precision of short-term load
predictions.

Then, as shown in Figure 12, a histogram of the absolute
error and absolute percentage error for each time step
is plotted. The prediction performance of the model is
analyzed directly from the perspective of error. The results
show that:

• Absolute errors are larger in some periods of the day than
in other periods. Combined with Figure 11 and actual data
analysis, these larger errors are precisely located at the sharp
fluctuations of load.
• The MAPE error remains low, demonstrating that the model

is able to show the stability of accurate predictions across the
entire test set.

FIGURE 11
Model-Based Prediction vs. Actual Curve Comparison.
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FIGURE 12
Absolute and percentage absolute errors of IES-STPLF framework.

TABLE 4 Seasonal error metrics for STPLF using the proposed model.

Season Emape Ermse Emae

Spring 2.38% 587 kW 602 kW

Summer 2.46% 912 kW 661 kW

Autumn 2.34% 673 kW 517 kW

Winter 2.40% 760 kW 439 kW

Finally, as shown in Table 4, three prediction error indicators
(MAPE, MAE, RMSE) are calculated for each season. Quantitative
analysis of the results shows that:

• The error in spring and autumn is generally smaller than that
in summer and winter, revealing the load characteristics of IES
with “high in summer, low in winter and flat in spring as well
as autumn”
• High volatility is an important factor leading to the increase of

prediction error, and handling the volatility well is the key to
improving the prediction accuracy.

5.3 Analysis of superiority

Baseline comparison results verify the superiority of the model
over other traditional models, as shown in Table 5 and Figure 13.
The qualitative analysis from Figure 13 shows that the model in this
paper has the best fitting effect. Table 5 can be used to quantitatively
analyze the difference in forecasting effect between the proposed
model and other models. The results show that:

• ARIMAX and SVR show relatively high MAPE values
(4.05% and 4.00%) over the entire test set, confirming
their limitations in handling complex and large
sample datasets.
• GRU and MLP show relatively moderate MAPE values

(2.79% and 2.87%) over the entire test set, which validates
their strong fitting ability in dealing with nonlinear
relationships.
• Across the entire test set, the model achieves the lowest MAPE

value at 2.35%, which primarily demonstrates its ability to
consistently outperform other models across all indicators
during both summer and winter months. This outcome
effectively validates the model’s superiority in managing
volatility.

5.4 Analysis of combination mechanism

To verify the effect of attention mechanisms on the combination
of LSTM and TCN, a set of ablation experiments are performed
whose parameters were set in Section 4.3. The results are shown in
Figure 14 and Table 6.

Figure 14 randomly samples seven consecutive days of load
forecast data from four seasons, and plots the comparison curve
between predicted load and actual load. Qualitative analysis
shows that:

• TCN is better than LSTM in general trend fitting, but it is
difficult to deal with fluctuations on a small time scale. This
is limited by the receptive field of TCN, and although the
convolution kernel size can be adjusted to improve it, it is
difficult to find a better choice in the same training time.
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TABLE 5 Error metrics in baseline experiment.

Scope of test Error
Models

ARIMAX MLP GRU MLP RALT

A Whole Year

Emape(%) 4.05 4.00 2.79 2.87 2.35

Emae(kW) 1,354 1,224 846 935 785

Ermse(kW) 900 893 613 654 523

Winter

Emape(%) 4.26 4.09 2.79 2.63 2.40

Emae(kW) 1,529 1,120 805 792 760

Ermse(kW) 795 760 510 478 439

Summer

Emape(%) 4.11 4.07 2.95 3.09 2.46

Emae(kW) 1,491 1,448 1,001 1,047 912

Ermse(kW) 1,103 1,097 780 813 661

FIGURE 13
Line graph comparison: Load curve performance in the baseline experiment.
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FIGURE 14
Line graph comparison: Load curve performance in the ablation experiment.

• ComparedwithTCN, LSTM is better at the fitting of fine details,
and the extraction capability of long-term dependence enables
it to better process local information.
• The RALT model demonstrates superior adaptability to

fluctuations compared to others, particularly excelling
in capturing sharp load variations as exemplified within
the red box in Figure 14. This enhanced capability to
embrace volatility directly translates into more accurate
forecasting outcomes.

Two control groups are listed to explore the influence of
combination mechanism on prediction results, as shown in
Table 6. Among them, one group is whether the combination
is produced, and the other is whether the attention mechanism
is used. In the table, − indicates that the attention mechanism
is not used, and √ indicates that the attention mechanism
is used. The results in the table can be quantitatively
analyzed:

• The use of hybrid structures can indeed improve the accuracy
of prediction models. When the mixed structure is not used,

the MAPE of Residual LSTM is 2.80% and the MAPE of
Residual TCN is 2.79%.When combined directly in parallel, the
Residual LSTM-TCN’sMAPE is 2.46%, a decrease of about 0.34
percentage points.
• The introduction of attention mechanisms can indeed

improve the accuracy of predictive models. The MAPE
of Residual and Attentive LSTM is 2.52%, which is 0.28
percentage points lower than when no attention mechanism
is used, and the MAPE of Residual and Attentive TCN
is 2.43%, 0.36 percentage points lower in comparison
to the case without the attention mechanism. RALT
achieved a MAPE of 2.35%, marking a decrease of 0.11
percentage points.
• The MAPE of RALT is 2.35%, which is lower than the

single model using attention mechanisms but without mixing
(2.52% and 2.43%), and lower than the ordinary parallel
combination (2.46%).

These results fully verify the rationality of the combination
mechanism. The parallel combination structure through the
attention mechanism allows LSTM and TCN to remain competitive
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TABLE 6 Error metrics in ablation experiment.

Model Attention Emape Ermse Emae

Residual
LSTM

— 2.80% 906 kW 626 kW

Residual
and

Attentive
LSTM

✓ 2.52% 834 kW 560 kW

Residual
TCN

— 2.79% 879 kW 624 kW

Residual
and

Attentive
TCN

✓ 2.43% 798 kW 538 kW

Residual
LSTM-
TCN

— 2.46% 832 kW 551 kW

The
proposed
RALT
model

✓ 2.35% 784 kW 523 kW

while exploiting the advantages of both—LSTM’s long-term
dependence on extraction capabilities and TCN’s efficient parallel
computing capabilities. Further, higher precision prediction
performance is achieved.

6 Conclusion and prospect

In this paper, aiming at the high uncertainty caused by multi-
energy coupling of IES, a STPLF problem was studied. This problem
is described as univariate iterative prediction of multivariate time
series, and an RALT hybrid neural network was proposed to
solve this problem. With the RALT network as the core, a STPLF
framework was proposed to realize the whole process encapsulation
of original input, data processing, model training and prediction
output. The proposed framework not only considers the correlation
between heating and cooling load as well as power load to be
suitable for multi-energy coupled IES, but also cleverly combines
the advantages of LSTM and TCN to adapt to short-term power
load volatility through attention mechanism. The RALT network
combines residual LSTM and residual TCN in parallel by means
of attention mechanism, which not only ensures their effective
competition in the same prediction problem, but also incorporates
their prediction differences caused by different mechanisms. This
combination empowers the RALT network to harness both the
high-performance parallel processing capabilities of TCN and the
superior long-term dependency recognition attributes of LSTM,
thereby augmenting its overall predictive proficiency. The results
of a real case study of a user-level IES show that the MAPE of
the proposed framework on the test set is 2.35%. This loss is
lower than the average level of the traditional methods (3.43%) and
the average level of the uncombined single submodules (2.80%),

which verifies the superiority. Meanwhile, the results of the case
study also show that the proposed framework has a better fitting
effect in the short-term power load fluctuation, which verifies the
robustness.

In the future, comprehensive places that integrate living,
working and production regionally can effectively smooth out the
peak-valley difference of power grid load and improve equipment
utilization. IES of typical scenes such as hospitals, campuses,
industrial parks and commercial venues are gradually built as
preliminary pilots. In order to supply a variety of energy sources, the
coordination and interaction between the subsystems are becoming
closer and closer. The method proposed in this paper can be
effectively applied to this to enhance the load prediction results.
Although all the core work has been described in detail, in fact,
there are still some directions that are considered to improve the
method in the future. The proposed framework can be improved by:
1) Considering the signal decomposition-reconstruction method
which can mini more prior knowledge of load characteristics
to improve forecasting performance; 2) Considering multi-task
learning method which can predicting multiple loads concurrently
to fit richer scenarios; 3) Considering the new energy generation
forecasting which can achieve the joint forecast of the source-load
to provide more reference information for the balance of supply
and demand.
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Nomenclature

A. Abbreviations

IES Integrated Energy System

STPLF Short-Term Power Load Forecasting

TSA Time Series Analysis

SVR Support Vector Machine Regression

ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average Model

DNN Deep Neural Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

ARIMAX ARIMA with exogenous variables

LSTM Long Short-Term Memory

TCN Temporal Convolutional Network

RALT Residual and Attentive LSTM-TCN

MAPE Mean Absolute Percentage Error

MIC Maximal Information Coefficient

MSE Mean Squared Error

ADAM Adaptive Moment Estimation

MLP Multilayer Perceptron

GRU Gated Recurrent Unit

AIC Akaike Information Criterion

MAE Mean Absolute Error

RMSE Root Mean Square Error

B. Indices and Sets

N Set of samples, indexed by n

S Set of time instants, indexed by s

T Set of time instants, indexed by t

C. Parameters

B Function of the data size in MIC

p Autoregressive order in ARIMAX

q Moving average order in ARIMAX

da Degree of differencing in ARIMAX

K Kernel function in SVR

λ Regularization parameter in SVR

σ Tolerance bandwidth in SVR

Lm Number of Hidden Layers in MLP

Nm Number of Neurons in MLP

Lg Number of Hidden Layers in GRU

Ng Number of Neurons in GRU

Ag Activation function in GRU

ρg Dropout rate in GRU

Ll Number of Hidden Layers in LSTM

Nl Number of Neurons in LSTM

Al Activation function in LSTM

ρl Dropout rate in LSTM

Nt Number of Neurons in TCN

ρt Dropout rate in TCN

dt Dilation coefficient in TCN

k Kernel size in TCN

γ Learning rate in general DNN

D. Statistical Variables

x A particular time series

X A matrix of multivariate time series

y A sequence of observations

ỹ A sequence of predicted values

xmin Maximum value in vector x

xmin Minimum value in vector x

xQ1 Upper quartile in vertor x

xQ3 Lower quartile in vertor x

Emape Mean Absolute Percentage Error

Emse Mean Square Error

Ermse Root Mean Square Error

Emae Mean Absolute Error
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