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Introduction: Fuel cell technology is a harbinger of the future for generating
electricity due to their high efficiency and low emissions achieved through the
direct conversion of chemical energy into electrical energy without
combustion.

Methods: To optimize the design and performance, a fuel cell model is essential
to predict its behaviour in different conditions. This technical note presents a
novel physics-based approach, the Young’s Double-slit Experiment Optimizer
(YDEO), for identifying parameters in Proton Exchange Membrane Fuel Cells. A
performancemetric is established by formulating an objective function that relies
on the summation of squared errors between experimental and estimated values.

Results and discussion: The effectiveness of this approach is evaluated through
the analysis of four benchmark test cases: Horizon 500 W, BCS500 W,
NedstackPS6, and 250 W. The corresponding objective function values for
these test cases are 0.011243, 2.065557, 0.011698, and 5.250849,
respectively. The simulation results demonstrate the efficacy of the proposed
YDEO algorithm when compared with other existing popular and contemporary
algorithms in the literature.
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1 Introduction

1.1 Motivation

Fossil fuel-based transportation has several drawbacks which have significant
environmental and economic impact (Carrette et al., 2000), (Ahluwalia and Wang,
2008), (Pan et al., 2021), (Sharaf and Orhan, 2014), (Zhou et al., 2024). The burning of
fossil fuels releases greenhouse gases such as carbon dioxide, which contribute to climate
change and air pollution. These resource fuels are non-renewable resources which means
they will eventually run out. Extracting and transporting the fossil fuels can be
environmentally damaging and the prices of fossil fuels can be unpredictable as they
are subject to global market forces making it difficult for businesses and consumers to
accommodate budget for fuel expenses. Many Nations rely heavily on fossil fuels that they
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import, making them susceptible to fluctuations in prices and
disruptions in the supply chain. Burning fossil fuels and resulting
air pollution can harm human health, especially those residing in
urban regions (Zhang et al., 2016), (Ma et al., 2023), (Zhu et al.,
2024). Additionally, fossil fuel based transportation is not as energy
efficient as electric vehicles owing to higher consumption of fossil
fuel and thereby higher costs.

The use of fuel cell technology has the potential to transform
transportation by offering a clean and effective substitute to
conventional fossil fuel-based vehicles (Bai et al., 2022). Fuel cells
convert chemical energy from a fuel source, such as hydrogen, into
electrical energy to power an electric motor. This results in zero
emissions and high energy efficiency. Additionally, fuel cells can
have a longer range and faster refuelling times compared to battery-
electric vehicles. However, the widespread adoption of fuel cell
technology in transportation is currently limited by the cost and
availability of hydrogen fuel infrastructure.

There are various types of fuel cell technologies, including
alkaline fuel cells, molten carbonate fuel cells, solid oxide fuel
cells, phosphoric acid fuel cells, and Proton Exchange Membrane
fuel cells. PEMFC is a popular technology due to its low operating
temperature, high power density, fast startup, and low emissions
(Wang et al., 2011). PEMFC operates at temperatures between
60°C–100°C, making it suitable for various applications, including
automotive, residential, and portable power.

A fuel cell’s mathematical model is essential for various reasons.
Firstly, it allows engineers and researchers to simulate and predict
how a fuel cell would behave under different operating conditions
such as temperature, pressure, or fuel composition. This helps them
to optimize the design and working of the fuel cell to make it more
efficient, durable, and cost-effective. Additionally, a mathematical
model can provide insights into the physical and chemical processes
that take place within the fuel cell. Understanding of these processes
will benefit the researchers to develop new materials, catalysts and
operating strategies so to enhance its performance. Moreover, a
mathematical model can be used to simulate the interactions
between a fuel cell and other components like battery or an
electric motor that are present in the entire system. This
information can be leveraged to enhance the overall performance
and efficiency of the system. Mathematical models can also evaluate
the economic feasibility of different fuel cell designs and
configurations, as well as the potential cost savings of using fuel
cells instead of traditional fossil fuels.

Fuel cell modelling approaches can be broadly classified into
three categories:

Empirical models: These models are based on an experimental
data and are used to predict the performance of a fuel cell under
different operating conditions. They are relatively simple to develop
and can provide good predictions for specific operating conditions,
but they may not be accurate for conditions that are different from
the ones used to develop the model.

Physics-based models: These models are employed to
comprehend the fundamental mechanisms of a fuel cell and have
the potential to forecast the performance of a fuel cell across a broad
spectrum of operating circumstances. They are more complex to
develop and require a good understanding of the underlying physics
of the fuel cell, but they provide more accurate predictions than
empirical models.

Hybrid models: These models combine both empirical and
physics-based approach, often taking advantage of the strengths
of both models, to develop a more accurate model.

The choice of modelling approach depends on the specific
application and the level of details and accuracy required.

The need for estimation of fuel cell model parameters arises due
to the complexity and variability of fuel cell systems. Fuel cell
systems are highly non-linear, dynamic, and dependent on many
factors such as temperature, humidity, pressure, and fuel
composition. These factors can affect the performance of the fuel
cell and make it difficult to predict the behaviour of the system based
on the sole approach of theoretical models. Estimation of fuel cell
model parameters addresses these issues by using experimental data
to estimate the unknown parameters of the model. Utilizing
experimental data for parameter estimation allows the model to

Ref Algorithm Test suit Remarks

Mo et al. (2006) Hybrid genetic
algorithm

250W Genetic algorithm is
hybridized with

Nelder–Mead’s simplex
approach

Chakraborty
et al. (2012)

Differential
evolution

N.A DE algorithm is applied
for identifying the

parameters

Yang and Wang
(2012)

P systems-based
optimization

250W New rules are added for
improving the search

process

Li et al. (2011) Adaptive Particle
swarm

optimization

N.A Inertia weight
parameter is adopted in
the modified algorithm

Askarzadeh and
Rezazadeh
(2013)

Bird mating
algorithm (BMA)

Ballard Mark V BMA is used for
estimating the
parameters

Miao et al.
(2020)

hybrid grey wolf
optimization

250 W, Avista
SR-12, Ballard

Mark V
BCS 500 W

Mutation and crossover
operators are added to
the original algorithm

Fathy et al.
(2021)

LSHADE-EpSin
optimization

250W, BCS
500W, SR-
12500W,

NedStack PS6

LSHADE-EpSin
optimization algorithm
is applied for parameter

extraction of FC

Rezk et al.
(2022a)

Gradient-based
optimizer (GO)

250W, SR-12
500 W, BCS

500W

GO is applied for
estimation of fuel cell

parameters

Yao and Hayati
(2021)

Archimedes
optimization

algorithm (AO)

Nedstack PS6,
Nexa

The parameters of FC
are identified
using AOA

Ali et al. (2017) Grey Wolf
Optimizer

Ballard Mark
V, BCS 500W,
Temasek, SR-
12 500W

GWO algorithm is
applied for the

parameter estimation
of FC

Rezaie et al.
(2022)

Modified golden
jackal

optimization

Nedstack Ps6,
BCS 500W

Golden jackal
optimization is

hybridized with PSO

Mossa et al.
(2021)

Harris Hawk
Optimization

250W, SR-12
500W, BCS

500W

Two different
algorithms tested for

parameter
identification of FC

*N.A, means data Not Available.

Frontiers in Energy Research frontiersin.org02

Tummala et al. 10.3389/fenrg.2024.1384649

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1384649


be calibrated, aligning its predictions with the actual system’s
behavior and consequently enhancing the accuracy of predictions.

Meta-heuristic optimization algorithms are important for fuel
cell parameter estimation because they provide a powerful tool for
solving the complex and non-linear optimization problem of
estimating the parameters of a FC model.

FC model is highly non-linear and have multiple local minima
and maxima in the parameter space, making it difficult for
conventional optimization algorithms such as gradient-based
methods to find the global optimum solution. Meta-heuristic
optimization algorithms, on the other hand, are designed to
explore a large search space and are able to find global optimal
solutions in non-convex problems.

Existing meta-heuristic algorithms for parameter estimation of
fuel cell models have a few drawbacks, including:

Sensitivity to initial conditions: Meta-heuristic algorithms are
often sensitive to the initial conditions, meaning that the final
solution can be different depending on the initial values of the
parameters. This can make it difficult to obtain a consistent and
reliable solution for the parameter estimation problem.

Convergence to local optima: Meta-heuristic algorithms, like
other optimization algorithms, can sometimes converge to local
optima rather than the global optimum solution. This can be a
problem in fuel cell parameter estimation, as the parameter space
is often highly non-linear and has multiple local minima
and maxima.

Difficulty in handling constraints and bounds: Some meta-
heuristic algorithms face challenges during handling of
constraints and boundaries on the parameters which can make it
difficult to find the global optimum solution while satisfying the
constraints and bounds.

Slow convergence: Some meta-heuristic algorithms can be slow
to converge to the global optimum solution, especially when the
parameter space is large or complex. This can make it impractical to
use these algorithms for real-time parameter estimation in a fuel
cell system.

Lack of robustness: Some meta-heuristic algorithms lack
robustness and can be affected by the presence of outliers or
other anomalies in the data.

High-computational burden: Some algorithms are highly
complex and requires huge mathematical calculations and hence
computational burden.

To overcome the limitations, this article introduces a novel
method for estimating parameters of FC based on
Young’s double-slit experiment. The proposed approach for
parameter extraction from practical measurement data is
assessed using four benchmark test cases and compared with
several algorithms from the literature. The comparative analysis
demonstrates the robustness and effectiveness of the
proposed method.

2 Mathematical model of PEMFC

APEMFC can transform the stored chemical energy in a fuel like
hydrogen, and an oxidizing agent such as oxygen taken from the
atmosphere, into electrical energy without any intermediaries (Qin
et al., 2020)– (Abd Elaziz et al., 2023), (Ayyarao et al., 2024)
(Askarzadeh and Rezazadeh, 2012; Priya et al., 2018; Yuan et al.,
2020; Duan et al., 2022). The working of FC is illustrated in Figure 1.
The overall reaction occurring in a PEMFC can be represented using
Equation 1.

FIGURE 1
Working of fuel cell- conceptual view.
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2H2 + O2 → 2H2O (1)
This reaction produces a voltage between the two electrodes,

which can be used to power an external circuit. The PEMFC consists
of a cathode (positive electrode), an anode (negative electrode), and
a proton exchange membrane (PEM) in between them.

The anode half-cell reaction in a PEMFC can be represented
using Equation 2.

2H2 → 4e− + 4H+ (2)

This reaction releases hydrogen ions (protons) and electrons,
which flow through separate paths to the cathode and the electrons
drift through an external circuit, producing electrical energy. The
protons travel through the PEM, which is a thin, solid polymer
electrolyte that allows only the passage of protons. The protons
combine with the oxygen and electrons at the cathode, which can be
represented using Equation 3.

4e− + 4H+ + O2 → 2H2O (3)
The polarization curve illustrates the relationship between the

output voltage and the current density, revealing the non-linear
output characteristics of a PEMFC. Under standard conditions
(298.15 K and 1 bar), the optimal thermodynamic potential of an
H2/O2 PEMFC is approximately 1.229 V.

The voltage produced by a PEMFC is determined by the
difference in electrochemical potential between the anode and
cathode. This is typically expressed in terms of the standard
electrode potential of each half-reaction. The overall voltage (V)
produced by the cell can be calculated using the Nernst equation:

The overall voltage of the stack is given as:

V � NcellVcell (4)
The cell voltage Vcell is calculated using (Equation 4).

Vcell � ENernst − Vact − Vohm –Vcon (5)

The cell voltage given in (Equation 5) can be obtained by
obtaining each term on the R.H.S.

The modified Nernst voltage can be obtained by considering
the effect of temperature and pressure changes, relative to the
standard conditions of 298.15 K and 1 bar, as described in
Equation 6.

ENernst � 1.229 − 85 × 10−5 T − 298.15( )
+ 430.85 × 10−7T ln PH2

���
PO2

√( )[ ] (6)

Equations 7, 8 can be used to obtain the partial pressures
PH2, PO2{ }, if the reactants are H2 and O2. If the reactants are air
and H2, then PO2 should be calculated using (Equation 9).

PH2 �
RHaPH2O

2
exp

1.635
T1.334

I

A
( ) RHaPH2O

Pa
( )−1

− 1[ ] (7)

PO2 � RHcPH2O exp
4.192
T1.334

I

A
( ) RHcPH20

PC
( )−1

− 1[ ] (8)

PO2 �
Pc − RHc PH2o

1 + 0.79
0.21( ) exp 0.291

T0.832
I
A[ ] (9)

log10 PH2O( ) � 29.5 × 10−3 ΔT( ) − 91.8 × 10−6 ΔT( )2
+ 14.4 × 10−8 ΔT( )3 − 2.18 (10)

Where ΔT � T − 273.15
It is possible to calculate Vact using a semiempirical equation,

which can be expressed in the following way:

Vact � − ξ1 + ξ2T + ξ3Tln CO2( ) + ξ4Tln I( )[ ] (11)

The concentration of dissolved oxygen at the cathode’s catalytic
interface, CO2, can be determined using Henry’s Law

CO2 �
PO2

5.08 × 106
exp

498
T

( ) (12)

The voltage Vohm that appears across the resistances Rm and Rc

can be determined by applying Equation 13, and it shows a linear
relationship with the current flowing through the system

Vohm � I Rm + Rc( ) (13)
Rm � ρm.l

A
(14)

The specific resistance can be formulated using (Equation 15).

ρm �
181.6 1 + 0.03 I

A( ) + 0.062 T
303( )2 I

A( )2.5[ ]
λ − 0.634 − 3 I

A( )[ ] exp 4.18 T−303
T( )[ ] (15)

The voltage drop Vcon caused by concentration changes can
be described using an empirical equation presented in
(Equation 16).

Vcon � −Bln 1 − J

Jmax
( ) � −Bln 1 −

I
A

Jmax
( ) (16)

To accurately predict the performance of the PEMFC stack,
it is necessary to estimate the values of its seven parameters.
The objective function is a key tool in this process, as it enables
the identification of unknown parameters through
the comparison of experimental and simulated data. In
particular, an objective function is created by summing the
squared differences between the measured and simulated
values using Equation 17.

Fobj �∑N

i�1 Vsim − Vexp( )2 (17)

The step-by-step procedure to calculate the stack voltage is
outlined as:

i. Begin by defining all constants such as l, A, T, PH2, PO2, Jmax,

ii. Obtain the variable parameters ξ1, ξ2, ξ3, ξ4, λ, Rc,B from the
optimization algorithm

iii. Calculate the saturation pressure of water using
(Equation 10).

iv. Compute CO2 using (Equation 12).
v. Determine Rm and ρm using (Equations 14, 15) respectively.
vi. Calculate the voltage drop Vcon using (Equation 16), Vohm

using (Equation 13), Vact using (Equation 11), ENernst

using (Equation 6).
vii. Now, compute the cell voltage using (Equation 5) and finally,

derive the stack voltage using (Equation 4).

TheMATLAB code to calculate the objective function is publicly
available on the MathWorks website, associated with article

Frontiers in Energy Research frontiersin.org04

Tummala et al. 10.3389/fenrg.2024.1384649

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1384649


(Ayyarao et al., 2024). Interested users can reference this code for a
basic understanding of the concept.

3 Young’s double-slit experiment
optimization

3.1 Inspiration

Young’s double-slit experiment optimization is an
optimization algorithm that takes inspiration from the well-
known double-slit experiment conducted by Thomas Young
during the early 1800 s. The experiment entailed directing a
beam of light through two slender openings in a barrier,
leading to the observation of an interference pattern on a
screen positioned behind the barrier. Unlike lasers, which emit
monochromatic and coherent light, most lights are non-
monochromatic and incoherent. The experiment is quite
straightforward and revolves around the principle of
illuminating a barrier containing two small slits—the first and
second slits—with light from a monochromatic source. Beyond the
barrier, a projection screen is meticulously positioned to document
the trajectory of light. Upon passing through the narrow slits, the
light waves intersect, giving rise to an interference pattern
discernible on the screen. This phenomenon engenders
semicircular waves as light traverses the slits, wherein luminous
bands (fringes) denote interference maxima and dim bands signify
interference minima. The interference pattern persists uniformly
across the screen, with the positions of bright and dark fringes
remaining constant. Notably, maintaining coherence between the
two light sources is imperative for ensuring the stability of the
interference pattern.

3.2 Mathematical model

The Young’s double-slit experiment optimizer is based on the
concept of interference patterns, like those observed in Young’s
experiment (Abdel-Basset et al., 2023). The various steps involved in
YDEO algorithm are:

3.2.1 Initialization
In the first phase of the experiment, a group of monochromatic

light waves are created using Equation 18.

X � Lb + rand 1, N( ). × Ub − Lb( ) (18)

3.2.2 Huygen’s Principle
According to Huygen’s principle, each point on a wavefront

behaves as a generator of secondary wavelets that spread
uniformly in all directions at a constant speed. The
combination of these wavelets determines the position of the
new wavefront later given in Equations 19, 20.

FSi � Xi + L × rand −1, 1( ) × 1
N
∑N

j�1Xj −Xi( ) (19)

SSi � Xi − L × rand −1, 1( ) × 1
N
∑N

j�1Xj −Xi( ) (20)

3.2.3 Travelling waves update
During Young’s double-slit experiment, the passage of

coherent light through two slits produces an interference
pattern on a screen located behind the slits. In Young’s
double-slit experiment, the coherent light passing through
the two slits creates two sets of waves that interfere with
each other. The resultant wave creates a pattern of bright
and dark fringes on the screen, which correspond to areas of
constructive and destructive interference.

Xi � FSi + SSi
2

( ) +
0 ifCIhappensatm � 0

2m + 1( ) ρ
2

ifDIhappenswhenmisodd

3ρ ifDIhappenswhenmiseven

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(21)

Here m � i − 1

3.2.4 Wave fringes
When the light waves from the pair of slits intersect on the

screen, they undergo constructive or destructive interference.
Constructive interference occurs where the waves are in phase,
meeting crest-to-crest or trough-to-trough, resulting in a bright
band. Conversely, destructive interference occurs when the
waves meet crest-to-trough, leading to a dark band. The
spacing of these light and dark bands is determined by
factors such as the distance between the slits and the screen,
along with the wavelength of the light employed. The pattern of
bands can be explained using the principles of wave
interference.

3.2.5 Constructive interference
CI is the phenomenon where waves combine to produce a larger

amplitude. In the case of Young’s double-slit experiment, constructive
interference occurs when the waves of light passing through the two
slits are in phase with each other. This occurs because the waves from
each slit arrive at the screen with a path difference. When the path
difference is equal to an integer multiple of the wavelength of the light,
the waves interfere constructively, creating a bright fringe. The path
difference is determined by the distance between the slits and the
distance from the slits to the screen.

In the case of (i is even), the wave update is given by Equation 22.

Xt+1
i � Xt

i − 1 − r1( ) × 2

1 +
������
1 − β2
∣∣∣∣ ∣∣∣∣√ × Intt+1i × Xt

i − r1⎛⎜⎜⎜⎝
× Xt

rand1 −Xt
rand2( )⎞⎠ (22)

In the case of i = 0, the wave update is given by Equation 23.

Xt+1
i � Xt

i +
2

1 +
������
1 − β2
∣∣∣∣ ∣∣∣∣√ × Int t+1max × Xt

i − r2 × z × Xt
rand3

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
(23)

3.2.6 Destructive interference
DI happens when the crests of one wave coincide with the

troughs of another wave, resulting in a reduction in the overall
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amplitude (brightness) of the interference pattern. In the
context of the double-slit experiment, the light passing
through each slit generates its own wave pattern, which then
overlap and interfere with each other on the screen. When the
crest of one wave coincides with the trough of another wave, the
two waves cancel each other out, resulting in a dark spot on the
screen where no light is detected and this given by Equation 24.

Xt+1
i � Xt

i

− r1 × 0.38 × tanh−1 − t

t max
+ 1( ) × Intt+1i × Xt

i −
t2×r2

V
Xt

B( )
(24)

The flowchart for YDEO algorithm for fuel cell parameter
estimation is illustrated in Figure 2.

4 Results and discussion

As mentioned in Section 2, the PEMFC model requires the
estimation of seven unknown parameters. The bounds of the
parameter space for all the test cases can be found in Table 1, while
the testing conditions for the three benchmark systems are itemized in
Table 2. To identify the parameters of the PEMFC model for the
Horizon500W, BCS500W, andNedstackPS6 benchmarks, we proposed

FIGURE 2
Flowchart of YDEO algorithm.
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the YDEO algorithm, which was implemented in MATLAB and
executed on an Intel I5 processor. We compared the performance of
the proposed YDEO algorithm with that of other recent and
contemporary optimization algorithms, including Particle Swarm
Optimization (Kennedy and Eberhart, 1995), Multi-Verse
Optimization (MVO) (Mirjalili et al., 2016), Slime-Mould
Optimization (SMO) (Li et al., 2020), Harris Hawk Optimization
(HHO) (Heidari et al., 2019), Arithmetic Optimization Algorithm
(AOA) (Abualigah et al., 2021), Grey Wolf Optimization (GWO)
(Mirjalili et al., 2014), Artificial Electric Field Algorithm (Anita and
Yadav, 2019), and Artificial Vulture Optimization Algorithm
(Abdollahzadeh et al., 2021). For all algorithms, a population size of
50 was utilized, and the maximum allowable number of function
evaluations was established at 5000.

4.1 Horizon500W results

Figure 3 depicts the convergence curves of the YDEO
algorithm, as well as those of other algorithms. This graph

showcases the superior performance of the algorithm in terms
of both accuracy and convergence speed. Figure 4 depicts the
polarization curve with experimental and calculated values.
This graph clearly shows that the simulated values are very
closer to the experimental values. Experimental measurements
and estimated values for the first test case are recorded in
Table 3. The overall SSE value for this test case is 0.011243.
The maximum and minimum absolute error between
experimental and simulated values are 5.621E-02 and 4.950E-
04 respectively. The sum of the absolute error values is equal to
3.189E-01 which is very less and hence the mathematical model
is very closely mimics the practical system.

4.2 NedstackPS6 results

Figure A1 in appendix illustrates the convergence
performance of YDEO algorithm when compared with the
recent algorithms and the graphs reveal that the proposed
YDEO algorithm achieves minimum objective function value
with less iterations. Table 4 records the experimental and
simulated values. The overall SSE values for the second test
case is 2.065557. The maximum and minimum absolute error
between the measured and simulated values are 7.158E-01 and
1.356E-02 respectively and the sum of the absolute error values is
5.945. Figure 5 illustrates the polarization curve with the
experimental data and estimated data using the proposed

TABLE 1 Bounds of the parameter space.

Parameter ξ1 ξ2 ξ3 ξ4 λ Rc B

Upper −0.8532 5 × 10−3 9.8 × 10−5 −0.954 × 10−4 24 8 × 10−4 0.5

Lower −1.19969 1 × 10−3 3.6 × 10−5 −2.6 × 10−4 10 1 × 10−4 0.136

TABLE 2 Testing conditions for various PEMFC stacks.

Stack N A L T PH2 PO2 Jmax

NedStackPS6 65 240 178 343 1 1 5

Horizon500W 36 52 25 ≤338.15 0.55 0.2075 0.469

BCS500W 32 64 178 333 1 1 0.51923

FIGURE 3
Convergence curve of YDEO when compared with other
algorithms in the case of Horizon500W fuel cell.

FIGURE 4
Horizon500W polarization curve with experimental and
calculated values.
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algorithm. To exemplify NedStack’s performance across varied
simulated cell temperature conditions, we’ve visually represented
the impact of temperature fluctuations in a Figure A2 found in
the appendix. The findings reveal a notable trend: as the
temperature increases, there’s a corresponding rise in
stack voltage.

4.3 BCS500W results

Figure A3 depicts how the YDEO algorithm compares to
recent algorithms in terms of convergence performance. The
graphs demonstrate that the YDEO algorithm achieves a
lower objective function value with fewer iterations.

TABLE 3 Experimental and simulated values for Horizon500W.

Horizon500W

Experimental values Simulation values

S.No Iexp Vexp T Vsim (Vsim − Vexp)2

1 0.6000 29.3700 296.2000 29.38098041728 1.2056956372E-04

2 2.5000 26.7774 297.8109 26.78157225445 1.7491252322E-05

3 5.0000 25.2903 299.5201 25.28980497372 1.9804839397E-07

4 7.5000 24.2819 301.2274 24.24762079210 1.1722548802E-03

5 10.0000 23.4180 302.9500 23.36948655379 2.3535544636E-03

6 12.0000 22.7391 304.4043 22.71878536809 4.1280616625E-04

7 14.0000 22.0585 306.0069 22.08378549109 6.3819345615E-04

8 16.0000 21.3861 307.8427 21.44231186654 3.1543799048E-03

9 18.0000 20.7217 309.9944 20.77035496985 2.3645821972E-03

10 20.0000 20.0260 312.5320 20.03371588561 5.9534890695E-05

11 21.0000 19.6364 313.9611 19.62366073399 1.6101747182E-04

12 22.0000 19.1918 315.5014 19.16950479421 4.9738838331E-04

13 23.0000 18.6636 317.1531 18.64916083679 2.0935668408E-04

14 24.0000 18.0152 318.9135 18.02153898626 3.9841170488E-05

15 25.0000 17.2013 320.7766 17.19480584892 4.1527083170E-05

∑ (Vsim − Vexp)2 � 0.011242695616197

FIGURE 5
Polarization curve for BCS500W.

FIGURE 6
Polarization curves for 250W benchmark model.
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Meanwhile, Table 5 presents both experimental and simulated
values. For the third test case, the overall sum of squared errors is
0.011698. The maximum and minimum absolute errors between
measured and simulated values are 7.158E-01 and 1.356E-02,
respectively. The total sum of absolute error values
amounts to 5.945.

4.4 Robustness to varying pressures and
temperatures

The effectiveness of the proposed algorithm underwent scrutiny
through thorough analysis of a vast 250W PEMFC dataset, covering
diverse data points from various temperature and pressure

TABLE 4 NedstackPS6 experimental and simulated results.

NedstackPS6

Experimental values Simulation values

S.No Iexp Vexp Vsim (Vsim − Vexp)2

1 2.25000 61.64000 62.3557845919 5.12347582E-01

2 6.75000 59.57000 59.7817223412 4.48263498E-02

3 9.00000 58.94000 59.0503251827 1.21716459E-02

4 15.75000 57.54000 57.4981424652 1.75205322E-03

5 20.25000 56.80000 56.7194653418 6.48583116E-03

6 24.75000 56.13000 56.0461449782 7.03166468E-03

7 31.50000 55.23000 55.1588977304 5.05553275E-03

8 36.00000 54.66000 54.6222198845 1.42733713E-03

9 45.00000 53.61000 53.6344798155 5.99261366E-04

10 51.75000 52.86000 52.9452655968 7.27022199E-03

11 67.50000 51.91000 51.4403219125 2.20597506E-01

12 72.00000 51.22000 51.0276623595 3.69937680E-02

13 90.00000 49.66000 49.4183380463 5.84004999E-02

14 99.00000 49.00000 48.6269638929 1.39155937E-01

15 105.80000 48.15000 48.0307740515 1.42148268E-02

16 110.30000 47.52000 47.6361313972 1.34865014E-02

17 117.00000 47.10000 47.0473350329 2.77359876E-03

18 126.00000 46.48000 46.2521155388 5.19313277E-02

19 135.00000 45.66000 45.4494229707 4.43426853E-02

20 141.80000 44.85000 44.8364383990 1.83917021E-04

21 150.80000 44.24000 44.0146209650 5.07957094E-02

22 162.00000 42.45000 42.9720717875 2.72558951E-01

23 171.00000 41.66000 42.1157583200 2.07715646E-01

24 182.30000 40.68000 41.0137409013 1.11382989E-01

25 189.00000 40.09000 40.3446591494 6.48512824E-02

26 195.80000 39.51000 39.6525752894 2.03277131E-02

27 204.80000 38.73000 38.7148770966 2.28702206E-04

28 211.50000 38.15000 37.9995977370 2.26208407E-02

29 220.50000 37.38000 37.0139029660 1.34027038E-01

∑ (Vsim − Vexp)2 � 2.065556920795640
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configurations. Moreover, Figure 6 illustrates polarization curves,
displaying the experimental and predicted stack voltages at two
distinct sets of conditions: 3/5 bar pressure and 353.15 K
temperature, and 1/1 bar pressure and 343.15 K temperature.
These curves unveil nuanced distinctions between the
experimental and predicted values. Additionally, Table 6 provides
a comprehensive overview of the experimental data juxtaposed with
the estimated data generated through the proposed method.

4.5 Comaprison with other algorithms

The proposed method’s efficacy is demonstrated through
comparison with existing algorithms in the literature, utilizing
three distinct datasets. These comparisons are quantified through
the evaluation of an objective function, specifically the SSE between
experimental and estimated voltages. The results, neatly organized
in a Table 7, unequivocally showcase the superiority of the proposed
algorithm across all three test cases. With its consistently lower
objective function values, the proposed method emerges as the
standout performer, surpassing the alternatives examined in the
study. This outcome not only underscores the effectiveness of the
novel approach but also positions it as a leading contender for fuel

cell parameter estimation, potentially offering significant
advancements in this domain.

5 Conclusion

The estimation of unknown model parameters is a challenging
but crucial topic in the research of PEMFC. This study has proposed
a new and accurate approach, namely, the Youngs Double slit
Experiment Optimization algorithm, to address this issue. This
approach can greatly benefit the design, simulation, analysis,
evaluation, and control of PEMFC systems. By formulating an
objective function based on the sum of squared errors between
experimental and calculated values, this study has evaluated the
YDEO algorithm on four benchmark test cases: Horizon 500W,
BCS500W, NedstackPS6 and 250 W. The simulation outcomes
indicate that the YDEO algorithm, as suggested, surpasses other
widely used and current algorithms found in literature. This
positions it as a promising tool for accurately estimating
parameters in PEMFC models.

This work can be extended by combining mathematical model with
machine learning algorithms for bridging the gap between theory
and practical.

TABLE 5 BCS500W stack results.

BCS500W

Experimental values Simulation values

S.No Iexp Vexp Vsim (Vsim − Vexp)2

1 0.60000 29.00000 28.99723287070 7.657004591E-06

2 2.10000 26.31000 26.30594167162 1.647002921E-05

3 3.58000 25.09000 25.09355798653 1.265926814E-05

4 5.08000 24.25000 24.25462197740 2.136267512E-05

5 7.17000 23.37000 23.37541685644 2.934233365E-05

6 9.55000 22.57000 22.58461522262 2.136047323E-04

7 11.35000 22.06000 22.07132736572 1.283092141E-04

8 12.54000 21.75000 21.75846332454 7.162786228E-05

9 13.73000 21.45000 21.46126230521 1.268395187E-04

10 15.73000 21.09000 20.98774113907 1.045687464E-02

11 17.02000 20.68000 20.69450892068 2.105087793E-04

12 19.11000 20.22000 20.23098532334 1.206773288E-04

13 21.20000 19.76000 19.77094230773 1.197340985E-04

14 23.00000 19.36000 19.36602332577 3.628045334E-05

15 25.08000 18.86000 18.86646400064 4.178330434E-05

16 27.17000 18.27000 18.27471641015 2.224452471E-05

17 28.06000 17.95000 17.95330510341 1.092370853E-05

18 29.26000 17.30000 17.29286686919 5.088155510E-05

∑ (Vsim − Vexp)2 � 0.011697781029917
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TABLE 6 Benchmark model 250W stack results.

Experimental values Simulation values Experimental values Simulation values

3/5 bar 353.15 K 3/5 bar 353.15 K

S. No Iexp Vexp Vsim (Vsim − Vexp)2 Iexp Vexp Vsim (Vsim − Vexp)2

1 0.2729 23.5410 23.3890 0.0231 0.2046 21.5139 21.4471 0.0045

2 1.2790 21.4756 21.6694 0.0376 1.2619 19.6737 19.4809 0.0372

3 2.6603 20.3484 20.7312 0.1466 2.6433 18.7154 18.5429 0.0298

4 3.9734 19.8969 20.1361 0.0572 3.9734 17.9449 17.9366 0.0001

5 5.3547 19.4642 19.6292 0.0272 5.3206 17.5497 17.4351 0.0131

6 6.7190 19.0127 19.1892 0.0311 6.7019 17.1545 16.9800 0.0305

7 8.0321 18.5049 18.7973 0.0855 8.0491 16.6843 16.5676 0.0136

8 10.7265 17.8835 18.0373 0.0236 10.7265 15.8752 15.7885 0.0075

9 13.4720 17.2808 17.2688 0.0001 13.4720 15.1411 14.9911 0.0225

10 16.1664 16.2089 16.4659 0.0660 16.1494 14.4634 14.1617 0.0910

11 17.4966 15.8701 16.0300 0.0256 17.4795 14.0870 13.7092 0.1427

12 18.8608 15.5312 15.5342 0.0000 18.8438 13.5792 13.1956 0.1472

13 20.1910 15.1923 14.9679 0.0504 20.1739 12.6772 12.6118 0.0043

14 21.5553 14.6282 14.2014 0.1822 21.5382 10.8743 11.8286 0.9106

15 22.9195 13.7450 12.5370 1.4593 22.9025 8.9213 10.1786 1.5808

∑ (Vsim − Vexp)2 � 5.250849

TABLE 7 Comparison of YDEO with other algorithms for NedstackPS6, Horizon 500W, BCS500W.

Algorithm ξ1 ξ2 × 10−3{ } ξ3 × 10−5{ } ξ4 × 10−4{ } λ Rc × 10−3{ } B SSE

Nedstack PS6

YDEO −0.85323472 2.39873144 3.6001 −9.54 12.5743308 0.1 0.0136 2.065556907

ABCDE Hachana and
El-Fergany (2022)

−1.07813 3.385556 5.96798 −9.54 13.09471 0.1 0.0136 2.079165723

BES Rezk et al. (2022b) −1.149 3.3487 3.6 −9.54 13.097 0.1 0.0136 2.07974

AEFA Houssein et al. (2021) −1.149 3.349 3.6 −9.5 13.097512 0.1 0.0136 2.07974

DE (Rezk et al. (2022b) −1.149035 3.3487 3.60 −9.54 13.0975 0.1 0.0136 2.07974

FMHHO Yousri et al. (2021) −1.0239 3.0 3.7094 −9.54 13.198 0.1 0.013695 2.0832

MHHO Yousri et al. (2021) −1.1997 3.5094 3.6754 −9.54 13.193 0.1 0.0136 2.0834

VSDE Fathy et al. (2020b) −1.1212 3.3487 4.6787 −9.54 13 0.1 0.0494 2.08849

SCA −0.8532 3.3487 9.36 −9.54 13.0708 0.1 0.0136 2.09058

RSA (Rezk et al. (2022b) −1.1482608 3.3487 3.60 −9.54 13 0.1 0.0136 2.12889

MRFO Selem et al. (2020) −0.9381 3.4861 9.512 −9.5436 13.096 0.1 0.014512 2.136

IAEO (Rizk-Allah and
El-Fergany, 2021)

−1.1997 3.4103 3.6 −9.54 19.7903 0.362 0.0136 2.1459

IBHO Abdel-Basset et al.
(2021)

−0.85396 2.4 3.6 −9.54 13.465 0.1 0.0136 2.1470

(Continued on following page)
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TABLE 7 (Continued) Comparison of YDEO with other algorithms for NedstackPS6, Horizon 500W, BCS500W.

Algorithm ξ1 ξ2 × 10−3{ } ξ3 × 10−5{ } ξ4 × 10−4{ } λ Rc × 10−3{ } B SSE

STSA Jiang et al. (2020) −0.8532 2.84 6.79 −9.54 13.463 0.1 0.0136 2.14576

NNA Fawzi et al. (2019) −0.8535 2.4316 3.7545 −9.54 13.080 0.1 0.0136 2.14487

IFSO Qin et al. (2020) −0.92 3.46 7.59 −9.62 13.15 0.1 0.01 2.15

SFLA Kandidayeni et al.
(2019)

−1.023071 3.476 7.7883354 −9.54 15.03229 0.162 0.0136 2.167055

FOA Kandidayeni et al.
(2019)

−1.035664 2.9502 3.7669451 −9.54 15.029691 0.1622 0.0136 2.167091

ICA Kandidayeni et al.
(2019)

−1.034322 3.3202 6.4420795 −9.54 15.09701 0.165 1.36 2.168339

SSO El-Fergany (2018a) −1.13 3.46 4.59 −9.62 12.91 0.1 0.06 2.18067

GOA El-Fergany (2018b) −1.1997 3.5505 4.6144 −9.54 13.009 0.101 0.0579 2.18586

VSA Fathy et al. (2020b) −0.8946 3.348 9.75 −9.54 13 0.103 0.0429 2.3426

EO Menesy et al. (2020) −1.12171 3.77 7.81 −9.54 16.60171 0.205 0.0285 2.40931

GSA Rezk et al. (2022b) −0.873873 3.3487 8.93 −9.54 18.86595 0.2388 0.0565881 2.5827

GJO Rezaie et al. (2022) −0.9 3.3 4.64 −9.27 13 0.1 0.055 2.97

IMBO Bao et al. (2020) −0.83 4.13 7.46 −9.73 13 0.1 0.058 6.13

Horizon 500W

YDEO −0.85320 2.7824403 9.793986 −1.551497 10 8 0.047755709 0.011242696

ISCE Gao et al. (2018) −0.8532 2.78326602 9.8 −1.55160308 10 8 0.0477464271 0.01124186

GWO Mirjalili et al. (2014) −0.878024 2.003763 3.5234 −1.5622 10 7.9822 0.0493 0.0124425

SFLA Kandidayeni et al.
(2019)

−0.8532 2.698 9.136174 −1.61 13 7.99 0.048504 0.0144

HHO Heidari et al. (2019) −1.1997 3.07903 3.5004 −1.6 10 4.3055 0.0622 0.0792

BCS500W

YDEO −1.07573 3.57934 8.10216 −1.930177 20.87742 0.1 0.0161263 0.01169778

ABCDE Hachana and
El-Fergany (2022)

−1.17056 4.093198 9.79613 −1.93017 20.87724 0.1 0.0161261 0.01169778

SFLA Kandidayeni et al.
(2019)

−0.965740 3.08 7.2236 −1.93 20.88622 0.1 0.016126 0.011697

NNA Fawzi et al. (2019) −1.0596 3.7435 9.6902 −1.9302 20.8772 0.1 0.0161 0.011698

IHBO Abdel-Basset et al.
(2021)

−1.1997 3.31 4.2 −1.93 20.877 0.1 0.0161 0.01170

BSOA Chen et al. (2022) −0.9428758 3.3734401 9.5636904 −1.9301734 20.87724 0.1 0.016126133 0.0117

FOA Kandidayeni et al.
(2019)

−0.992829 2.621 3.746368 −1.93 21.1011 0.1 0.016269 0.011819

ISA El-Hay et al. (2019) −1.0083 3.58 9.65 −1.93 22.657 2.53 0.01625 0.01183

ICA Kandidayeni et al.
(2019)

−0.908643 2.4798 4.4583194 −1.93 22.6626 2.46 0.016238 0.011856

SSO El-Fergany (2018a) −1.01 3.22 5.45 −1.42 20.71 0.75 0.01 0.01219

PSO-GJO Rezaie et al.
(2022)

−0.851 5.07 8.8 −2.94 23 0.312 0.016 0.013

GJO Rezaie et al. (2022) −0.848 5.14 8.42 −2.51 23 0.312 0.014 0.014

HHO Mossa et al. (2021) −1.09311 3.28041 5.67397 −1.89666 20.0346 0.225793 0.015148 0.014879

(Continued on following page)
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Appendix

FIGURE A1
Convergence curve of YDEO when compared with other
algorithms in the case of NedstackPS6 fuel cell.

FIGURE A3
Convergence curve of YDEO when compared with other
algorithms in the case of BCS500W fuel cell.

FIGURE A2
Polarization curves for different operating temperatures.
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Nomenclature

YDEO Young’s Double-slit Experiment Optimizer

FC Fuel Cell

PEMFC Proton Exchange Membrane Fuel Cell

SSE Sum Squared Error

Ncell Number of cells

ENernst Thermodynamic potential, V

Vcell Single cell voltage, V

V Stack voltage, V

Vohm Ohmic voltage drop, V

Vcon Concentration voltage loss, V

I Current, A

Vact Activation voltage, V

PO2 Partial pressure of oxygen, atm

RHa Relative humidity of vapour in the anode

T Absolute Temperature, K

PH2 Partial pressure of hydrogen, atm

Pa Anode inlet pressure, atm

RHc Relative humidity of vapour in the cathode

CO2 Concentration of Oxygen, mol cm−3

ξ1 , ξ2 , ξ3 , ξ4 Semi-empirical coefficients

Pc Cathode inlet pressure, atm

Rc Equivalent contact resistance

PH2O Saturation pressure of water, atm

A Effective area of the membrane, cm2

ρm Specific resistivity for the flow of hydrated protons

Rm Equivalent membrane resistance

l Membrane thickness (cm)

J Current density, A/ cm2

λ Water content of membrane

Jmax Maximum current density, A/ cm2

Xi ith light wave

B Parametric coefficient, Ω cm

DI Destructive interference

Lb Lower bound

Ub Upper bound

CI Constructive interference

N Number of light waves

r1 Random number ∈ [−1 1]

Intti Light intensity

ρ Wave length

FSi Waves leaving the first slit

SSi Waves leaving the second slit

L Distance between the barrier and light source

t max Maximum iterations

Xt
B Best fringe

Int tmax Maximum intensity

Xt
rand1 ,X

t
rand2 Random light waves

Xt
rand3 Random bright fringe with even order number
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